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Abstract: Laron syndrome (LS), or primary growth hormone resistance, is a prototypical congenital
insulin-like growth factor 1 (IGF1) deficiency. The recent epidemiological finding that LS patients
do not develop cancer is of major scientific and clinical relevance. Epidemiological data suggest
that congenital IGF1 deficiency confers protection against the development of malignancies. This
‘experiment of nature’ reflects the critical role of IGF1 in tumor biology. The present review article
provides an overview of recently conducted genome-wide profiling analyses aimed at identifying
mechanisms and signaling pathways that are directly responsible for the link between life-time low
IGF1 levels and protection from tumor development. The review underscores the concept that ‘data
mining’ an orphan disease might translate into new developments in oncology.

Keywords: insulin-like growth factor 1 (IGF1); IGF1 receptor (IGF1R); growth hormone receptor
(GH-R); Laron syndrome; cancer protection; thioredoxin-interacting protein (TXNIP)

1. The Somatotropic Axis and Its Role in Growth Retardation

The critical involvement of the growth hormone releasing hormone (GHRH)-growth hormone
(GH)-insulin-like growth factor 1 (IGF1), or somatotropic, axis in normal growth, development,
and differentiation has been well established [1–4]. Likewise, the recognition that aberrations (mostly
inherited) in specific components of this endocrine system are correlated with growth pathologies
is deeply rooted [5,6]. The GHRH-GH-IGF1 network exhibits an extraordinary level of biological
complexity and, not surprisingly, some of the signaling molecules responsible for the growth-promoting
actions of the somatotropic axis are also accountable for several key biological processes, including cell
division, apoptosis, transcription and translation, etc. [7–9].

While many pediatric conditions are correlated with short stature (for a review see Wit et al.
2011) [10], the present review focuses on disorders specifically linked to the GHRH-GH-IGF1 axis.
Basic and clinical research conducted over the past half century has identified specific nodes at the
hypothalamic, hypophyseal, and other organismal levels whose molecular alterations are directly
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linked to abnormal growth phenotypes [11,12]. Comprehensive endocrine, biochemical, and genetic
analyses of these pathologies has had a huge influence on our understanding of the GHRH-GH-IGF1
system pathophysiology [13,14].

Congenital IGF1 deficiencies are usually defined by low serum IGF1 but normal to high GH
levels. These diseases may arise from: (1) GH-releasing hormone receptor (GHRH-R) defects [15];
(2) GH gene deletion (isolated GH deficiency, IGHD) [16]; (3) GH receptor (GH-R) gene deficiency
(Laron syndrome) [17]; and (4) IGF1 gene defects [5,18,19]. Other situations leading to congenital
IGF1 deficiency are post-GH-R signaling anomalies (e.g., STAT5 defects), acid labile subunit (ALS)
mutations [5,20], and the recently described mutation in the PPA2 protein [21]. Table 1 summarizes
these molecular defects. On the other hand, disorders associated with IGF1 resistance usually exhibit
normal to augmented IGF1 levels. These pathologies may result from mutations of the IGF1 gene
(leading to bioinactive IGF1), IGF-binding protein (IGFBP) abnormalities, mild IGF1 receptor (IGF1R)
anomalies, post-IGF1R signaling defects, and end-organ resistance to IGF1 action at the growth
plate [22–26].

Table 1. Molecular pathology of congenital insulin-like growth factor 1 (IGF1) deficiencies.

Molecular defects leading to congenital IGF1 deficiency

Growth hormone (GH)-releasing hormone receptor (GHRH-R) defect

GH gene deletion (isolated GH deficiency, IGHD)

GH receptor (GH-R) gene deficiency (Laron syndrome)

IGF1 gene deletion

Defects of post-GH-R signaling (e.g., STAT5 defects)

Acid labile subunit (ALS) mutations

PPA2 protein mutations

2. Laron Syndrome: A Classical Paradigm of Congenital IGF1 Deficiency

Laron syndrome (LS), also known as primary GH insensitivity, is a type of dwarfism that results
from mutation or deletion of the GH-R gene. LS may also be caused by post-receptor pathways
defects, and it leads to congenital IGF1 deficiency [17,27]. This genetically-transmitted (autosomal
recessive inheritance with full penetrance) disease was identified in the mid-1950s in three siblings of
Yemenite origin. It was first reported in 1966 [28]. The classical features of LS are: (1) short stature
(−4 to −10 SDS below the median normal height); (2) typical face and reduced head circumference;
(3) obesity; (4) acromicria (i.e., smallness of the extremities); (5) high basal serum GH; and (6) low
to undetectable serum IGF1, without response to exogenous GH [29]. The identification of an exon
deletion at the GH-R gene as the molecular defect underlying LS etiology was first reported in 1989 [30].
Since this report, several GH-R defects have been identified, including exon deletions and nonsense,
frameshift, and missense mutations. The majority of the mutations are in the extracellular portion of
the receptor, leading to the absence of circulating GH binding protein (GH-BP). Several mutations have
been mapped to the cytoplasmic and transmembrane GH-R domains [31–34]. Despite the variability in
the mutations observed, the phenotypic consequences are remarkably similar, i.e., dwarfism, lack of
GH signaling, and undetectable, or extremely low, IGF1 values (Figure 1).

In addition to the Israeli cohort in which most initial endocrine and genetic analyses were conducted
(comprising now ~75 patients of various ethnic origins), patients with primary GH insensitivity have
been reported in Ecuador and in a number of Mediterranean and Middle Eastern countries [35,36].
Of genetic relevance, the same GH-R mutation (E180 splice, A to G transition at position 594) was
identified in 37 patients from the large Ecuadorian cohort, which is consistent with the notion that this
population derived from a single founding ancestor [37,38]. In the Israeli cohort, on the other hand,
a number of molecular defects were identified [39].
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Treatment of LS patients with recombinant IGF1 (available since the mid-1990s) has been reported
to have a significant effect on linear growth acceleration [40]. In addition, growth of the extremities and
’catch-up’ growth of the head circumference have been noticed. However, the growth velocity achieved
by IGF1 injections has been found to be less intense than that reached by GH treatment in GH-deficient
children [41]. Unfortunately, an initial decline in percent body fat following IGF1 administration has
been observed to be followed by increasing adiposity [42,43]. In addition to the obesity associated
with therapy, additional side effects have been reported, including tachycardia and skeletal pain, etc.
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is particularly meaningful in a number of adult epithelial tumors typically linked to endocrine 
function (e.g., breast and prostate, etc.). In alignment with its strong anti-apoptotic, pro-survival 
activity, IGF1R is overexpressed in malignantly transformed cells. Increased IGF1R concentrations in 
tumors is regarded as a critical adaptation that allows already transformed cells to rapidly proliferate 
and progress through the cell cycle. On the other hand, potential correlations between low IGF1 
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multiple pituitary hormone deficiency (cMPHD) patients (n = 113). In addition, analyses included 752 
first-degree family members. The study reported that none of the 230 LS patients had a cancer of any 
type. In addition, only one out of the 116 patients with IGHD had a tumor (Table 2). Eighteen cases 
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Figure 1. Schematic representation of the GH-IGF1 axis in health and in Laron syndrome (LS) patients.
Pituitary-produced GH leads to IGF1 secretion from the liver, with ensuing bone elongation and
longitudinal growth (left panel). As a result of a GH-R mutation in LS patients, the liver (and, probably,
additional extrahepatic tissues) is no longer able to produce physiological levels of IGF1 (right panel).
Abrogation of IGF1 production leads to impaired growth and defective negative feed-back at the
pituitary gland level, leading to high circulating GH levels.

3. Congenital IGF1 Deficiency Confers Protection from Cancer Development

The linkage between high circulating IGF1 dosages and cancer risk has been firmly established by
numerous epidemiological studies conducted over the past two decades [44–47]. This correlation is
particularly meaningful in a number of adult epithelial tumors typically linked to endocrine function
(e.g., breast and prostate, etc.). In alignment with its strong anti-apoptotic, pro-survival activity,
IGF1R is overexpressed in malignantly transformed cells. Increased IGF1R concentrations in tumors is
regarded as a critical adaptation that allows already transformed cells to rapidly proliferate and progress
through the cell cycle. On the other hand, potential correlations between low IGF1 values and cancer
incidence have not been investigated in a systematic fashion. A recently-conducted epidemiological
study has examined the prevalence of malignancy in a cohort that included 538 congenital IGF1
deficient patients [48,49]. This population was subdivided into: (1) LS patients (n = 230); (2) IGHD
patients (n = 116); (3) patients with GHRH-R defects (n = 79); and (4) congenital multiple pituitary
hormone deficiency (cMPHD) patients (n = 113). In addition, analyses included 752 first-degree family
members. The study reported that none of the 230 LS patients had a cancer of any type. In addition,
only one out of the 116 patients with IGHD had a tumor (Table 2). Eighteen cases of cancer were
reported among 218 first-degree family members of LS patients (most of them heterozygotes) (8.3%).
Furthermore, twenty-five tumors were reported among 113 further relatives (22.1%). Despite the
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fact that the number of patients in this cohort was relatively small, differences between the patients
and controls were statistically significant. Given that congenital IGF1 deficiencies are rare conditions,
the number of patients included in these epidemiological analyses represents a major portion of the
entire worldwide population of the diseases.

Table 2. Epidemiological analysis of cancer prevalence in LS patients.

Laron Syndrome First-Degree Relatives Further Relatives

Total number (n) 230 218 113

Number of malignancies 0 18 25

Prevalence of malignancy 0.0% 8.3% 22.1%

Adapted from Steuerman et al. [48].

In a study conducted in Ecuador, Guevara-Aguirre et al. have reported causes of death in LS
patients [50]. The cohort used in this study was investigated for more than thirty years and mortality
data was collected for 53 LS patients who died before 1988. Tumors were not a main cause of death
among LS patients who died before 1988 and there was no proof of cancer among 99 LS patients
since 1988. Cancer frequency was similar to the general population among relatives (~20%). Finally,
the observations regarding cancer protection in LS were corroborated by animal studies using the
GH-R/GH-binding protein (BP) knock-out (KO) (‘Laron’) mouse model [51,52].

The discovery that LS patients are protected from cancer is of major relevance [53].
The interpretation of epidemiological data is in agreement with the concept that the somatotropic axis
has a critical role in predisposing progenitor and somatic cells to transformation. IGF1 deficiency, on the
other hand, might confer protection against impending development of a tumor. The studies described
in this review article were designed to evaluate the hypothesis that life-long lack of exposure to IGF1
in LS activates cancer-protecting pathways, including apoptosis and autophagy. Of importance is the
fact that immune deficiency has been reported in association with congenital IGF1 deficiencies [54].
Hence, data suggest that cancer protection in LS is not related to improved immune surveillance but
rather to a reduction in the events leading to cancer initiation.

In a broad sense, LS research offers a unique opportunity to address the impact of the
GHRH-GH-IGF1 endocrine axis on a number of physio-pathological pathways, including growth,
obesity, diabetes, and aging, etc. Obesity constitutes the second major adverse effect of LS (after
dwarfism). Obesity starts in utero and continues even during long-term IGF1 treatment [27,29,53].
Body composition analyses showed that fat represents 59% and 39% of body weight in adult females
and males, respectively. Body lipids increase with age and this hyperlipidemia often leads to fatty
liver. The progressive obesity in this condition correlates, in most cases, with advance from a state of
insulin sensitivity in childhood to insulin resistance in young adults and, eventually, Type 2 diabetes
mellitus. Finally, while it is difficult to assess the effect of congenital IGF1 deficiency on longevity in a
rare condition such as LS, disruption of the GHRH-GH-IGF1 pathway has been shown to be correlated
with an extended lifespan in various animal species, including nematode and mouse models.

4. Genome-Wide Profiling of Laron Syndrome Patients Identifies Pathways Associated with
Cancer Evasion

To discover genes that are differentially represented in LS individuals compared to controls
and, in particular, to identify signaling pathways that might be linked to cancer protection for this
condition, we recently conducted genome-wide profiling analyses using Epstein-Bar virus (EBV)
immortalized lymphoblastoids that were derived from four patients and four controls of the same
age range (LS, 44.2 ± 6.1 years; controls, 51.7 ± 11.3 years (mean ± SD)), gender (female) and ethnic
origin (Iraq, Iran, and Yemen) [55]. One-way ANOVA was performed using Partek Genomics Suite
to create a list of differentially expressed genes. Thirty-nine annotated genes that were differentially
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expressed in LS compared to controls were identified (p value < 0.05; fold-change difference cutoff

>|2| (Figure 2a)). Principal component analysis (PCA) revealed very good discrimination between the
experimental groups (Figure 2b). Functional analyses provided evidence for a number of pathways that
are differentially represented in LS. These enriched signaling pathways include, among other things:
cell adhesion, G-protein signaling pathway, cell migration and motility, Jak-STAT signaling, apoptosis,
and metabolic pathways, etc. (Table 3 and Figure 3). In general, genes involved in cell cycle control,
motility, and growth were down-regulated in LS. As described in the next section, bioinformatics
data was validated by biological assays that showed marked differences in proliferation, cell cycle
distribution, and autophagy between LS and healthy cells.
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Figure 2. Genome-wide profiling of LS patients. (a) Cluster analysis of differentially expressed genes
in Epstein-Bar virus (EBV)-immortalized lymphoblastoids derived from four LS patients (four bottom
rows, blue color) and four age-, gender-, and ethnicity-matched controls (four upper rows, red color).
The figure depicts a cluster of 39 differentially expressed genes (fold change (FC) > 2 or < −2 and p
value < 0.05). The names of the genes are presented in the x-axis. Up-regulated genes are shown in red and
down-regulated genes are shown in blue. (b) Principal component analysis (PCA) display of four LS and
four control arrays. Hierarchical cluster analysis was performed using Partek Genomics Suite software
with Pearson’s dissimilarity correlation and average linkage methods. Data analysis was followed by
one-way ANOVA. Blue circles: LS patients; red circles: controls. The figure was adapted from [55].

Table 3. Functional analysis of differentially expressed gene clusters in Laron syndrome. The table lists
thirteen biological functions that were identified using the David and WebGestalt analysis platform.

Pathway/Function Number of Genes

Cell adhesion 12

Egf-like domain 5

G-protein coupled receptor protein signaling pathway 15

Cell migration and motility 8

Toll-like receptor signaling pathway 4

Immune response 11

Regulation of cytokine production 5

Jak-STAT signaling pathway 4

Apoptosis 3

Oxidation reduction 4

Metabolic pathways 13

Pathways in cancer 6

Metabolism of xenobiotics by cytochrome P450 3
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Autophagy is an important housekeeping mechanism that is involved in homeostasis
maintenance [56,57] by clearing damaged proteins and organelles. Autophagy is also involved in
oxidative stress and tumorigenesis. Our analyses revealed that a number of autophagic markers (e.g.,
LC3β and p62) were differentially expressed in LS cells and suggested that these autophagic adaptations
were responsible for the enhanced survival observed in LS cells in response to oxidative stress [55].

5. Differential Regulation of Oncogenes and Anti-Oncogenes in Laron Syndrome

Consistent with the epidemiological data described above depicting a markedly diminished
cancer prevalence in LS, our bioinformatics analyses demonstrated that lymphoblastoids derived
from LS patients express diminished levels of gene transcripts linked to cell cycle progression and
oncogenic transformation. These transcripts include, among others: cyclin A1, cyclin D1, serpin B2,
versican, and zinc-finger transcription factor Sp1, etc. On the other hand, LS cells express higher
levels of tumor suppressors, or anti-oncogenes, that are typically associated with activation of cell
protection mechanisms, including pTEN, p21, and others (Figure 4a). Hence, data support the
notion that low endocrine IGF1 in LS leads to downregulation of genes that affect proliferation and
mitogenesis in a positive fashion, while concomitantly upregulating genes that confer protection from
malignant transformation.

In agreement with the well-documented finding that the IGF1R gene is overexpressed in most
types of cancer [58,59], IGF1R levels (both total and phosphorylated) have been found to be drastically
reduced in LS cells [60,61]. This decrease is accompanied by parallel reductions in the phosphorylation
of downstream signaling molecules AKT and ERK, two prototypical families of IGF1 and insulin
mediators (Figure 4b). We assume that the reduction in expression and activation of components of the
IGF1R signaling axis might provide the mechanistic basis for a decrease in the mitogenic potential of
LS cells (see below).

Finally, the availability of patient-derived lymphoblastoid cells allowed us to assess the effect of
IGF1 deficiency on the in vitro mitogenicity and apoptosis displayed by these cells. Down-regulation
of cell cycle genes (e.g., cyclin D1 and cyclin A1) was found to be correlated with altered cell cycle
dynamics and apoptosis. Thus, the proliferation rate of LS cells was 50% lower than that of controls.
Flow cytometry indicated that the portion of apoptotic cells was 40% higher in LS than in controls
(p = 0.0005), while the percentage of necrotic cells was augmented by 27% (Figure 4c,d). Combined,
results of biological assays provide support to bioinformatics data indicating that LS cells exhibit
diminished mitogenic capabilities. The identification of novel molecular targets of IGF1 is described in
the following sections.
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UDP-glycosyl transferase gene family. The UDP-glycosyl transferase gene family (UDPGT) plays 
an important role in the elimination of toxic xenobiotic substances [63,64]. This enzyme exhibits 
activity towards several classes of xenobiotic substrates, including phenolic compounds, flavonoids, 
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Figure 4. Analysis of signaling pathways associated with cancer protection in LS. (A) Western blot
analysis of Sp1 and pTEN levels in LS-derived and control lymphoblastoids. Lymphoblastoid cell lines
of four LS patients and four controls were lysed and extracts were electrophoresed through SDS-PAGE.
Blots were incubated with antibodies against Sp1 and pTEN. The lanes correspond to individual
controls and patients. (B) Western blot analysis of downstream mediators of IGF1 action in LS. Cell
extracts were resolved on SDS-PAGE and membranes were incubated with antibodies against phospho-
and total-IGF1 receptor (IGF1R), phospho- and total-AKT and phospho- and total-ERK. Tubulin levels
were measured as a loading control. (C) Cell proliferation of LS and control cells. Proliferation of LS-
and control-derived lymphoblastoid cells was assessed using an XTT colorimetric kit. The statistical
significance of differences between groups was assessed by Student’s t-test. Legend: *, significantly
different versus control (p < 0.05); red bars, LS; blue bars, controls. (D) Basal apoptosis and necrosis of
LS and control cells. Apoptosis and necrosis were measured by flow cytometry analysis after staining
cells with an annexin-V antibody and propidium iodide (PI). Necrotic cells were stained with PI as well
as annexin V; apoptotic cells were stained only with annexin V. The figure was adapted from [55].

6. Identification of Novel Metabolic Targets for IGF1 Action

Genome-wide profiling of LS-derived lymphoblastoids has revealed an augmented representation
of genes involved in defense from toxic xenobiotic substances [62]. These genes include, among
others: (1) the uridine diphosphate (UDP) glycosyl transferase gene family (UGT2B15, UGT2B17;
fold-change = 12.4); (2) ribosomal modification protein RimK family member B (RIMKLB; fold
change = 3.7); and (3) thioredoxin-interacting protein (TXNIP; fold-change = 2.35). These genes have
not been previously linked to the somatotropic axis.

UDP-glycosyl transferase gene family. The UDP-glycosyl transferase gene family (UDPGT) plays
an important role in the elimination of toxic xenobiotic substances [63,64]. This enzyme exhibits
activity towards several classes of xenobiotic substrates, including phenolic compounds, flavonoids,
and antraquinones, etc. Our genomic assays demonstrated that the levels of UGT2B15 mRNAs were
~12-fold higher in LS than in control cells. These results were validated by qPCR. The data is consistent
with the observation that LS cell survival upon oxidative damage was higher than that of control cells.

Ribosomal modification protein RimK family member B. Ribosomal modification protein RimK family
member B (RIMKLB) participates in metabolic processes and cellular protein modification [65]. RIMKLB
is found in the cytoplasm, where it displays catalytic and ligase activity. RIMKLB also displays metal
ion binding activity. Overexpression of RIMKLB in LS might be correlated with catalytic processes as
well as apoptotic and autophagic mechanisms.
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When combined, the results imply that increased UGT2B15/UGT2B17 and RIMKLB, among other
highly represented metabolic genes in LS, might confer upon these cells: (1) protection against oxidative
and genotoxic damage; and (2) more efficient autophagic and apoptotic processes. If substantiated by
biological studies, these findings may generate insight into the mechanistic foundation for low cancer
prevalence in LS.

7. Identification of Thioredoxin-Interacting Protein (TXNIP) as a New Target of IGF1

Thioredoxin-interacting protein (TXNIP) was discovered as a vitamin D3-stimulated gene in
leukemia [66]. TXNIP binds to the catalytic site of thioredoxin (TRX) and inhibits its expression. These
early results demonstrated the important role of TXNIP in redox regulation [67]. TXNIP also exerts
TXR-independent functions, such as regulation of metabolism and cell growth [68]. TXNIP is a member
of the α-arrestin family and acts as a tumor suppressor. TXNIP is frequently silenced by genetic or
epigenetic mechanisms in cancer cells [69]. Furthermore, TXNIP has a key role in the control of glucose
utilization and energy expenditure [70,71]. TXNIP deficiency is also associated with cellular senescence
in mice [72]. As mentioned above, TXNIP mRNA levels have been found to be more than 2-fold higher
in LS than in healthy cells.

We have recently confirmed the role of TXNIP as a new target for IGF1 and insulin action [73].
Specifically, we showed that IGF1 and insulin inhibits TXNIP expression in several cell lines. Animal
studies using GHRKO (‘Laron’) mice confirmed the in vitro experiments. In addition, promoter
assays indicated that the effect of IGF1 on TXNIP gene expression is mediated at the transcriptional
level. Of relevance, oxidative and glucose stresses have been observed to lead to increases in TXNIP
expression while supplementation of IGF1 has been shown to attenuate TXNIP expression. These
results demonstrate that a potential path by which IGF1 exerts its potent antiapoptotic effect is the
inhibition of TXNIP expression. In view of its tumor suppressor role, we postulate that enhanced
TXNIP expression in LS might be responsible for tumor protection in this condition. A schematic
diagram of the interplay between IGF1 and TXNIP, and the potential implications of this regulatory
loop in terms of cell proliferation and homeostasis, is presented in Figure 5. As described below, TXNIP
might be relevant in clinics as a diagnostic or predictive biomarker for IGF1R-directed therapies.
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Figure 5. Regulation of thioredoxin-interacting protein (TXNIP) expression by IGF1. The processes
of cell survival and homeostasis are tightly controlled by IGF1 action from early ontogenetic stages
throughout adulthood. Left panel: normal physiological stress conditions, including starvation and
oxidative and glucose stress, might lead to upregulation of TXNIP. Augmented TXNIP levels initiate
apoptosis by interacting with thioredoxin and translocating to mitochondria. Cellular stress in the
absence of IGF1 (e.g., Laron syndrome) may lead to cell death. Right panel: IGF1 significantly
downregulates oxidative and glucose stress-induced TXNIP upregulation and controls glucose uptake
in order to improve the energy balance of the cell. Cellular stress in the presence of IGF1 might lead to
deregulated cell growth, including cancer.
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8. IGFBPs are Differentially Expressed in Laron Syndrome

The role of IGF-binding proteins (IGFBPs) in the regulation of IGF1/IGF2 actions has been
extensively investigated [74,75]. IGFBP-1–6 differ in their tissue distribution as well as in their binding
affinities for the ligands. In addition, certain IGFBPs have been shown to display IGF-independent
actions [76]. The role of IGFBPs in cancer, however, is still controversial [77–80]. To gain further insight
into mechanistic aspects associated with cancer protection in LS, we have assessed the differential
representation of IGFBPs in LS-derived lymphoblastoids [81].

Our analyses revealed that IGFBP-2, IGFBP-5, and IGFBP-6 mRNA levels were decreased in LS
lymphoblastoids compared to healthy controls by 62%, 75%, and 82%, respectively (Figure 6). IGFBP-4
mRNA levels were similar in patients and controls. On the other hand, IGFBP-3 mRNA levels were
increased by 130% in LS cells (p < 0.05). Confocal immunofluorescence and Western blots confirmed
that differences in mRNA levels were correlated with changes at the protein level.
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Figure 6. Expression of IGF-binding protein (IGFBP) mRNA in Laron syndrome. Total RNA was
prepared from lymphoblastoid cell lines derived from four LS patients (gray bars) and four controls
(closed bars) of the same age range, gender, and ethnic origin. Levels of IGFBP-2, -3, -4, -5, and -6
mRNAs were measured by RQ-PCR. For each IGFBP mRNA, a value of 1 was given to the level
displayed by controls. Bars denote mean ± SD (n = 4). Legend: *, p < 0.05 versus respective control.
Results indicate that mRNA levels of IGFBPs usually regarded as pro-mitogenic (IGFBP-2, -5, and
-6) were reduced in LS, whereas IGFBP-3 (a pro-apoptotic protein) levels were increased under this
condition. The figure was adapted from [71].

IGFBP-3 has been portrayed as an anti-oncogene for a number of tumors. We estimate that the
increased IGFBP-3 levels in LS are consistent with this role [80]. IGFBP-2 is usually described as
pro-tumorigenic, leading to increases in T-cell proliferation [82]. Likewise, IGFBP-5 also promotes T-cell
migration while IGFBP-6 functions as a chemotactic agent for T-cells [83–85]. Therefore, reductions in
these IGFBPs are in agreement with a protective activity against cancer.

9. Implications in Personalized Medicine

IGF1R is a promising therapeutic target in oncology [86,87]. Sadly, disappointing results have
been obtained when drug candidates, either as monotherapy or in combination with other reagents,
were evaluated in Phase III clinical trials. Hence, it is necessary to find biomarkers that can help identify
patients who may benefit from IGF1R-directed therapies [88]. In a recent preclinical study, we showed
that the mutational status of breast cancer gene 1 (BRCA1) may serve as a biomarker for this novel
approach. Thus, we demonstrated that: (1) the effect of an IGF1R blocking antibody on inhibition of
IGF1-mediated proliferation is reduced in breast cancer cells expressing a mutant BRCA1 compared to
cells expressing a wild-type BRCA1; and (2) the synergistic effect of anti-IGF1R therapy along with
chemotherapy is similarly reduced in cells containing a mutant BRCA1 gene [89]. In view of our
results showing previously unrecognized links between the IGF1 axis and a series of metabolic (and
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other) genes that are differentially represented in a rare condition associated with cancer protection,
we propose that at least some of these genes may constitute novel biomarkers capable of predicting
and/or monitoring responses to anti-IGF1R therapy [90].

In the specific case of the TXNIP gene, our data suggest that high TXNIP levels in LS may account
for cancer protection in this disease by maintaining cellular homeostasis. Dissection of the complex
regulatory loops involving the IGF1 and TXNIP pathways could be of relevance to our understanding
of physio-pathological processes as well as to our ability to personalize cancer protocols.

10. Conclusions

Genomic, proteomic, and other sophisticated platforms are having a significant impact on our
understanding of basic and clinical questions in the field of oncology. Genomic profiling conducted on
Laron syndrome patients emphasizes the key role of the GHRH-GH-IGF1 axis in cancer biology. Our
analyses have identified new targets for IGF1 action, including a series of metabolic enzymes whose
dependence on IGF1 has been previously unrecognized. Future studies will address the transcriptional
and epigenetic mechanisms responsible for IGF1 regulation of these novel pathways.
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