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ABSTRACT: We present a fully analytic approach to calculate infrared (IR) and Raman spectra of molecules embedded in complex
molecular environments modeled using the fragment-based polarizable embedding (PE) model. We provide the theory for the
calculation of analytic second-order geometric derivatives of molecular energies and first-order geometric derivatives of electric
dipole moments and dipole−dipole polarizabilities within the PE model. The derivatives are implemented using a general open-
ended response theory framework, thus allowing for an extension to higher-order derivatives. The embedding-potential parameters
used to describe the environment in the PE model are derived through first-principles calculations, thus allowing a wide variety of
systems to be modeled, including solvents, proteins, and other large and complex molecular environments. Here, we present proof-
of-principle calculations of IR and Raman spectra of acetone in different solvents. This work is an important step toward calculating
accurate vibrational spectra of molecules embedded in realistic environments.

1. INTRODUCTION

Vibrational spectroscopy, in particular infrared (IR) absorption
and Raman scattering, is one of the most important
spectroscopic methods for elucidating molecular structure.1

Many vibrational bands primarily signify the presence of
certain chemical bonds and functional groups. However, the
so-called fingerprint region, located between 1500 and 500
cm−1, has in addition a spectral pattern that is often unique or
near-unique for any given molecule, typically containing bands
whose corresponding vibrational motions involve the backbone
of the molecular structure. Although the use of databases of
vibrational spectra of known compounds was essential in
facilitating structural characterization of molecules in earlier
days, this has in more recent years been complemented with a
direct comparison to spectra obtained from quantum-chemical
calculations.2−4

In the harmonic approximation, vibrational normal modes
and their energy levelsdetermining the position of spectral
peaksare obtained from the second-order geometric
derivatives of the molecular energy with respect to nuclear
displacements. Spectral intensities, on the other hand, are

found from the normal-mode displacement gradient of the
relevant polarization properties, which for IR absorption is the
electric dipole moment and for Raman scattering is the electric
dipole−dipole polarizability.5 From a computational perspec-
tive, an added challenge in the calculation of vibrational
properties compared to, for instance, properties involving only
electric-dipole perturbations6 is the dependence of the basis
functions on the nuclear positions.2,4 The theory and
implementations of analytic first-7 and second-order8 geo-
metric derivatives of molecular energies were presented already
in the late 1960s and 1970s, respectively. These developments,
and in particular the analytical calculation of second-order
geometric derivatives at the level of density functional theory
(DFT),9−11 have today made quantum-chemical calculations
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an integral part of structural characterizations of molecules
using vibrational spectroscopy. At the electron-correlated levels
of theory, coupled-cluster methods now allow vibrational
frequencies to be obtained with an accuracy that rivals that of
even highly accurate experimental studies.12−14 In addition,
computationally elaborate schemes have been developed that
allow anharmonicities to be efficiently calculated also at the
DFT level of theory.3,15,16 More recently, IR and Raman
spectra have also been calculated from Car−Parrinello
molecular dynamics (MD) simulations, in which anharmonic
effects as well as broadening of peaks due to solvent
interactions are automatically included.17−19

Vibrational spectroscopy is also an important tool to
understand molecular bonding and the interaction of
molecules with their surroundings. Even small inter- or
intramolecular interactions may change the strength of
particular bonds and thus the corresponding vibrational
frequencies. Hydrogen bonding may have a particularly
significant effect on bond strengths as well as on the coupling
to other nuclei through its strongly directional nature.20,21

Thus, vibrational spectroscopy is well-suited to study subtle
interactions even in large biomolecular aggregates.22 This calls
for computational methods that can model the effects of a
surrounding environment.
Solvent effects are nowadays routinely included, for instance,

through the use of continuum solvation models in calculations
of vibrational spectra.23 In particular, the polarizable
continuum model (PCM)24,25 is a popular approach used in
quantum-chemical studies of solvated systems. However,
specific intermolecular interactions are not described using
such models. Moreover, modeling highly heterogeneous
environments, such as proteins and other typical biomolecular
systems, is problematic within a continuum approach.
Quantum mechanics/molecular mechanics (QM/MM) meth-
ods, pioneered by Warshel and Levitt,26 are an appealing
alternative. In QM/MM, the chemically interesting part of a
system is treated at a quantum-mechanical level of theory and
the surroundings are treated using a classical MM force field.
Unlike in the PCM, such QM/MM methods retain the
atomistic structure of the environment, which is important for
describing directional and structural effects on molecular
properties. A wide range of different QM/MM methodologies
has been developed.27−29 They can be divided into three main
classes depending on the level of approximation for the
quantum−classical interactions, namely, mechanical, electro-
static, and polarized embedding. In mechanical embedding, the
interactions between the quantum and classical parts are
described purely classically. In this approximation, there are
only corrections to the energy and indirect geometric effects
from the environment. The quantities needed for simulating IR
and Raman spectra can thus be computed using the same
approaches as for pure QM and MM. The next level of
complexity is electrostatic embedding, where the electronic
density of the quantum part is directly polarized by the charge
distribution of the classical part, that is, by the embedding
potential. This is achieved through an embedding-potential
operator that contains the electrostatic potential from the
partial point charges (or more generally by the permanent
multipoles) describing the charge distribution of the classical
part. Finally, in polarized embedding, the classical part is
described by a polarizable potential that thus allows for mutual
polarization between the quantum and classical parts.

Second-order geometric derivatives within an electrostatic-
embedding QM/MM approach were presented by Cui and
Karplus.30 They used the full Hessian to perform a vibrational
analysis of the entire system, that is, including both the QM
and MM subsystems. The full vibrational analysis of such large
systems may lead to computational bottlenecks in solving the
vibrational eigenvalue problem due to the large matrices that
would need to be diagonalized, as well as due to the high
density of vibrational states. Various approaches have been
proposed to deal with these challenges.31−36 Li and Jensen37

applied a partial Hessian vibrational analysis (PHVA)38,39 to
the effective fragment potential40,41 method, which is a
polarized-embedding approach, using numerical differentiation
to determine the Hessian for the quantum part. The PHVA
approximation in a QM/MM setting usually implies that only
the QM−QM block of the full Hessian is used, thus ignoring
the MM−MM, QM−MM, and MM−QM blocks. More
recently, Lipparini et al.42 presented analytic second-order
derivatives for a polarized-embedding approach based on
fluctuating charges43,44 (QM/FQ) and used this to compute
IR spectra, and later, this model was also used to calculate
Raman spectra,45 in both cases within the PHVA approx-
imation. Giovannini et al.46 derived and implemented second-
order derivatives to their extended fluctuating charges and
dipoles (QM/FQFμ) model.
In this work, we present the theory and implementation of

fully analytic first- and second-order geometric derivatives of
energies and first-order geometric derivatives of dipole
moments and dipole−dipole polarizabilities in the framework
of the polarizable embedding (PE) model and within the
PHVA approximation.47,48 This work builds on our previous
work on analytic first-order geometric derivatives of the PE
energy.49 The PE model can be characterized as fragment-
based classical embedding akin to QM/MM, with the
difference that it focuses solely on the central quantum part.
In this model, the environment is represented by fragment-
based distributed multipoles and polarizabilities. It can be used
to model complex systems, such as solute−solvent systems and
large biomolecules (e.g., proteins and nucleic acids), as well as
other large molecular systems that are amenable to
fragmentation.50 To split large molecules into smaller frag-
ments, the molecular fractionation with conjugate caps51,52

procedure can be used. The environment is treated classically,
however, the parameters (multipoles and polarizabilities) can
be derived from first-principles calculations on each individual
fragment in the environment. This approach has been shown
to yield highly accurate embedding potentials.53−57

The theory and implementation presented here build on
earlier work, providing us with a flexible framework for the
calculation of frequency-dependent molecular properties of
arbitrary order for perturbation-dependent basis sets.2,58−63

The additional contributions arising from the PE model for the
calculation of molecular Hessians as well as dipole and
polarizability gradients have been implemented so as to be
used together with the general open-ended framework of
OpenRSP.58,59,64 The stage is thus set for extensions to higher-
order geometric derivatives. Furthermore, the theory has been
formulated in terms of the atomic-orbital (AO) density matrix,
making the approach agnostic to the exact parametrization of
the self-consistent field (SCF) wave function.65

Compared to the QM/FQ and QM/FQFμ models, our
approach differs in two main directions. First, as described
above, the environment is parametrized in terms of open-
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ended fragment-based permanent multipoles and multipole−
multipole polarizabilities (the latter giving rise to induced
multipoles), rather than fluctuating charges (and dipoles).
Moreover, the multipoles and polarizabilities can be derived
directly from separate calculations on the fragments defining
the environment. This allows modeling of a wide variety of
molecular environments without the need for any predefined
parameters, whereas the QM/FQ and QM/FQFμ models have
mainly been applied to aqueous environments. Second,
although we limit ourselves to molecular gradients and
Hessians in this work, the implementation is introduced in
the open-ended framework of OpenRSP as a first step in the
direction of computing general property derivatives as well as
higher-order derivatives. This will enable simulations of a great
number of different spectroscopic techniques on molecules
embedded in atomistic environments.
The implementation is demonstrated through proof-of-

principle calculations on acetone in various solvents. Acetone
was selected as the model system because it has a rather simple
vibrational spectrum and its semipolar nature makes it soluble
in both polar and nonpolar solvents.
In the following, we first present the key quantities needed

to calculate the additional contributions from the PE model to
the molecular Hessian and the dipole and polarizability
gradients in Section 2. In Section 3, we provide the
computational details before we present our results in Section
4 for the computed IR and Raman spectra. We end the paper
in Section 5 with some concluding remarks.

2. THEORY

In this section, we first present a brief summary of the theory
for IR and Raman spectroscopy in the double-harmonic
approximation. Within this approximation, the necessary
components are the molecular Hessian and first-order
derivatives of the dipole moment and polarizability with
respect to nuclear displacements. The calculation of these
properties at quantum-mechanical levels of theory is well-
established for molecular systems in vacuo. The reader is
referred to the relevant literature for details, see, for example,
ref 6. Here, we focus on the contributions that arise when a
molecule is embedded in a polarizable environment
specifically, when this environment is described using the PE
model. The theoretical foundation for the PE model and its
formulation within quantum-mechanical response theory has
been extensively covered in earlier works.47,48,62,66−68 Here, we
present the basic equations of the PE model expressed in an
open-ended form in terms of the order of the multipoles and
polarizabilities in the environment. While the expressions are
general, in the present work, we use the standard PE potential,
which is limited to permanent multipoles up to and including
quadrupoles and dipole−dipole polarizabilities. The use of
higher-order polarizabilities will be explored in a future study.
In the last part of this section, we present the contributions
from the PE model to the second-order geometric derivatives
of the energy as well as to the first-order geometric derivatives
of the dipole moment and polarizability. The equations will be
expressed in an AO SCF formulation, following earlier
works.58,59,62

2.1. Vibrational Frequencies and IR/Raman Inten-
sities. The harmonic approximation is frequently employed
when describing vibrational wave functions and builds on a
Taylor expansion of the energy E in terms of a set of mass-

weighted nuclear Cartesian displacement coordinates relative
to the equilibrium geometry
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where mn is the mass of nucleus n and Δxn, Δyn, and Δzn are
the nuclear displacements from the equilibrium geometry of
the Cartesian coordinates of nucleus n. The sums in eq 1 thus
run over all Cartesian coordinates of the molecular geometry
and the subscript q = 0 denotes that the derivatives are
evaluated at the equilibrium geometry. The first term on the
right-hand side of the equation is the energy at the equilibrium
geometry that does not depend on the displacement
coordinates and is therefore not important in the further
analysis in this work. The second term contains the mass-
weighted molecular gradient ∂E/∂qi, which is zero at the
equilibrium geometry, and the last term contains the mass-
weighted molecular Hessian ∂

2E/∂qi∂qj. Through an eigen-
analysis of the Hessian,5 one can obtain the normal-mode
frequencies from the eigenvalues, whereas the eigenvectors
correspond to a transformation matrix that defines each normal
coordinate QI in terms of Cartesian displacements. Three of
the eigenvectors correspond to the overall translation of the
system and three eigenvectors (two for linear molecules)
correspond to the overall rotation of the system.
IR intensities are often reported in terms of the molar decadic

attenuation coef f icient, ε, which has units m2·mol−1. To
facilitate comparisons to other works, we summarize the
commonly used units for reporting IR intensities in Table 1.

Within the double-harmonic approximation, ε for vibrational
mode I is obtained from the equation
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Table 1. Units of the Most Commonly Reported IR
Intensities6,69
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where NA is the Avogadro constant, c is the speed of light, ε0 is
the vacuum permittivity, and μα is a Cartesian component of
the electric dipole moment. The lineshape function f(ν;̅ νI̅, γI)
is introduced to take into account homogeneous broadening
effects, such as the finite lifetime of the excited vibrational
states. In this work, we use a Cauchy distribution with a
damping factor γI so that6
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where ν ̅ is the wavenumber of the incident radiation and νI̅ is
the wavenumber associated with vibrational mode I. The
lineshape function broadens the peaks with a half-width at half-
maximum (HWHM) of the peak associated with mode I being
γI. The dipole moment gradient can also be expressed as a
mixed energy derivative

Q
E

F Q
a

I IQ F Q0

2

0, 0

μ∂
∂

= ∂
∂ ∂α= = = (5)

where Fα is the αth component of the electric-field strength
and the derivative is evaluated at zero-field strength and at the
equilibrium geometry.
Just as for IR, there are several commonly used ways to

report Raman intensities, but most are related to the absolute
dif ferential Raman scattering cross section, σ′, with units C4·s2·
J−1·m−2·kg−1. Some of the most commonly used Raman units
are reported in Table 2. In the double-harmonic approximation
and at temperature T, σ′ is computed as70,71
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where σ is the total scattering cross section, Ω is the solid
angle, ν0̅ is the wavenumber of the incident light, and k is the
Boltzmann constant. The constants 45 and 7 stem from the
fact that we evaluate σ′ for an experimental setup where the
light entering the sample is polarized perpendicular to the
direction of observation and its propagation.5 Other choices of
combination coefficients belong to other experimental setups.
The Raman invariants aI and bI

2 are given by72
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respectively, where ααβ is the component of the electric
dipole−dipole polarizability corresponding to Cartesian
coordinates α and β. As the frequency-dependent polarizability
gradient involves a frequency-dependent electric field, it cannot
be directly represented as an energy derivative. Instead, a
quasi-energy, Ẽ, (which reduces to the energy in the absence of
a frequency-dependent electric field) derivative is used4,6,73,74
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3

0, 0

α∂
∂

= ∂ ̃
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αβ

= = = (9)

where the derivative is evaluated at zero-field strengths and at
the equilibrium geometry.

2.2. Polarizable Embedding. The PE model is an
atomistic classical scheme for efficiently and accurately
including complex environments in quantum-mechanical
calculations. The total system is split into a core quantum
region, which is described by a quantum-mechanical method,
and its environment, whose effects on the core part are
described effectively through an embedding potential. The
environment is further partitioned into computationally
manageable fragments. In the case of solvents, the fragments
typically consist of individual solvent molecules, while a
fragmentation procedure is used for more complex environ-
ments.50,67 For each fragment, a quantum-mechanical calcu-
lation is performed, producing a set of electric multipoles and
polarizabilities that are distributed to a number of sites within
the fragment, usually the atomic centers. Alternatively, the
multipoles and polarizabilities can be taken from existing
preparametrized potentials that have been derived for
proteins,57 a series of solvents,55 and a few lipids.76

The energy of a quantum region in the presence of an
environment can be separated into two contributions

E E ED D D( ) ( ) ( )QM PE= + (10)

where EQM(D) is the energy of the quantum region, EPE(D) is
the embedding energy that describes the interactions between
the quantum region and the environment, and D is the AO
density matrix. In this work, Kohn−Sham DFT (KS-DFT) is
used for the quantum region, thus EQM(D) = EDFT(D). The
KS-DFT energy is given by

Table 2. Units of the Most Commonly Reported Raman Intensities70,75
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aValues of combination coefficients ka and kb depend on the experimental setup.5 We use ka = 45 and kb = 7 in the present work.
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E E hD hD G D D D( )
1
2

( ) ( )DFT
Tr

xc nucρ= + + [ ] +γ
(11)

where
Tr= indicates that the trace is taken of each term on the

right-hand side, h contains the one-electron terms (kinetic
energy and electron−nuclear attraction), Gγ(D) contains the
two-electron terms (electronic Coulomb and fractional
exchange interactions), Exc[ρ(D)] is the exchange−correlation
contribution as a (nonlinear) functional of the density, and hnuc
is the nuclear−nuclear interaction energy. We will not go into
further details about these terms here, but we note that the
dependence of the individual contributions to the energy on
the AO density matrix is either independent (hnuc), linear
(hD), quadratic (G(D)D), or nontrivial (Exc[ρ(D)]), and that
this separation of terms into orders of density-matrix
dependence is used by OpenRSP. The contributions from
the PE model to be presented in the following can also be
grouped into zeroth-, first-, and second-order density-matrix
dependence. We have chosen to do so in this work to align our
implementation with the corresponding interfaces to
OpenRSP.
The PE energy can be written as

E E E ED D D( ) ( ) ( )PE es ind LJ= + + (12)

where Ees(D) is the electrostatic energy from the interaction
between the permanent multipoles in the environment and the
electrons and nuclei in the quantum region, Eind(D) is the
induction energy resulting from the polarization of the
environment modeled by induced multipoles, and ELJ is the
energy due to nonelectrostatic repulsion and dispersion
interactions modeled by a 6-12 Lennard-Jones (LJ) potential.
In the following, we will present each of the energy

contributions. For the electrostatic and induction energies, we
will make use of a multi-index notation77 that allows us to write
compact expressions that are open-ended in terms of the order
of the multipoles and polarizabilities. A multi-index is denoted
by α, β, and so forth and consists of three indices associated
with the three Cartesian coordinates [i.e., α = (αx, αy, αz)]. The
addition and subtraction of multi-indices is performed
component-wise, that is, α ± β = (αx ± βx, αy ± βy, αz ±
βz). The absolute value of a multi-index is defined as |α| = αx +
αy + αz, and the factorial as α! = αx!αy!αz! The multi-index
power is given by Rα = RαxRαyRαz. A partial derivative is written

as x y z∂ =α ∂
∂ ∂ ∂

α

α α α

| |
. Summing over the absolute value of a multi-

index implicitly includes a sum over all possible multi-indices
for each of the absolute values in the sum, for example, ∑|α|=0

1 α
= (0, 0, 0) + (1, 0, 0) + (0, 1, 0) + (0, 0, 1). A Cartesian
component of a tensor is specified with a multi-index in square
brackets, for example, T[α].
The electrostatic energy describes the interactions between

the electrons and nuclei in the quantum region and the
permanent multipoles in the environment. Using the multi-
index notation, we can write it as
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where Nfrag is the number of fragments in the environment, Sa
is the number of sites in fragment a, Ks is the maximum order
of the multipoles on site s in fragment a, Ms

[α] is a component
of a Cartesian multipole on site s, μ and ν are indices of the
AOs belonging to the quantum part, tμν

[α](Rs) is the μνth
element of the |α|th-order derivative of a one-electron
electrostatic-potential integral, Dμν is the μνth element of the
AO density matrix, T[α](Rs, Rn) is a component of a Cartesian
interaction tensor involving the positions of site s and nucleus
n, Nnuc is the number of nuclei in the quantum region, and Zn is
the charge of nucleus n. An interaction tensor is generally
defined as

T R R
R R

( , )
1

i j
j i

R j
= ∂

| − |
α α[ ]

(14)

where the subscript on the multi-index partial-derivative
operator denotes the coordinate that the derivative is taken
with respect to. The tμν

[α](Rs) integrals can be defined in terms
of interaction tensors as

t TR r R R r r R r( ) ( ; ) ( , ) ( ; ) ds n s n∫ χ χ=α
μ

α
νμν

[ ] [ ]
(15)

where r is the electron coordinate and χμ(r; Rn) and χν(r; Rn)
are AOs with a parametric dependence on the nuclear
coordinates. The multipole−electron part of the interaction
energy depends linearly on the density matrix while the
multipole−nuclear interaction is a scalar that does not depend
on the density matrix, as shown in the last equality of eq 13.
The second energy term in eq 12 is the induction energy,

which is the result of the polarization of the environment. The
polarization is modeled using polarizabilities that give rise to
induced multipoles describing the response of a given fragment
to the fields from the electrons and nuclei in the quantum part
as well as the permanent multipoles in the environment. The
induction energy can be formulated in terms of a generalized
classical linear-response matrix of Cartesian polytensors (which
are defined as a set of Cartesian tensors in a sequence of
increasing rank)78
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μ μ (16)

whose diagonal blocks contain inverse Cartesian polytensors
that themselves consist of the multipole−multipole polar-
izabilities of a given site while the off-diagonal blocks hold the
corresponding polytensors that consist of interaction tensors
which describe the interaction between polarizable sites. The
induction energy can then be written as

E
1
2ind = ̅

(17)

where ̅ is a matrix containing polytensors of the induced
multipoles and is a matrix that consists of polytensors that
contain the derivatives of the electrostatic potential from the
electrons, nuclei, and permanent multipoles at the polarizable
sites. The induced multipoles can be determined by solving the
matrix equation

1̅ = − = −− (18)
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In practice, the matrix equation is never solved explicitly,
since the linear-response matrix quickly becomes too large for
environments with many sites, and instead an iterative solver is
used. Using the multi-index notation, the induction energy can
be written as
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where V[α](D, Rs) is a component of the |α|th-order derivative
of the electrostatic potential and Bst

[α+β] is a component of the
stth block of the inverse of the linear-response matrix in eq 16.
In the second equality, we expand the energy in terms of
derivatives of the electrostatic potentials from the electrons
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and permanent multipoles
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and collect terms that depend on the density to second-, first-,
and zeroth-order, respectively, which are then given in matrix
form in the last equality. The sum over fragments in the
multipole electrostatic potential (eq 22) excludes the fragment
that contains site s, here assumed to be fragment a.
Finally, the last term in eq 12 is the LJ potential energy,

which effectively describes nonelectrostatic repulsion and
dispersion. It is given by
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where Lorentz−Berthelot rules are used to combine
parameters, that is, σsn = 1/2(σs + σn) and sn s nε ε ε= . Here,
σs and εs are LJ parameters of atoms in the environment and σn
and εn are LJ parameters of the atoms in the quantum region.

The LJ potential energy is thus purely classical and
independent of the density matrix.
The PE energy gives rise to Fock-matrix contributions that

are found by minimizing the energy with respect to variations
of the electron density

F h G D h( )PE es ind ind= + + (24)

2.3. Derivatives of the PE Energy. In this section, we
present the additional contributions to the geometric
derivatives of the energy, dipole, and polarizability that arise
for a molecule embedded in a polarizable environment
described using the PE model. These, and all other
contributions, that is, those for a molecule in vacuum, are
considered in the framework of a density-matrix-based quasi-
energy formulation (see, e.g., works by Thorvaldsen et al.58 and
Ringholm, Jonsson, and Ruud59 for details). In this approach,
properties are determined as derivatives of the quasi-energy
Lagrangian, which up to third-order can be written as58

L S Wa a aTr 0,T1 1 1= −{ } (25)
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(27)

where
Tr T={ }

means that a trace and time-average of each term
on the right-hand side is taken, is the quasi-energy, D is the
density matrix, S is the overlap matrix, and W is the energy-
weighted density matrix

W DFD= (28)

The superscripts a1, a2, and a3 denote derivatives with respect
to given perturbations (either geometric or electric dipole
perturbations in this work) with associated frequencies ωa1,

ωa2, and ωa3, respectively. The notation employed here for
quasi-energy derivatives of nth order is defined as

D( ) ...
m a a a

m n

m
a a a

, ...
T

n

n

1 2

1 2
ε ε ε

= ∂
∂ ∂ ∂ ∂

+

(29)

where εa1, εa2, ..., εan are the strengths associated with
perturbations a1, a2, ..., an, respectively. The quasi-energy
derivatives are expressed using the n + 1 rule where only nth-
order derivatives of the density matrix are needed to calculate a
property of order n + 1. Derivatives of the density matrix with
respect to the perturbation designated as a1 are not present as a
consequence of the application of the time-averaged
Hellmann−Feynman theorem in the derivation of the quasi-
energy gradient (eq 25). We again refer to Thorvaldsen et al.58

for further details concerning the approach. Finally, we note
that the quasi-energy derivatives reduce to standard energy
derivatives for time-independent properties.
In the following, we use superscripts g1 and g2 to denote a

derivative with respect to a Cartesian component of a nuclear
coordinate, and superscripts f1 and f 2 to denote a derivative
with respect to a Cartesian component of the external field. For
the molecular properties treated in this work, the contributions
from the interactions between the quantum region and its
environment are found by taking the relevant derivatives of the
interaction energies according to the forms indicated in eqs
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25−27. These expressions contain perturbed density and Fock
matrices, the latter as part of the perturbed energy-weighted
density matrix. The calculation of perturbed density and Fock
matrices also entails the evaluation of contributions stemming
from the derivatives of the PE Fock matrix (eq 24) and
contributions to the electronic Hessian when solving the
response equations. We refer to previous work58,59 for details
about the general method used to obtain perturbed density and
Fock matrices. We note, however, that the additional
contributions to the perturbed density and Fock matrices
arising from the interaction between the quantum region and
its environment are included in the following presentation,
although only derivatives of the energy are explicitly addressed.
We begin with the derivatives of the electrostatic interaction

energy (eq 13). Here, there is a dependence on nuclear
positions in the nuclear−multipole part and through the AOs
in the electrostatic-potential integrals (eq 15) that appear in
the electron−multipole part. The contributions from the
electrostatic interactions to the geometric gradient and Hessian
are
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and the contributions to the dipole and polarizability gradients
are
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Since we do not consider local field effects in this work, hes
and hes are independent of the external field. The first- and
second-order geometric derivatives of the hes matrix that
appear in eqs 30−33 are given by
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and the derivatives of hes are
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In the last two equations, Rm and Zm are the coordinate and
charge, respectively, of nucleus m which is the only one that
remains after the differentiation of T[α] with respect to g1 for
the first-order derivative and to g1 and g2 for the second-order
derivative.
We next consider the induction energy (eq 19) where there

is a dependence on nuclear positions through the nuclear and
electronic electrostatic potentials. The contributions to the
geometric gradient and Hessian from the induction energy are
given by
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and the contributions to the dipole and polarizability gradients
are given by
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Inserting the expression for the electronic electrostatic
potential (eq 20) allows us to write the first- and second-order
geometric derivatives of the Gind(D) matrix as
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The first- and second-order derivatives of the hind matrix are
given by
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The electrostatic potentials from the nuclei and multipoles

that appear here are defined in eqs 21 and 22, respectively.

Geometric derivatives of the electrostatic potentials from the

multipoles disappear as they do not depend on nuclear

positions, while the derivatives of the nuclear electrostatic

potential are given by
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The last part of the geometric derivatives of the induction

energy is hind, which depends on nuclear positions through the

nuclear electrostatic potential. The first- and second-order

derivatives of this term are
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where the geometric derivatives of the nuclear electrostatic

potential are given in eqs 47 and 48.
Finally, there is the LJ potential energy (eq 23) that only

contributes to the geometric gradient and Hessian because it

neither depends on the external field nor the density matrix.

The contributions to the geometric gradient and Hessian are
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(52)

where subscript m refers to the nucleus that survives the
differentiation with respect to g1 for the first-order derivative
and to g1 and g2 for the second-order derivative.

3. COMPUTATIONAL DETAILS
The properties needed to simulate harmonic IR and Raman
spectra were calculated for acetone in three different solvents,
namely, water, chloroform, and acetone. To simulate IR and
Raman spectra of solute−solvent systems, it is necessary to
adequately sample the configurational space. In this work, we
sampled structures for all three systems from classical MD
simulations. The partial Hessian and first-order dipole and
polarizability derivatives were then calculated for each
structure. The final spectra were obtained by convolution of
the spectra of each structure. Spectra of acetone in vacuum and
acetone in the three solvents using the PCM were also
computed for comparison. In the following, we provide the
details for each step. All input and output files, as well as scripts
used to run the calculations and to extract data, have been
deposited on Zenodo.79

3.1. Generation of Structures. Classical MD simulations
were performed using GROMACS 2019.380−82 employing the
OPLS-AA force field.83 The OPLS-AA topologies for acetone
and chloroform were taken from the GROMACS molecule and
liquid database at virtualchemistry.org.84,85 The TIP3P
potential86 was used for water. Initial cubic boxes of 60 × 60
× 60 Å were created and the system was then minimized with
100 steps of steepest descent and 1000 steps of conjugate
gradient (5000 in the case of chloroform solvent). An
equilibration protocol containing both NPT and NVT
ensembles was performed. For water and acetone solvents,
an initial simulation in the NPT ensemble was run for 0.5 ns,
followed by a 2 ns simulation in the NVT ensemble. Because of
difficulties with the equilibration of acetone in chloroform (see
ref 79 for details), these two steps were preceded by two
additional equilibration steps, consisting of a 0.0001 ps NVT
simulation and a 0.05 ps NPT simulation, with time steps of
0.01 and 0.1 fs, respectively. Initial velocities were taken from a
Maxwell distribution at 298 K. All simulations were performed
with periodic boundary conditions, the leap-frog integrator,
and a time step of 1 fs (for all except the aforementioned
additional steps for acetone in chloroform). Nonbonded
interactions were cut off at 15 Å and electrostatic interactions
beyond the cutoff were treated using the smooth particle-mesh
Ewald87 method. The Berendsen thermostat (298 K) and
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barostat (1 bar) were used with a coupling constant of 0.5 ps
to maintain the temperature and pressure in the NPT
equilibration.88 The velocity-rescaling thermostat89 with a
coupling constant of 0.5 ps was used to maintain the
temperature at 298 K in the NVT simulations. After the
equilibration steps, a 10 ns NVT production run was
performed. We then extracted 250 snapshots at 10 ps intervals
from the first 2.5 ns of the final trajectory.
3.2. Geometry Optimization and Property Calcula-

tions. For each structure extracted from the MD trajectory,
the geometry of the central acetone molecule was first
optimized in the presence of rigid solvent molecules. The
partial Hessian and first-order dipole and polarizability
derivatives were then calculated using the optimized structures.
The 250 equidistant snapshots that were extracted from the
MD trajectory were used to perform a preliminary analysis of
the convergence with respect to sample size (see Section A.1).
Based on this analysis, and taking into account the computa-
tional cost, we found that 50 equidistant snapshots is adequate
for our purposes, which is to demonstrate our implementation
through proof-of-principle calculations. We note here that with
50 snapshots, we could produce Raman spectra that are well-
converged with respect to the number of snapshots, whereas
comparatively larger errors were observed for some IR-active
modes, in particular, the carbonyl stretching mode (see Figure
A1).
The effects from the solvent were modeled by embedding

potentials produced using PyFraME.90 The solvent was
extracted using a center-of-mass distance criterion, that is,
solvent molecules with their center of mass within the cutoff
distance from the center of mass of the central acetone were
included. We used a cutoff distance of 12 Å which results in
adequate accuracy (see Section A.2). For each solvent
molecule in the solvent shell, atom-centered multipoles up to
and including quadrupoles and atom-centered dipole−dipole
polarizabilities were derived using the LoProp scheme.91,92 For
this, a calculation using the Dalton program93,94 is performed
employing the B3LYP95−99 exchange−correlation functional
and a recontracted version of 6-31+G*100−102 (called loprop-
6-31+G* in Dalton). LJ parameters were taken from the
OPLS-AA force field.
All geometry optimizations were performed at the

PBE0103−106/pcseg-2107 level of theory. The PBE0 functional
was chosen based on its accuracy in the modeling of molecular
geometries.105 The pcseg-2 basis set was chosen as it has been
shown to give good results with DFT for both molecular
structures and vibrational properties.108 Additional support for
the choice of a triple-ζ basis was found through a convergence
analysis that showed it to be a good compromise between
accuracy and computational cost compared to its double- and
quadruple-ζ counterparts (see Section A.3). The LSDalton
program75,93 was used for optimizations in vacuum and in
solvent utilizing the FraME library109 for the environment
contributions. These optimizations used an initial numerical
Hessian and Baker convergence criteria.110 The default
exchange−correlation integration grid was used but with a
radial integration accuracy of 2.154 × 10−17 and an angular
expansion order of 47, which corresponds to 60 radial points
for second-row atoms and up to 770 angular points (adjusted
down by pruning near the nuclei). A few snapshots were
discarded at this stage due to convergence issues. Therefore 49,
48, and 47 snapshots for water, acetone, and chloroform
solvents, respectively, were used in the subsequent property

calculations. Geometry optimizations utilizing the PCM were
performed with Gaussian 16111 using the pcseg-2 basis set
obtained from the Basis Set Exchange.112 The geometry
optimizations using Gaussian were performed with a tight SCF
threshold (SCF=VeryTight) and a fine integration grid
(Int=SuperFine). To accompany the PCM-based structures,
we also performed a geometry optimization in vacuum using
Gaussian with the same settings.
The partial Hessian and first-order dipole and polarizability

derivatives of acetone in vacuum and in environments
described using the PE model were calculated using LSDalton,
FraME, and OpenRSP.58,59,64 Gaussian was used for the PCM-
based calculations and its accompanying vacuum calculations.
The same settings were used for the property calculations as
for the geometry optimizations. As can be seen from Tables S4
and S8 in the Supporting Information, there are small
differences between the frequencies and intensities obtained
using LSDalton and those obtained using Gaussian. This does
not affect the discussion of the results since the focus is on
solvent effects and vacuum to solvent shifts are calculated
consistently. The frequency-dependent polarizability deriva-
tives were calculated using an input wavelength of 514.5 nm.
This corresponds to an argon laser that has been used in
Raman experiments on aqueous acetone.113 The energy
derivatives and molecular geometry were used by the
vibrational spectroscopy package SpectroscPy114 to perform a
Hessian eigenvalue analysis to obtain the harmonic vibrational
frequencies and normal coordinates and to calculate the IR and
Raman intensities. Raman intensities were calculated at 298 K.
IR and Raman spectra were generated by combining the
individual spectra of each structure into a single spectrum.
Specifically, for IR, we use

N
( )

1
( )

j

N

I

N

I
j

1 1

Q

∑ ∑ε ν ε ν̅ = ̅
= = (53)

where N is the number of snapshots, NQ is the number of
vibrational modes, and εI

j(ν)̅ is the molar decadic attenuation
coefficient of the Ith vibrational mode in snapshot j (eq 3). For
Raman, we similarly use

N
( )

1
( )

j

N

I

N

I
j

1 1

Q

∑ ∑σ ν σ ν′ ̅ = ′ ̅
= = (54)

where σI′j(ν)̅ is the absolute differential scattering cross section
of the Ith vibrational mode in snapshot j (eq 6). The Cauchy
distribution was used in both the IR and Raman cases as a
basis for a lineshape function with an HWHM of 3.0 cm−1 for
all modes (see eq 4).
As mentioned in Section 2.1, the harmonic vibrational

frequencies are found from an eigenanalysis of the molecular
Hessian in mass-weighted Cartesian coordinates. This
produces 3N frequencies and the corresponding normal
modes, but not all of these are vibrational, as six of these
(five for linear molecules) describe an overall translation and
rotation of the molecule. In order to distinguish between low-
frequency vibrational modes and the translational and
rotational modes, it is common to project out translation
and rotation from the Hessian. However, this approach cannot
be used here, since we use the PHVA approximation.
Moreover, the core molecule is embedded in a rigid solvent
cage and is therefore no longer free to move around in space.
This will inevitably introduce errors in our calculations. Low-
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frequency modes are especially susceptible to contamination
by translational and rotational motions. Visual inspection of an
arbitrarily chosen snapshot indicated that the six modes with
the lowest energy do not correspond to purely translational
and rotational motion and also that additional low-frequency
modes show some extent of global motion. Simply removing
the six modes of the lowest frequency is therefore not a good
choice for the embedded systems. Instead, we identified from
the visual inspection a cutoff at 750 cm−1 above which the
modes have only negligible contamination of translational and
rotational motion. We do not consider or discuss the normal
modes with lower frequencies due to these impurities. By
comparing the frequencies obtained with and without
projecting out translation and rotation, we estimate that the
error in the remaining vibrational modes is only a few cm−1 for
the localized higher-frequency modes and never exceeds 10
cm−1 on average for any mode (see Figure S1 in the
Supporting Information).

4. RESULTS AND DISCUSSION

Harmonic IR and Raman spectra of acetone in vacuum and in
water, chloroform, and acetone solutions are presented in
Figures 1 and 2, respectively. Averaged vibrational wave-
numbers and associated IR and Raman intensities are tabulated
in the Supporting Information. Our focus in the discussion is
on the inclusion of the effect of different solvents through the
PE model and PCM. In addition, we present convergence tests
with respect to basis set, environment size, and sampling size in
the Appendix. We do, however, point out that there are several
other factors that influence the accuracy of the calculations that
are beyond the scope of the present work, including the
quantum-mechanical level of theory and the fact that we do
not consider anharmonic effects.
The three strongest peaks in the IR spectra presented in

Figure 1 can be assigned115 to the carbonyl stretching mode
(around 1800 cm−1), the symmetric methyl deformation

(umbrella) mode (around 1390 cm−1), and the asymmetric
C−C stretching mode (around 1260 cm−1). We will limit the
following discussion to these three peaks. It is worth noting
that the spectra for acetone in chloroform and acetone
solutions are virtually overlapping, suggesting no significant
differences in the solute−solvent structure and dynamics for
these two solvents. The effect of hydrogen bonding between
the acetone solute and water solvent is evident from the −53
cm−1 shift of the carbonyl stretching mode relative to vacuum,
whereas the shift is −21 cm−1 in chloroform and acetone
solvents. The C−C stretching mode is shifted to higher
wavenumbers by the solvents, although less in magnitude.
Indeed, this shift is +29 cm−1 in water and only +6 cm−1 in
chloroform and acetone. The wavenumber of the methyl
umbrella mode is only slightly shifted by the water solvent (+6
cm−1) while it is unaffected by the chloroform and acetone
solvents. These shifts correlate well with the change in the
bond lengths that are presented in Table 3.
Acetone in aqueous solution forms hydrogen bonds with

two water molecules on average, which results in an elongation
of the carbonyl bond and a subsequent shift of the carbonyl
stretch to lower wavenumbers. The C−C bonds, on the other
hand, are contracted, which results in a shift of the C−C
stretching frequency to higher wavenumbers. The methyl
umbrella mode can be linked to the H−C−C bond angles,
which vary only slightly in the presence of a solvent and are
always between 109 and 111°.
The configurational variety in the snapshots extracted from

the MD simulation causes an inhomogeneous broadening.
Even though the broadening of the peaks in the spectrum is in
part determined by the chosen broadening factor, a
comparison between the different solvents can be made. The
most substantial broadening in the IR spectrum (Figure 1) is
observed for the carbonyl stretch in water. Correspondingly,
the standard deviations associated with the calculated wave-
number and IR intensity are 20 cm−1 and 23 km·mol−1,

Figure 1. IR spectra of acetone in various environments modeled using the PE model. Spectra are based on averages over all snapshots.
Calculations were performed using PE-PBE0/pcseg-2 with acetone embedded in a 12 Å solvent shell. An HWHM value of 3.0 cm−1 was used to
broaden individual peaks. Only modes above 750 cm−1 are included. Panel (b) displays the part of the spectrum with the highest IR absorption.

Table 3. Bond Lengths (in angstrom) of Acetone in Vacuum and Different Solvents Modeled Using the PE Model and the
PCM

chloroform acetone water

bond vacuum PEa PCM PEa PCM PEa PCM

CO 1.206 1.210 (0.001) 1.211 1.210 (0.001) 1.213 1.221 (0.005) 1.213
CC 1.507 1.503 (0.002) 1.503 1.503 (0.002) 1.502 1.493 (0.006) 1.501
CH 1.093 1.091 (0.003) 1.093 1.091 (0.003) 1.092 1.091 (0.003) 1.092
CH′ 1.087 1.091 (0.003) 1.087 1.091 (0.003) 1.087 1.091 (0.003) 1.087

aAverage over all snapshots with standard deviations in parentheses.
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respectively. This is roughly three times larger than the
standard deviations in chloroform and acetone, which are 6
cm−1 and 8 km·mol−1 for both solvents. The broadening of the
carbonyl stretching mode in water can in part be attributed to
the strong hydrogen-bonding solvent. In contrast, the weaker
dipole−dipole interactions between the acetone solute and
chloroform and acetone solvent molecules result in smaller
shifts and less-pronounced broadening. The fine structure of
the carbonyl stretching peak is most likely due to limited
sampling.
Raman spectra calculated with an input wavelength of 514.5

nm are shown in Figure 2. The strongest peaks in the Raman
spectrum can be assigned115 to the symmetric and asymmetric
C−H stretching modes (above 3000 cm−1), the symmetric C−
C stretch (around 800 cm−1), and the asymmetric methyl
deformation modes (around 1450 cm−1). The spectra for the

chloroform and acetone solutions are overlapping also for
Raman scattering. Solvent effects are most apparent by the +23
cm−1 shift and substantial broadening (standard deviation of
16 cm−1) of the C−C symmetric stretch in water. The
corresponding shift in acetone and chloroform is only minor
(+3 cm−1). This is in agreement with the shortening of the C−
C bond, which is 0.014 Å in water, 0.004 Å in chloroform, and
0.005 Å in acetone (Table 3). The frequencies of the methyl
deformation modes are virtually unchanged when adding a
solvent. The symmetric C−H stretch is shifted by +5 cm−1 in
water and +2 cm−1 in acetone and chloroform. The
asymmetric C−H stretches are shifted by +9 cm−1 in water,
+4 cm−1 in acetone, and +1 cm−1 in chloroform. The
broadening of these peaks is in part due to larger separation
of the two modes underlying each of the peaks. In the case of
the highest-frequency band in water, however, there is also a

Figure 2. Raman spectra of acetone in various environments modeled using the PE model. Spectra are based on averages over all snapshots.
Calculations were performed using PE-PBE0/pcseg-2 with acetone embedded in a 12 Å solvent shell and using an input wavelength of 514.5 nm.
An HWHM value of 3.0 cm−1 was used to broaden individual peaks. Only modes above 750 cm−1 are included. Panels (b,c) display the parts of the
spectrum with the highest Raman activity.

Figure 3. IR spectra of acetone in various environments modeled using the PCM. Calculations were performed using PCM-PBE0/pcseg-2. An
HWHM value of 3.0 cm−1 was used to broaden individual peaks. Only modes above 750 cm−1 are included. Panel (b) displays the part of the
spectrum with the highest IR absorption.
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large spread of the wavenumbers of both underlying modes,
with standard deviations of 17 and 13 cm−1, respectively.
A question that naturally arises is whether the additional

computational cost of the configurational sampling associated
with the PE model is reasonable compared to using a
continuum solvation model. To answer this question, we
calculated IR and Raman spectra using the PCM. Before
comparing the spectra, we will briefly examine the effect on the
geometry of the acetone solute. We note that the differences in
bond lengths (Table 3) are small and may be of the same order
as numerical errors, such as those introduced by the
tessellation of the molecular cavity in the PCM. The addition
of a solvent through PCM also leads to slight elongation of the
CO bond and slight shortening of the C−C bond and
virtually no effect on the C−H bond length. The solvent effect
on acetone bond lengths in chloroform, acetone, and water is
very similar using the PCM. In other words, the larger solvent
shift in water found in the PE calculations is not reproduced
using the PCM. This reflects the lack of specific interactions
(hydrogen bonds) in the PCM.
IR and Raman spectra for acetone in vacuum and in the

presence of solvents modeled using the PCM are shown in
Figures 3 and 4.
When comparing these results with the corresponding

spectra obtained using PE to model solvent effects (Figures
1 and 2), there are two substantial qualitative differences. First,
the PCM is not able to reproduce the inhomogeneous
broadening due to lack of explicit configurational sampling.
These effects are substantial in the spectra calculated with PE,
especially for water. Second, the effect of the acetone solvent is
very similar to the effect of chloroform when modeled using
the PE model but similar to the effect of water when modeled
using the PCM. The same trend is observed in the bond
lengths (Table 3).

Solvent shifts of IR- and Raman-active modes modeled using
the PCM are qualitatively similar to those modeled using the
PE model, although there are some differences. The carbonyl
stretching mode is shifted by −43 cm−1 from vacuum to water
using the PCM, which is 10 cm−1 less than using the PE model.
The acetone solvent shift of the carbonyl stretch (−41 cm−1) is
similar to the water solvent shift using the PCM, whereas it is
only −21 cm−1 using the PE model. For the C−C stretching
mode, the PCM predicts comparatively small shifts for all
solvents, whereas the PE model predicts a much larger shift in
water. Indeed, the asymmetric and symmetric modes are
shifted +3 and +8 cm−1 with the PCM and +29 and +23 cm−1

with the PE model in water, +3 and +7 cm−1 with the PCM
and +6 and +3 cm−1 with the PE model in acetone, and +2 and
+5 cm−1 with the PCM and +6 and +3 cm−1 with the PE
model in chloroform. The opposite behavior is observed for
the asymmetric methyl deformation mode. None of the
solvents cause a shift of this mode using the PE model, whereas
the solvents shifts using the PCM model are −15 cm−1 in
water and acetone and slightly less in chloroform.
The intensity of a peak is measured as the integral of the

area under the peak and directly comparing heights between
PE and PCM spectra can therefore be misleading. It is more
sensible to compare PCM intensities to PE intensities that are
averaged over the snapshots (see the Supporting Information).
The most prominent change in intensity upon solvation is
exhibited by the IR intensity of the carbonyl stretch in water,
with an increase of 88% with the PCM and 51% with PE. In
general, changes in intensities upon solvation are more
pronounced using the PCM than using the PE model. Indeed,
the PCM gives larger intensities than PE for all modes except
the symmetric C−H stretch, where the intensity is lowered by
22% with the PCM and by 10% with PE.

Figure 4. Raman spectra of acetone in various environments modeled using the PCM. Calculations were performed using PCM-PBE0/pcseg-2
using an input wavelength of 514.5 nm. An HWHM value of 3.0 cm−1 was used to broaden individual peaks. Only modes above 750 cm−1 are
included. Panels (b,c) display the parts of the spectrum with the highest Raman activity.
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5. CONCLUSIONS

We have presented the theory for the calculation of harmonic
IR and Raman spectra of embedded molecules using the PE
model to describe environment effects. The derived first- and
second-order geometric derivatives of the energy and first-
order geometric derivative of the dipole and polarizability are
fully analytic and have been implemented in a general open-
ended framework, thus facilitating extensions to higher-order
geometric derivatives.
The implementation is illustrated through proof-of-principle

calculations of IR and Raman spectra for acetone in three
different solvents, namely, water, acetone, and chloroform. As
expected, we observe that the presence of a solvent has a
substantial effect on the IR and Raman spectra. This can be
observed as frequency shifts, changes in intensities, and
broadening and alterations of the shape of the peaks. The
effects of hydrogen bonding between the acetone solute and
water as a solvent are evident especially from substantial shift
and broadening of the carbonyl stretching mode in the IR
spectrum and the C−C symmetric stretching mode in the

Raman spectrum. These specific solute−solvent effects on the
IR and Raman spectra can only be modeled with an atomistic
description of the molecular environment. Apart from these
specific interactions, comparison of calculations with the PCM
and the PE model shows qualitatively similar solvent effects,
but in general larger frequency shifts with the PE model and
larger intensity changes with the PCM.
This work is the first step toward modeling accurate

vibrational spectra in realistic molecular environments. An
extension of the present work to higher-order geometric
derivatives is in progress. This will allow us to include second-
order anharmonic effects through the calculation of cubic and
quartic force fields. Moreover, the combination of the current
implementation with higher-order electric derivatives62 will
enable the calculation of, for example, hyperpolarizability
gradients and thus hyper-Raman spectroscopy. We will also
explore the incorporation of local field effects through an
extension of the effective external field model.116,117

Figure A1. Convergence with respect to the sample size. Plots show MAE and MAX of moving averages of a given sample size for all vibrational
modes above 750 cm−1 compared to a sample size of 250. All calculations were performed using HF/pcseg-1 with acetone embedded in a 12 Å
water shell.
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■ APPENDIX

Convergence Analyses
We performed a series of convergence analyses with the aim of
determining the basis set, size of the environment, and number
of snapshots that give an accurate representation of the
investigated systems at a reasonable computational cost. For
these analyses, we use the acetone-in-water system, since the
aqueous environment was found to give the largest solvent
effects of the solvents investigated here. To evaluate which
basis set and cutoff radius to use, we inspect the absolute error
relative to a reference value which is the largest basis set and
cutoff radius used. To determine the number of snapshots to
include, we investigate the mean and maximum absolute errors
(MAE and MAX) of moving averages using samples of
different sizes relative to an average value obtained using 250
snapshots. For a sample size S and a set of properties p1, p2, ...,
pN, where N is the total number of snapshots, the sample
average can be defined as
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i j

S j
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= +
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where j is the sample index, for example, for j = 0, the sample
includes properties p1 to pS, for j = 1, it includes properties p2
to pS+1, and so forth. For a given S, p̅S

j can only be determined
for j ≤ N − S. The MAE for a given sample size is then found
as
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where NS is the number of samples of size S and p̅250 is the
global average, that is, the average value across all snapshots.

The MAX for a given sample size is determined as the sample
average that is the furthest from the global average.

A.1 Convergence with Sample Size. In this section, we
investigate the convergence with respect to sample size. The
purpose is to determine how many snapshots that are needed
to reach an error that does not add substantially to the errors
introduced by the choice of basis set and system size. For this
analysis, we consider the MAE and MAX of moving averages
calculated for increasing sample sizes relative to a sample size
of 250 snapshots. This gives an indication of the error that can
be expected from sampling a number of snapshots consec-
utively from an MD trajectory. Due to the large number of
snapshots, these calculations were performed at the
HF/pcseg-1 level of theory in a 12 Å solvent shell of water.
The results are presented in Figure A1. We observe a rather
slow but steady convergence as the sample size is increased.
The carbonyl stretching mode (no. 7 in Figure A1) has the
largest error both in terms of wavenumbers and IR intensity
but has a very low Raman cross section. Even with 150
snapshots, the MAEs for this mode are 1.0 cm−1 and 2.5 km·
mol−1 for wavenumbers and IR intensity, respectively, and the
MAXs are 2.0 cm−1 and 5.0 km·mol−1, which is of the same
order as the basis set error (see Section A.3). The Raman
intensities, on the other hand, are reasonably well-converged
with a sample size of about 75 snapshots with MAE and MAX
below 1.9 × 10−57 and 5.0 × 10−57 C4·s2·J−1·m−2·kg−1,
respectively, which is well below the largest basis set error
(see Section A.3). The convergence of Raman spectra with
sample size has been studied previously in the context of
Raman optical activity and much more simplistic QM/MM
modeling,118 where it was concluded that in view of the
expected experimental errors in Raman intensities, 50
snapshots were required to give reliable Raman intensities.

Figure A2. Convergence with respect to size of the molecular environment. Plots show absolute errors of wavenumbers and associated IR and
Raman intensities for all vibrational modes above 750 cm−1 compared to a 16 Å solvent shell. All calculations were performed using PBE0/pcseg-2
on a single snapshot of acetone embedded in water.
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On this basis and considering the computational cost, we will
use a sample size of 50 to calculate IR and Raman spectra,
keeping in mind that this may result in comparatively large
errors for wavenumbers and IR intensities for some of the
modes and in particular for the carbonyl stretching mode.
A.2 Convergence with Size of a Molecular Environment.

To determine a suitable size of the solvent environment,
calculations were performed for a single snapshot of aqueous
acetone with a solvent shell radius ranging from 8 to 16 Å. The
PBE0 functional was used together with the pcseg-2 basis set in
all calculations. As can be seen from the absolute errors
presented in Figure A2, none of the properties converge
smoothly with system size. In fact, there appears to be an
oscillating behavior for some of the modes. From a visual
inspection, it is found that the main reason for this oscillating
behavior is the change in the position of the acetone molecule
within the solvent cavity, whereas the geometry of acetone
remains fairly similar for all environments. In our current
implementation, the computational cost grows rather steeply
with increasing system size, mandating the need to balance
cost to errors due to truncation of the size of the environment.
Given this limitation, we find that a system size of 12 Å has
residual errors that are of the same order as the errors due to
our use of the pcseg-2 basis set (see Section A.3). Indeed, root-
mean-squared deviations (RMSDs) relative to 16 Å decrease
from 6.5 cm−1, 6.8 km·mol−1, and 2.7 × 10−56 C4·s2·J−1·m−2·
kg−1 for 10 Å to 2.9 cm−1, 3.3 km·mol−1, and 5.6 × 10−57 C4·s2·
J−1·m−2·kg−1 for 12 Å. Increasing the system size to 14 Å does
not improve the overall error (RMSDs relative to 16 Å are 3.0
cm−1, 2.8 km·mol−1, and 5.0 × 10−57 C4·s2·J−1·m−2·kg−1).
A.3 Convergence with the Basis Set. In order to identify

the most accurate and cost-efficient basis set to be used in the
calculation of the vibrational properties, vibrational frequencies

and associated IR and Raman intensities were calculated for a
single snapshot of aqueous acetone using PBE0 with three
different basis sets: pcseg-1, pcseg-2, and pcseg-3107 that are of
double-, triple-, and quadruple-ζ quality, respectively. The
frequency-dependent polarizability derivatives were evaluated
at a wavelength of 514.5 nm. The size of the environment was
arbitrarily set to include solvent molecules with a center of
mass within a 10 Å radius from the center of mass of the
acetone molecule. The results can be seen in Figure A3 as
absolute errors compared to results obtained using pcseg-3.
Wavenumbers (Figure A3a) are off by up to 37 cm−1 for the
pcseg-1 basis set. In contrast, the largest errors obtained using
pcseg-2 are about 3−5 cm−1 and are mostly associated with the
high-frequency modes, that is, C−H and CO stretching
modes.115 In terms of intensities, using pcseg-1 results in errors
that are generally below 10 km·mol−1 for IR (Figure A3b) and
below 3 × 10−56 C4·s2·J−1·m−2·kg−1 for Raman (Figure A3c).
Using pcseg-2 results in errors that are generally below 4 km·
mol−1 for IR and below 0.7 × 10−56 C4·s2·J−1·m−2·kg−1 for
Raman. A few vibrational modes dominate, showing larger
errors for both basis sets. Specifically, the IR intensities of the
CO stretch and symmetric CH3 deformation modes are off
by about 8.1 and 5.2 km·mol−1, respectively, whereas in the
Raman case, the symmetric C−H and C−C stretching modes
are off by 2.9 × 10−56 and 0.9 × 10−56 C4·s2·J−1·m−2·kg−1,
respectively, for the pcseg-2 basis set. These are the modes
with the largest intensities and absorption cross sections.
Overall, using pcseg-2 results in RMSDs of 2.7 cm−1, 2.4 km·
mol−1, and 0.77 × 10−56 C4·s2·J−1·m−2·kg−1, whereas pcseg-1
results in RMSDs of 17.6 cm−1, 9.5 km·mol−1, and 2.0 × 10−56

C4·s2·J−1·m−2·kg−1, both compared to pcseg-3. Our results
clearly show that pcseg-1 is not adequate for accurate
calculations of IR and Raman intensities. Taking into account

Figure A3. Convergence with respect to the basis set. Plots show absolute errors of wavenumbers and associated IR and Raman intensities for all
vibrational modes above 750 cm−1 compared to pcseg-3. All calculations were performed using PBE0 on a single snapshot of acetone embedded in
a 10 Å water shell.
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that the relative computational cost of pcseg-2 compared to
pcseg-3 is approximately one-fourth, we conclude that pcseg-2
is a good compromise between accuracy and cost.
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