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MicroRNAs (miRNAs) are small non-coding RNA species involved in diverse physiological processes, including 
immunity. Accumulating evidence suggests that miRNA-induced gene silencing plays a significant role in the 
regulation of the intestinal immune system by the gut commensal microbiota. This review aims to provide an 
overview of the intestinal miRNA-mediated crosstalk between the gut microbiota and the host intestinal immune 
system. First, we describe the role of miRNAs in regulating the intestinal immune system. Then we describe the 
effect of the gut microbiota on intestinal miRNA expression. Subsequently, we describe the role of miRNAs in the 
modulation of the intestinal immune system by the gut microbiota. Finally, we describe the effect of host miRNAs 
on the gut microbiota. Although the entire picture of this complex crosstalk remains unclear, efforts to unravel it 
will contribute significantly to developing new strategies for preventing and treating intestinal immune disorders 
such as inflammatory bowel disease.
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INTRODUCTION

MicroRNAs (miRNAs) are small (~22 nucleotides) 
single-stranded non-coding RNA species involved in diverse 
physiological processes by regulating gene expression [1, 2]. 
They are transcribed by RNA polymerase II as much longer 
sequences named primary miRNAs (pri-miRNAs) that consist 
of a hairpin with long single-stranded terminal regions [3]. 
Pri-miRNAs are trimmed by the RNase III enzyme Drosha and 
essential cofactor DiGeorge syndrome critical region 8 (DGCR8) 
into 70- to 90-nucleotide sequences, hairpin-shaped pre-miRNAs, 
in the cell nucleus [4]. Pre-miRNAs are then transported into the 
cytoplasm by the RanGTP-dependent nuclear transport receptor 
Exportin-5 [5, 6] and further processed to mature miRNAs by 
another RNase III enzyme, Dicer [7–11]. The mature miRNA 
is then incorporated into the RNA-induced silencing complex 
(RISC). It binds to the specific 3′ untranslated region (UTR) of the 
target mRNA, which results in the silencing of gene expression 
by two distinct mechanisms: mRNA degradation or translational 
repression [12]. Due to the partial complementarity of miRNAs 
with the 3′ UTR of their target mRNAs, a single miRNA can 
target multiple mRNAs, and multiple miRNAs can target a 
single mRNA. In addition, mammalian miRNAs are known to 
regulate approximately 30% of all protein-coding genes [13]. 
This complex regulatory network makes miRNAs important in 
regulating diverse physiological processes, including immunity.

Studies in the last two decades have revealed that the gut 
commensal microbiota modulates the development and function of 
the host intestinal immune system. Early studies demonstrated that 
germ-free (GF) mice showed extensive defects in the development 
of intestinal immunity and the integrity of the intestinal immune 
response, suggesting a close relationship between gut microbiota 
and the intestinal immune system. Subsequent studies revealed 
the cellular and molecular mechanisms by which metabolites 
and cellular constituents of gut microbes influence the intestinal 
immune system. We encourage readers to refer to the many other 
excellent reviews on this subject [14–23]. More recently, gene 
silencing by miRNAs has attracted attention to the mechanism 
for gut microbiota regulation of the intestinal immune system 
[24–26]. This review aimed to overview miRNA roles in the 
crosstalk between the gut commensal microbiota and intestinal 
immune system. The miRNAs involved in the immune function 
of intestinal epithelial cells are covered in other reviews [27, 28].

ROLE OF miRNAs IN THE REGULATION OF THE 
INTESTINAL IMMUNE SYSTEM

Innate immunity
The innate immune system involves macrophages, dendritic 

cells, granulocytes, and natural killer cells. It plays a role as the 
first line of defense by providing fast non-specific responses 
upon immunological stimulation. In addition, the innate immune 
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system interacts with and controls the adaptive immune system. 
Previous studies have shown the roles of miRNAs in regulating 
the intestinal innate immune system.

miR-29 has been reported to play a role in regulating dendritic 
cell function in the intestine. Brain et al. [29] showed that miR-29, 
in response to intracellular microbial sensor nucleotide-binding 
oligomerization domain containing 2 (NOD2), downregulated 
interleukin (IL)-23 by targeting IL-12p40 mRNA directly and 
IL-23p19 mRNA indirectly in intestinal dendritic cells. Thus, 
miR-29 was suggested to suppress the proinflammatory mode 
of intestinal dendritic cells. Indeed, the authors also showed that 
experimental colitis was exacerbated in miR-29-deficient mice 
with elevated IL-23 in the intestine.

miR-146b is reportedly involved in regulating macrophage 
polarization in the intestine. Peng et al. [30] showed that IL-10 
and lipopolysaccharide (LPS) induced miR-146b expression in 
macrophages and that the expression of miR-146b was impaired 
in IL-10-deficient macrophages. In addition, they showed that 
miR-146b and interferon regulatory factor 5 (IRF5) mRNA could 
occupy the same RISC and that the transfection of miR-146b 
mimic decreased LPS-induced IRF5 protein expression and M1 
macrophage activation, suggesting targeting of IRF5 mRNA 
by miR-146b. Furthermore, miR-146b-deficient mice exhibited 
enhanced M1 macrophage polarization. From these findings, the 
authors proposed that the IL-10-miR-146b-IRF5 axis plays an 
essential role in the modulation of M1 macrophage activation in 
the intestine.

miR-223 has been shown to function as a regulator of intestinal 
macrophages and dendritic cells. Zhou et al. [31] demonstrated 
that miR-223-deficient mice had intestinal macrophages and 
dendritic cells with a solid proinflammatory phenotype. In 
addition, CCAAT/enhancer binding protein β (C/EBPβ) mRNA 
was identified as the target of miR-223. Thus, it was suggested that 
miR-223 suppresses the proinflammatory phenotype in intestinal 
macrophages and dendritic cells by directly targeting C/EBPβ 
mRNA. Neudecker et al. [32] reported that miR-223 deficient 
mice showed exacerbation of experimental colitis and activation 
of the nucleotide-binding domain leucine-rich-containing family 
pyrin domain-containing-3 (NLRP3) inflammasome. In addition, 
mice with a deletion of the miR-223 binding site in the NLRP3 
3′ UTR also showed colitis exacerbation and NLRP3 activation. 
Furthermore, miR-223 mimic administration attenuated the 
colitis.

Other miRNAs, such as miR-20a, miR-24, miR-34a, miR-150, 
miR-155, and miR-183, reportedly play a role in regulating the 
function of innate immune cells, including neutrophils, innate 
lymphoid cells, and natural killer cells [28]. Further studies are 
needed to test whether these miRNAs function in the intestinal 
innate immune system.

Adaptive immunity
Recent studies have revealed that miRNA-induced gene 

silencing is vital in regulating the intestinal adaptive immune 
system.

Takahashi et al. [33] showed that miR-10a, which is highly 
expressed in regulatory T (Treg) cells, is induced by retinoic acid 
and transforming growth factor-β (TGF-β) and attenuates the 
conversion of inducible Treg cells into follicular helper T cells by 
targeting B cell leukemia/lymphoma (Bcl) 6 mRNA and nuclear 
receptor co-repressor 2 (Ncor2) mRNA in the small intestinal 

Peyer’s patches. They also showed that miR-10a limited the 
differentiation of helper T (Th)17 cells; thus, miR-10a is likely 
to have an anti-inflammatory function. A more recent study by 
Yang et al. [34] showed contrasting findings: miR-10a suppressed 
IL-10 production in the intestinal CD4+ T cells by targeting the 
Prdm1 gene, which encodes transcription factor Blimp1, and 
mice with deficient miR-10a in CD4+ T cells were more resistant 
to intestinal inflammation induced by dextran sulfate sodium 
(DSS). In the large intestine, Wang et al. [35] showed that miR-
34a targets IL-6 receptor mRNA and IL-23 receptor mRNA to 
suppress Th17 cell differentiation and proliferation and target 
chemokine (C-C motif) ligand 22 (CCL22) mRNA to inhibit 
Th17 recruitment to the epithelium. By employing inflammatory 
bowel disease (IBD) model mice exhibiting systemic elevation of 
tumor necrosis factor-α (TNF-α), Sanctuary et al. [36] observed 
that miR-106a increased in response to TNF-α to reduce Treg 
cell function by targeting IL-10 mRNA. Conversely, miR-106a 
deficiency promoted Treg cell induction and IL-10 production and 
attenuated intestinal inflammation. Ge et al. [37] demonstrated 
that miR-125a is downregulated in the colon of IBD patients, 
which is associated with suppressing proinflammatory cytokine 
production by targeting transcription factor E26 avian leukemia 
oncogene 1, 5′ domain (ETS-1) mRNA in CD4+ T cells. The 
authors also showed that miR-125a deficiency exacerbated 
trinitrobenzene sulphonic acid-induced colitis in mice. The role of 
miR-155 in T-cell response with regard to intestinal inflammation 
is controversial. Das et al. [38] demonstrated that miR-155 
is involved in TGF-β-induced suppression of intestinal T-cell 
activation, such as IL-2 and interferon-γ (IFN-γ) production, by 
targeting IL-2-inducible T-cell kinase mRNA. In contrast, Chao 
et al. [39] observed that mice with overexpression of miR-155 in 
Treg cells exhibit spontaneous autoimmunity and exacerbation of 
DSS-induced colitis. In addition, miR-155 targeted the cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4) mRNA in Treg 
cells to suppress the regulatory function of Treg cells. Concerning 
miR-221 and miR-222, Mikami et al. [40] demonstrated an 
essential role of these miRNAs in regulating intestinal Th17 
cells. They found that miR-221 and miR-222 targeted MAF bZIP 
transcription factor (MAF) mRNA and IL-23 receptor mRNA 
to suppress intestinal Th17 cell expansion in response to IL-23. 
T cell-specific loss of miR-221 and miR-222 exacerbated DSS-
induced colitis in mice. Thus, it was suggested that miR-221 
and miR-222 act as negative feedback regulators downstream 
of IL-23 to modulate proinflammatory Th17 cell response in the 
intestine.

In addition to T cells, the function of intestinal B cells also 
involves miRNA silencing. Casali et al. [41] showed that miR-
146a targets small mothers against decapentaplegic (Smad)2, 
Smad3, and Smad4 mRNA, which results in reduced class-switch 
recombination to immunoglobulin A (IgA). In miR-146a-deficient 
mice, increased IgA+ B cells were observed in the intestine.

Although previous studies have proposed that some miRNAs 
are involved in the regulation of intestinal immunity, the 
molecular mechanisms, i.e., their target mRNAs, remain to be 
determined under intestinal inflammation conditions in particular. 
In addition, several controversial observations concerning the 
function of each miRNA have been reported, as described above, 
which are probably due to the complex regulatory network of 
miRNA-induced gene silencing. Nevertheless, identification 
of miRNA-induced gene silencing involved in the regulation 
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of intestinal immunity would lead to the development of novel 
therapeutic strategies for IBD.

EFFECT OF THE GUT MICROBIOTA ON 
INTESTINAL miRNA EXPRESSION

The gut commensal microbiota modulates the development 
and function of the host intestinal immune system. Given that 
miRNAs play a significant role in regulating the intestinal immune 
system, as described above, the influence of the gut microbiota 
on the intestinal immune system may be mediated by intestinal 
miRNAs. If this is the case, the expression profile of miRNAs 
in the intestine should be influenced by the gut microbiota. 
Indeed, some previous studies have investigated whether the gut 
microbiota affects the expression of miRNAs in the intestine.

Dalmasso et al. [42] compared miRNA expression profiles in 
ileal and colonic mucosal tissues between GF mice and GF mice 
colonized with microbiota isolated from specific pathogen-free 
(SPF) mice by using a microarray that contained 656 miRNAs. 
The authors found that one (miR-298) and three (miR-128, miR-
200c-5p, miR-342-5p) miRNAs were upregulated by colonization 
in the ileum and colon, respectively. In addition, five (miR-465c-
5p, miR-466d-3p, miR-466d-5p, miR-665, miR-683) miRNAs 
were downregulated by colonization in the colon. By employing 
two approaches, i.e., in silico prediction of target genes and a 
DNA microarray, in parallel, they found that several genes were 
regulated by miRNAs with altered expression due to colonization. 
For instance, the mRNA of an ATP-binding cassette transporter, 
ATP-binding cassette sub-family C member 3 (ABCC3), was 
identified as a target of miR-665 in the colon. Thus, the gut 
commensal microbiota could promote the expression of ABCC3 
by downregulating miR-665 in the colon.

A similar study was reported by Singh et al. [43]. The authors 
compared miRNA expression profiles in cecal tissue between GF 
mice and conventionally raised (CV) mice by multiplex reverse 
transcription polymerase chain reaction (RT-PCR) assay, which 
can analyze 585 miRNAs. They found that, among the 334 
miRNAs detected, 16 miRNAs were differentially expressed 
between GF and CV mice. Through in silico target prediction 
and network analysis, they identified 2,755 putative target genes 
of differently expressed miRNAs and found 34 genes related to 
intestinal barrier function. From these findings, they proposed 
that miRNA-induced gene silencing contributes to the regulation 
of intestinal barrier function by the gut commensal microbiota.

Aoki et al. [44] also compared miRNA expression profiles in 
the whole colon between GF and SPF mice. Their microarray 
analysis identified 48 miRNAs as differently expressed miRNAs. 
Upon analyzing putative target genes and their functions, the 
authors suggested that many of the predicted target genes were 
related to GTPases and nerves.

The miRNAs that were differently expressed between GF 
mice and CV or SPF mice were not necessarily similar among 
these three studies. This may be due to differences in the mouse 
strains and tissues examined. In addition, considering that the gut 
microbiota composition differs depending on the breeder, it is 
likely that the effects of the gut microbiota on miRNA expression 
differ between different studies.

Unfortunately, these studies analyzed miRNAs isolated 
from whole or mucosal tissues of the intestine. The intestinal 
tissues are composed of a heterogeneous population of cells. To 

elucidate the roles of miRNAs in the gut microbiota regulation 
of intestinal function, including immune response, it is necessary 
to analyze miRNA expression profiles in specific intestinal cell 
types in the intestine. For instance, Nakata et al. [45] isolated 
epithelial cells from the small and large intestines of GF and 
CV mice and compared the miRNA expression profiles. The 
authors identified miR-21-5p as highly expressed miRNA in 
the epithelial cells of both the small and large intestines of CV 
mice as compared with GF mice. They also found that miR-21-
5p upregulated ADP ribosylation factor 4 (ARF4) by silencing 
known targets phosphatase and tensin homolog (PTEN) mRNA 
and programmed cell death 4 (PDCD4) mRNA, which resulted 
in increased epithelial permeability. Thus, investigating miRNAs 
in specific cell types could reveal more precisely the roles of 
miRNAs in regulating intestinal function. Recent progress in 
cell sorting and single-cell RNA sequencing should enable us to 
uncover the effect of the gut microbiota on miRNA expression in 
specific cell types in the intestine.

ROLE OF miRNAs IN THE MODULATION OF THE 
INTESTINAL IMMUNE SYSTEM BY THE GUT 

MICROBIOTA

The gut commensal microbiota has been shown to modulate 
the development and function of the host intestinal immune 
system. In recent years, gene silencing by miRNAs has attracted 
attention to the mechanism for gut microbiota regulation of the 
intestinal immune system. However, studies regarding this topic 
have just begun.

Xue et al. [46] examined the expression level of miR-10a in 
epithelial cells, lamina propria dendritic cells, T cells, and B cells 
isolated from GF and SPF mice. They found that epithelial and 
dendritic cells in SPF mice expressed lower levels of miR-10a 
than GF mice, suggesting negative regulation of miR-10a by the 
gut microbiota. An in silico analysis predicted IL-12/IL-23p40 
mRNA as a target of miR-10a, and this was experimentally 
demonstrated by employing transfection with miR-10a in murine 
macrophage cell line RAW264.7. They also found that ligands 
for Toll-like receptor (TLR)1/2, TLR4, TLR5, TLR9, and 
NOD2 downregulated the expression of miR-10a in dendritic 
cells, suggesting that gut microbiota regulation of miR-10a 
in intestinal dendritic cells is mediated by the TLR/myeloid 
differentiation primary response gene 88 (MyD88) signaling 
pathway. Considering that IL-12/IL-23p40 is a crucial molecule 
for innate immune responses to commensal bacteria [47], this 
study demonstrated the significant role of miR-10a in modulation 
of the intestinal innate immune system by the gut microbiota.

NOD2, an intracellular microbial sensor, has also been 
identified as a target of miR-10a in intestinal dendritic cells. 
Wu et al. [48] observed that the expression of miR-10a in the 
inflamed mucosal tissues of IBD patients was decreased, while 
that of NOD2, as well as IL-12/IL-23p40, was increased. They 
also found that the expression of miR-10a was reduced by 
supplementation with Escherichia coli and various TLR ligands 
in human monocyte-derived dendritic cells in vitro. Furthermore, 
by employing transfection with miR-10a in human monocyte-
derived dendritic cells, NOD2 mRNA was identified as a target 
of miR-10a. As described above, miR-10a reportedly attenuates 
the conversion of inducible Treg cells into follicular helper T cells 
and limits the differentiation of Th17 cells [33]. Wu et al. [48] 
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thus examined whether miR-10a is involved in the phenotypic 
changes in helper T cells in IBD patients. They found that 
overexpression of miR-10a inhibited the response of Th1 and 
Th17 cells in CD4+ T cells isolated from IBD patients in vitro. 
Therefore, it was revealed that miR-10a plays a significant role 
in regulating both innate and adaptive immunities in response to 
the gut microbiota.

Xue et al. [49] investigated the expression of miR-107 in 
experimental colitis mice since miR-107 reportedly regulates 
the innate immune response to microbes [50]. They observed 
reduced expression levels of miR-10a in CD11c+ myeloid cells, 
i.e., dendritic cells and macrophages, and epithelial cells in the 
inflamed tissues of colitis mice. They also found that the intestinal 
expression of miR-107 was higher in GF mice than in SPF mice. 
Furthermore, IL-23p19 mRNA was identified as a target of miR-
107. Because IL-23p19 is a critical molecule in the regulation of 
innate immunity in response to the gut microbiota [51], it was 
suggested that miR-107, by targeting IL-23p19 mRNA, plays 
a significant role in regulating innate intestinal immunity in 
response to the gut microbiota. In other words, under intestinal 
inflammatory conditions, the gut microbiota may reduce miR-
10a expression in intestinal dendritic cells and macrophages. 
This upregulates IL-23p19, which in turn results in further 
enhancement of the innate immune response.

Recently, we compared the expression profiles of miRNAs 
and mRNAs in lamina propria leukocytes (LPLs) isolated from 
the large intestines of GF and SPF mice [52]. We employed 
microarray analyses with mouse miRNA and mRNA oligo chips 
containing 1,900 and 23,474 probes, respectively. We found that 
the expression levels of miR-148a-3p, miR-192-5p, miR-194-5p, 
and miR-200 family members, i.e., miR-141-3p, miR-200a-3p, 
miR-200b-3p, miR-200c-3p, and miR-429-3p, were higher in 
SPF mice than in GF mice. A combination of in silico and gene 
expression analyses suggested that BCL11B, ETS-1, guanylate 
binding protein 7 (GBP7), signal transducer and activator of 
transcription 5B (STAT5B), and zinc finger E-box binding 
homeobox 1 (ZEB1) are targets of miR-200 family members. 
By western blot analysis, we found that the protein expression 
of BCL11B and ETS-1, but not ZEB1, in large intestinal LPLs 
was significantly lower in SPF mice than in GF mice. Because 
BCL11B, ETS-1, and ZEB1 are transcription factors involved in 
regulating IL-2 production in T cells [53–55], we measured IL-2 
production in cultured LPLs isolated from the large intestine. 
Upon stimulation with phorbol 12-myristate 13-acetate and 
ionomycin, IL-2 production was lower in the LPLs isolated 
from SPF mice than in those isolated from GF mice. From 
these findings, we suggested that miR-200 family members are 
involved in gut microbiota regulation of IL-2 production in large 
intestinal LPLs by targeting BCL11b and ETS-1.

As described, comparisons between GF mice and CV or 
SPF mice suggested that the existence of the gut commensal 
microbiota influences intestinal miRNA expression [42–45, 52]. 
We next examined whether a change in the composition of the 
gut commensal microbiota alters the expression of miRNAs [56]. 
It is well known that consuming indigestible oligosaccharides, 
including fructooligosaccharides (FOS), influences the gut 
microbiota composition. Indeed, dietary supplementation with 
1-kestose (KES), the smallest constituent of FOS, altered the gut 
microbiota composition in mice, rats, dogs, and humans [57–60]. 
In particular, KES supplementation increased the population of 

bifidobacteria. We therefore tested whether the consumption of 
KES influences the miRNA expression profiles in large intestinal 
LPLs of mice. By microarray analysis followed by RT-PCR 
validation, we found that KES consumption increased the levels of 
miR-205-5p, miR-200 family members, and miR-192/215 family 
members, i.e., miR-192-5p, miR-194-5p, and miR-215-5p. We 
also observed that intragastric administration of Bifidobacterium 
pseudolongum isolated from mouse feces increased the levels 
of miR-182-5p, miR-194-5p, and miR-200a-3p and tended to 
increase the levels of miR-200b-3p, miR-215-5p, and miR-429-
3p. These results suggest that dietary KES influences miRNA 
expression in large intestinal LPLs, which may be associated 
with an increased population of B. pseudolongum. Considering 
that diet is a major determinant of gut microbiota composition 
and function [61, 62], it is possible that miRNA-induced gene 
silencing may contribute to dietary modulation of intestinal 
immune function.

The mechanisms by which gut microbes influence the 
expression of intestinal miRNAs remain unclear. Regarding 
our findings suggesting that gut commensal microbes promote 
the expression of miR-200 family members in large intestinal 
LPLs [52], our initial prediction was that gut microbial 
metabolites and/or cellular constituents might directly activate 
these miRNAs. However, our preliminary experiments showed 
that supplementation with short-chain fatty acids (SCFAs), gut 
microbial fermentation products of indigestible carbohydrates, 
failed to alter the levels of miR-200 family members in cultured 
LPLs isolated from the large intestines of SPF mice [52]. In 
addition, LPLs isolated from the large intestines of GF mice were 
cultured with fecal extracts prepared from the cecal contents 
of GF and SPF mice. The levels of miR-200 family members 
were unaffected not only by SCFAs but also by fecal extracts. 
We therefore suspect that an indirect action of gut commensals, 
such as through epithelial cells, may alter the expression of miR-
200 family members in large intestinal LPLs. Further studies 
are needed to elucidate the cellular and molecular mechanisms 
by which gut commensal microbes influence intestinal miRNA 
expression.

EFFECT OF HOST miRNAs ON THE GUT 
MICROBIOTA

The host animal contributes to the maintenance of gut 
microbiota homeostasis through antimicrobial peptides and IgA 
antibodies secreted into the intestinal lumen. Intriguingly, Liu et 
al. [63] showed the possibility that host-derived miRNAs might 
alter gut microbiota composition and function. By employing 
intestinal epithelial cell-specific Dicer-deficient mice, the authors 
demonstrated that miRNAs in the intestinal lumen are derived 
from intestinal epithelial cells and that miRNA deficiency in the 
lumen alters the gut microbiota composition. They also showed 
that host-derived miRNAs are incorporated into gut microbes, 
i.e., E. coli and Fusobacterium nucleatum, where they regulate 
gene transcription and affect the growth of the microbes.

Another study by Liu et al. showed more specific miRNA 
regulation of gut microbes, which is clinically relevant [64]. 
Because the authors previously reported that multiple sclerosis 
(MS) patients have an altered structure of the gut microbiota 
[65], they performed fecal transplantation from experimental 
autoimmune encephalomyelitis (EAE) mice, a model of human 
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MS, into naïve mice before induction of EAE and found that 
fecal transplantation ameliorated the symptoms of EAE in 
the recipient mice [64]. Taking into consideration that host-
derived miRNAs in the intestinal lumen could influence the gut 
microbiota composition [63], the authors administered miRNAs 
isolated from EAE mice to naïve mice before induction of EAE. 
They found that miRNA administration ameliorated the disease 
in the recipient mice and identified miR-30d-5p as a responsible 
miRNA. In addition, they discovered that miR-30d-5p regulates 
the expression of the β-galactosidase gene in Akkermansia 
muciniphila, which results in the expansion of this microbe in the 
gut. Finally, the authors showed that A. muciniphila suppresses 
EAE symptoms by increasing splenic Treg cells.

Likewise, Santos et al. also reported the modulation of specific 
gut microbes by host-derived miRNA [66]. They previously 
observed that miR-21-deficient mice exhibited protection against 
bile duct ligation (BDL)-induced liver injury [67]. The authors 
then showed that miR-21-deficient mice had an altered gut 
microbiota structure characterized by an increased abundance of 
Lactobacillus spp. and that supplementation of miR-21 promoted 
the growth of cultured Limosilactobacillus reuteri [66]. They also 
found that administration of L. reuteri ameliorated BDL-induced 
liver injury in mice. Thus, it was suggested that host-derived 
miR-21 suppresses BDL-induced liver injury by increasing the 
abundance of intestinal Lactobacillus spp.

CONCLUDING REMARKS

As described, the gut commensal microbiota is a regulator of 
the intestinal immune system. In addition, miRNA-induced gene 
silencing is also involved in regulating the intestinal immune 
system. Furthermore, the gut commensal microbiota influences 

intestinal miRNA expression. Some evidence suggests that 
miRNA-induced gene silencing plays a significant role in the 
regulation of the intestinal immune system by the gut microbiota. 
On the other hand, host-derived miRNAs secreted into the 
intestinal lumen could influence gut microbiota composition and 
function. Therefore, host miRNAs mediate the bidirectional gut 
commensal microbiota-host axis. In addition, it is worthwhile 
to note that diet may affect intestinal miRNA expression and 
release in a direct and/or gut microbiota-mediated indirect 
manner. In fact, Tarallo et al. reported that fecal miRNA profiles 
are associated with specific diets [68]. The authors investigated 
fecal miRNA profiles by small RNA-seq in fecal samples 
obtained from vegans, vegetarians, and omnivores and found 
49 miRNAs differentially expressed among different dietary 
habit subjects. Hence, diet would be an environmental factor 
that affects intestinal miRNA-mediated crosstalk between the 
gut microbiota and host (Fig. 1). However, further studies are 
required to elucidate the entire picture of this complex crosstalk. 
For instance, the target genes of miRNAs that are assumed to 
be involved in this crosstalk and the mechanisms by which gut 
microbes influence the expression of intestinal miRNAs should 
be clarified. In addition, how host-derived miRNAs regulate 
bacterial gene expression remains to be elucidated. Nevertheless, 
efforts to unravel this crosstalk will contribute significantly to 
developing new strategies for preventing and treating intestinal 
immune disorders such as IBD.
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Fig. 1. A putative bidirectional gut microbiota-intestinal immunity axis mediated by microRNAs (miRNAs). 1. Dietary modulation of gut microbiota 
composition and function, 2. dietary modulation of miRNA expression in intestinal epithelial cells, 3. dietary modulation of miRNA expression in 
intestinal immune cells, 4. host-derived miRNA modulation of gut microbiota composition and function, 5. gut microbiota modulation of miRNA 
expression in intestinal epithelial cells and immune cells, 6. cytokine-mediated modulation of miRNA expression in immune cells, 7. miRNA-
induced gene silencing in immune cells.
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