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Abstract: The role of MR Arterial-Spin-Labeling Cerebral Blood Flow maps (ASL-CBF) in the assess-
ment of pediatric focal epilepsy is still debated. We aim to compare the Seizure Onset Zone (SOZ)
detection rate of three methods of evaluation of ASL-CBF: 1) qualitative visual (qCBF), 2) z-score
voxel-based quantitative analysis of index of asymmetry (AI-CBF), and 3) z-score voxel-based cluster
analysis of the quantitative difference of patient’s CBF from the normative data of an age-matched
healthy population (cCBF). Interictal ASL-CBF were acquired in 65 pediatric patients with focal
epilepsy: 26 with focal brain lesions and 39 with a normal MRI. All hypoperfusion areas visible
in at least 3 contiguous images of qCBF analysis were identified. In the quantitative evaluations,
clusters with a significant z-score AI-CBF ≤ −1.64 and areas with a z-score cCBF ≤ −1.64 were
considered potentially related to the SOZ. These areas were compared with the SOZ defined by
the anatomo-electro-clinical data. In patients with a positive MRI, SOZ was correctly identified
in 27% of patients using qCBF, 73% using AI-CBF, and 77% using cCBF. In negative MRI patients,
SOZ was identified in 18% of patients using qCBF, in 46% using AI-CBF, and in 64% using cCBF
(p < 0.001). Quantitative analyses of ASL-CBF maps increase the detection rate of SOZ compared to
the qualitative method, principally in negative MRI patients.

Keywords: focal epilepsy; arterial spin labeling; magnetic resonance; perfusion; seizure onset zone

1. Introduction

Worldwide, it is estimated that 10.5 million children under 15 years have active
epilepsy, representing about 25% of the global epilepsy population [1]. Approximately
60% of epilepsy patients suffer from focal seizures, and in approximately 15% of these
patients, seizures are not adequately controlled with anticonvulsive drugs, and such pa-
tients are potential candidates for surgical treatment [2]. Surgical treatment may provide
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an effective curative solution for patients with focal epilepsy when it leads to the removal
of the epileptogenic zone (EZ), the area of the cortex that is necessary and sufficient for
initiating seizures and whose removal (or disconnection) is necessary for complete abolition
of seizures [3]. Thus, a comprehensive pre-surgical evaluation with precise delineation of
the EZ is crucial for an optimal outcome. Indeed, analysis of seizure semiology, interic-
tal, and ictal electrophysiological recordings, and structural MRI are considered first-line
evaluations in EZ localization [4]. Nevertheless, when first-line non-invasive evaluation
yields inconsistent conclusions or structural MRI is uninformative, other studies become
necessary. Interestingly, a recent meta-analysis demonstrated a significantly higher pro-
portion of MR-negative cases in children compared to adults [5]. Although in these cases
stereo-electroencephalography (SEEG) is still considered the “gold standard” diagnostic
procedure for localizing the EZ, additional information from different modalities is required
before performing any invasive procedure [4,6]. Nevertheless, further assessments with
non-invasive functional neuroimaging techniques (NIFNTs) may be a practical option to
guide or even avoid SEEG in selected cases [7].

Among NIFNTs, advanced nuclear imaging techniques are established methods used
to assess metabolic changes associated with the EZ [6]. In particular, interictal PET and ictal
SPECT are widely used to identify the EZ in the pediatric population, showing an accuracy
of 60−80% (interictal PET) [8] and 70–82% (ictal SPECT) [9]. These imaging techniques are
relatively invasive for children, as they require exposure to radiation, as well as intravenous
injections of radioactive tracers and/or contrast agents. Therefore, it would be favorable to
find less invasive approaches for localizing the EZ in children.

In the last few years, improvements in imaging acquisition techniques have been
made to reduce the invasiveness of studies that evaluate brain perfusion and metabolism,
especially in children. In particular, Arterial Spin Labeling (ASL) represents a novel MR
perfusion technique enabling direct, non-invasive measurements of CBF without the need
for contrast material injection or exposure to ionizing radiation. Indeed, it employs mag-
netically labeled blood-water protons as an endogenous diffusible tracer to noninvasively
estimate whole-brain perfusion. Briefly, radiofrequency pulses are used to invert the mag-
netization of blood water protons at the level of major arteries of the neck. Then, after
a delay to allow for labeled molecules to flow into the brain tissue, “labeled” MR brain
images are acquired that contain signals from both labeled water and static tissue water.
Subsequently, separate “control” images are acquired without prior labeling of arterial
protons, and the signal difference between “control” and “labeled” images provides a
measure of labeled blood from arteries delivered to the brain, which can be used to quantify
CBF [10]. Nagesh et al. recently demonstrated the complementary role of ASL MR perfu-
sion in the localization of EZ, based on CBF changes related to seizure activity [11]. Despite
the potential benefits of the ASL MRI technique related to the lack of contrast material and
radiation requirements, studies performed on patients with epilepsy report inconsistent
findings regarding the perfusion changes observed during and after seizures. Moreover,
the ASL literature on pediatric patients remains inconclusive, particularly regarding the
best approach needed to interpret CBF maps in patients with epilepsy. Of note, several
approaches have been proposed to localize the EZ on CBF maps, including standard qual-
itative visual analysis [12,13] and more complex quantitative approaches evaluating the
asymmetry of CBF at a voxel level [14,15].

We hypothesized that quantitative voxel-based analysis of CBF may increase the ac-
curacy of the seizure onset zone (SOZ; area of cortex that initiates clinical seizures) [3]
detection compared to the qualitative visual approach, which is widely used in clinical
routine. Thus, we prospectively assessed the detection rate of ASL perfusion in the local-
ization of the SOZ in two groups of children with MRI-positive and MRI-negative focal
epilepsy, comparing three different methods of CBF analysis: (i) the qualitative visual
analysis (qCBF); (ii) the quantitative voxel-based index of asymmetry (AI-CBF); and iii) a
novel quantitative approach that compares at voxel-level CBF of each patient with baseline
normative ASL data sets of an age-matched healthy population (cCBF).
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The main aim of the study was to compare the SOZ detection rate of qualitative versus
quantitative ASL analyses. Therefore, we included pediatric patients with focal epilepsy
without considering etiology or drug response to increase the number of subjects and
strength of statistics of results. Moreover, the study did not aim to evaluate the usefulness
and added value of ASL in presurgical assessment for the identification of EZ, which will be
done in a further study in a selected cohort of subjects all undergoing epilepsy surgery. For
the same reason, we decided to consider the concept of “Seizure Onset Zone”, avoiding the
term “Epileptogenic Zone”, since our purpose was not strictly related to epilepsy surgery.

2. Methods
2.1. Patients

Children with focal epilepsy consecutively referred to our institute from 1 January 2017
to 30 June 2020 were included. All patients underwent an anatomo-electro-clinical assess-
ment, including discussion of ictal semiology, video-EEG, 3T brain MRI, and FDG-PET and
Electrical Source Imaging in some cases. Inclusion criteria were: (i) confirmed unilateral
focal epilepsy and (ii) presence of an MR perfusion study with the background-suppressed
3D-PCASL technique. Exclusion criteria were: (i) motion artifacts on MR images and
(ii) undefined epilepsy. According to the imaging findings, included subjects were stratified
into two groups: (i) positive-MRI when a brain lesion related to epilepsy was found and
(ii) normal-MRI when no lesions were found in the brain MRI. In a restricted group of
subjects undergoing epilepsy surgery, the seizure outcome was clinically followed after
surgery. Outcome data at one year postoperative were based on Engel’s classification [16].

We also retrospectively evaluated 3D-PCASL studies of a group of healthy pediatric
patients who performed 3T brain MRI examinations between 2016 and 2020 for minor
trauma or headache. Inclusion criteria for this group were (i) normal brain MRI, (ii) normal
MR-angiography, and (iii) normal 3D-pCASL perfusion, defined according to the absence
of inter-hemispheric CBF asymmetry at both qualitative and quantitative evaluations.

Of note, in this study we addressed the issue related to the different trajectories of
CBF development during childhood, dividing all subjects into two separate age-groups:
(i) ≤7 years of age, typically showing higher mean CBF, and (ii) >7 years of age, normally
showing a trend of CBF reduction [17]. Comparisons between subjects with epilepsy and
controls were performed within each age group.

2.2. MR Imaging

MRI studies were performed for both patients and controls with a 3T scanner us-
ing a 32-channel head array coil (Ingenia Cx, Philips, Best, the Netherlands). The MRI
examinations included conventional sequences, such as 3D-T1-weighted, T2-weighted,
and susceptibility-weighted (SWI) images, and pCASL perfusion images. Background-
suppressed pCASL images were scanned with a three-dimensional gradient- and spin-echo
(GraSE) imaging readout module using a labeling pulse duration of 1.8 s and a post-labeling
delay of 2 s. No flow-crushing gradients were applied. Other scan parameters were: field of
view 160 × 160 mm; nominal voxel size, 2.0 × 2.0 × 6.0 mm3; 26 slices; repetition time/echo
time, 4264/12 ms; flip angle, (refocusing pulses), 90◦; and acquisition time, 4 min and 18 s.
ASL-CBF maps were generated using the Basil tool of FSL, as described [10].

2.3. ASL Analysis
2.3.1. Patients with Focal Epilepsy

All patients were investigated during the “interictal” phase, i.e., at least a minimum of
48 h after the last seizure. Two experts pediatric neuroradiologists with 25 and 12 years of
experience visually inspected ASL CBF maps of patients with focal epilepsy in axial planes
for identifying qualitative perfusion abnormalities. Readers performing this qualitative
analysis were blinded to any hypotheses regarding electro-clinical SOZ. A suspected perfu-
sion abnormality had to be seen on more than 2 consecutive slices to be considered positive.
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CBF maps of patients were further analyzed to quantify the index of asymmetry (AI),
which identifies voxels with significant differences in CBF between brain hemispheres [14].
Since all patients suffered from unilateral focal epilepsy, the brain regions with significant
inter-hemispheric differences in CBF were considered presumed SOZ. The calculation of
AI was based on the method described by Boscolo Galazzo et al. [14]. Briefly, CBF maps in
the ASL space were affine-registered to the individual 3D-T1 high-resolution anatomical
images by using the FLIRT tool of FSL. Each T1-weighted image was then registered to
the MNI (Montreal Neurological Institute) space with 1 × 1 × 1 mm3 resolution using
a non-linear method (FNIRT tool in FSL). Finally, the joint ASL/T1-weighted and T1-
weighted/MNI space transformation parameters were combined to spatially normalize
the CBF maps in the MNI space. The registered CBF maps were then smoothed with a
2 mm FWHM Gaussian kernel. Then, a voxel-wise AI calculation was performed using the
following formula: AI = 100 × (Right − Left)/(Right + Left). After calculating the mean
and standard deviation of the whole set of AI values, a voxel-wise AI z-score map was
derived as: AI-zscore= [(AI value–mean AI)/standard-deviation AI]. Voxels with | AI-
zscore | ≥ 1.64 corresponding to p < 0.05 were finally considered to have significantly
different CBF between hemispheres and were therefore likely related to the presumed SOZ.

A further quantitative voxel-based analysis was performed to identify brain regions
where CBF data deviated significantly from normative ASL data sets of age-matched healthy
controls. In particular, we assumed that brain regions showing a significant discrepancy of
CBF from healthy controls can be considered likely related to the SOZ. For this analysis,
CBF maps in the ASL space were affine-registered to the individual 3D-T1 high-resolution
anatomical images by using the FLIRT tool of FSL. Each T1-weighted image was then
registered to the MNI space with 1 × 1 × 1 mm3 resolution using a non-linear method
(FNIRT tool in FSL). Finally, the joint ASL/T1-weighted and T1-weighted/MNI space
transformation parameters were combined to spatially normalize the CBF maps in the
MNI space. CBF maps in the MNI space of each patient were first smoothed with a 2 mm
FWHM Gaussian kernel and then processed to derive a z-score map of the difference from
the age-matched CBF normative data set using the following formula: cCBF-zscore = [(CBF
value − mean of normative CBF)/standard deviation of normative CBF]. We assumed a
normal distribution of the CBF values; accordingly, voxels with |cCBF-zscore| ≤ −1.64
(corresponding to p < 0.05) were considered to have significantly lower CBF compared to
the controls and, therefore, related to the presumed SOZ.

2.3.2. Healthy Controls

CBF maps of healthy controls were first qualitatively evaluated in consensus by two
experts, pediatric neuroradiologists, to define the presence of CBF asymmetry between
brain hemispheres. Accordingly, they classified control subjects into two groups: (i) with
a normal CBF map (no asymmetry), and (ii) with an abnormal CBF map (presence of
asymmetry). To confirm this first qualitative evaluation, the CBF maps of patients classified
into the normal group were further evaluated using a voxel-based quantitative approach
that quantified the asymmetry index (AI). The same aforementioned method was used to
calculate AI inpatients with epilepsy [14]. Only subjects without significant asymmetry of
CBF between hemispheres were considered in the control group.

For each age group of controls, we calculated mean and standard deviation of CBF
using the fsl maths function of FSL, and we finally considered these data as normative
references for the quantitative analyses of cCBF.

2.3.3. Definition of the Presumed Seizure Onset Zone

Given that the sample was etiologically dissimilar and that most of the subjects did
not have surgery, we decided to consider the concept of the Seizure Onset Zone and to
avoid the term Epileptogenic Zone [3], since our aim was not strictly related to the concept
of surgery.
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In cases of MR-positive epilepsy, the lesion identified on the MRI was considered
as epileptogenic (macroscopic lesion that is causative of epileptic seizures because the
lesion itself is epileptogenic or by secondary hyperexcitability of the adjacent cortex) [18],
if consistent with electro-clinical SOZ. Moreover, confirmation of the SOZ location was
obtained by a seizure-free outcome (1 year follow-up) after surgical resection of brain
lesions in a restricted subgroup of patients undergoing surgical resection. For patients with
negative MRI, presumed SOZ was determined by an expert consensus after reviewing
clinical history, interictal and ictal scalp VEEG, structural MRI, interictal PET, and Electrical
Source Imaging (when available). These localizations are referred to as presumed, since
they were not supported by surgical outcomes.

2.3.4. Concordance of ASL with SOZ

To compare ASL data (resulting from both qualitative and quantitative analyses) with
the presumed electro-clinical SOZ, the following brain segments were classified and thus
considered [15]:

a. Frontal lobe: orbitofrontal (inferior surface), mesial frontal (medial to the interhemispheric
fissure), anterior lateral frontal (anterior to the precentral sulcus), posterior lateral frontal
(anterior to the central sulcus, and posterior to the precentral sulcus) segments.

b. Temporal lobe: lateral anterior and posterior segments and temporal-mesial segment.
c. Parietal lobe: post-central, superior (superior to intraparietal sulcus), and inferior

parietal (inferior to intraparietal sulcus) segments.
d. Occipital lobe (without subdivisions).

The brain segments, including the presumed SOZ defined by ASL qualitative and
quantitative analyses, were compared with the presumed SOZ defined by anatomo-electro-
clinical data and then classified in consensus as one of the following definitions by a
neurologist and a neuroradiologist:

a. Concordant: If the SOZ defined by anatomo-electro-clinical data overlapped entirely
with the one identified by the ASL.

b. Partially concordant: If the SOZ defined by anatomo-electro-clinically partially over-
lapped with the one identified by the ASL.

c. Discordant-ipsilateral: If the anatomo-electro-clinical SOZ and the one identified by
the ASL were different regions of the same hemisphere.

d. Discordant-contralateral: If the anatomo-electro-clinical SOZ and the one identified
by the ASL were in opposite hemispheres.

e. Uninformative: If no localization can be inferred.

2.4. Statistical Analysis

The data were analyzed using SPSS Statistics software, v26 (IBM, Armonk, NY, USA).
Continuous variables were reported as mean and standard deviation, while categorical
variables were expressed as absolute frequency and relative percentage. Pearson’s chi-squared
test was used to compare the detection scores of the three ASL evaluations, and adjusted
standardized residuals were evaluated for the post-hoc analysis [19]. Statistical significance
was set at p < 0.05, and a Bonferroni correction was used to adjust for multiple comparisons.

The inter-rater agreement between three sets of ASL analyses and the anatomo-electro-
clinical definition of SOZ was measured with Cohen’s κ coefficient. This statistic takes into
effect the percentages of agreement that would be expected by chance. Possible values for
the kappa statistic are from −1 to 1, with 1 = perfect agreement, 0 = completely random
agreement and −1 = perfect disagreement. We interpret values between 0.0 and 0.2 to
indicate slight agreement, 0.21 and 0.40 to indicate fair agreement, 0.41 and 0.60 to indicate
moderate agreement, 0.61 and 0.80 to indicate substantial agreement, and 0.81 and 1.0 to
indicate almost perfect agreement [20].
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3. Results
3.1. Patients

Overall, 70 pediatric patients with unilateral focal epilepsy, studied with 3D-PCASL
perfusion were considered in this study. Five were excluded for motion artifacts. Thus,
65 pediatric patients with electro-clinically defined focal epilepsy were finally considered
for the analysis. Twenty-six patients (11 female; mean age 11.5 ± 3.6 years) presented with
lesional focal epilepsy (18 focal cortical dysplasia, 4 glioneuronal tumors, 1 transmantle
gray matter heterotopia, 2 cavernous venous malformations, 1 single cortical tuber). Fifteen
of them underwent surgical resection of the brain lesion. Fourteen out of the 15 operated
patients were seizure-free (Engel Class I), although only 12 had a 1-year follow-up, with the
remaining patient in Engel class III. Among non-operated MRI-positive patients (11 pts),
surgery was scheduled for two, an in-depth study with SEEG was programmed for other
three, in a sixth patient surgical planning was stopped due to the overlapping of EZ
and an eloquent area, and three other patients were drug-responsive; thus, a “watchful
waiting” approach was agreed with the families. Finally, surgery was proposed to two other
patients’ families, who were lost in follow-up. The remaining 39 patients (17 female; mean
age 10.6 ± 4.7 years) showed MRI-negative unilateral focal epilepsy, including patients
with presumed structural etiology not detectable on structural MRI and patients with
non-lesional epilepsy [21].

A total of 100 subjects with normal brain MRI and without CBF asymmetry at perfusion
analyses were included in the group of healthy controls. Specifically, 50 of them were
younger than 7 years old (22 female; mean age 5.2 ± 2.3 years), and the remaining 50 subjects
were older or equal to 7 years old (27 female; mean age 10.6 ± 4.1 years).

3.2. ASL Analyses

Table 1 summarizes the scores of the three ASL analyses for the identification of
ASL abnormality in comparison with the presumed anatomo-electro-clinical SOZ and
electro-clinical SOZ in MRI-positive and MRI-negative patients, respectively.

3.3. Qualitative Analysis

In the group of positive-MRI patients, 7 out of 26 SOZ (27%) were correctly identi-
fied, with good agreement (Cohen’s k = 0.732) for the definition of lateralization. The
location of the CBF abnormality was concordant with the anatomo-electro-clinical SOZ for
5/26 patients, and partially concordant for 2/26 patients. In the remaining 19 positive-MRI
patients, the localization was discordant (1 ipsilateral, and 4 contralateral), or uninformative
(14 cases).

In negative-MRI patients, 7 out of 39 presumed SOZ (18%) were correctly identified.
Definition of ASL abnormality lateralization showed fair agreement with electro-clinical
presumed SOZ (Cohen’s k = 0.381). The location of the CBF abnormality was concordant
with the electro-clinical presumed SOZ for 4/39 patients, and partially concordant for
3/39 patients. In the remaining 32 negative-MRI patients, the localization was discordant
ipsilateral (1 case) or uninformative (3 cases).

3.4. Asymmetry Index

In the group of positive-MRI patients, 19 out of 26 SOZ (73%) were correctly identified,
with almost perfect agreement (Cohen’s k = 0.909) for the definition of lateralization.
The location of the CBF abnormality was concordant with the anatomo-electro-clinical
presumed SOZ for 14/26 patients, and partially concordant for 5/26 patients. In the
remaining 7 positive-MRI patients, the localization was discordant (3 ipsilateral, and
1 contralateral), or uninformative (3 cases).
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Table 1. Comparisons of three ASL analyses with the electro-clinical definition of the presumed Seizure Onset Zone (SOZ).

qASL AI-CBF cCBF

SOZ
(%)

SOZ Lateralization
Agreement Cohen’s

Kappa
(95% CI)

Brain Lobe Agreement SOZ
(%)

SOZ Lateralization
Agreement Cohen’s

Kappa
(95% CI)

Brain Lobe Agreement SOZ
(%)

SOZ Lateralization
Agreement Cohen’s

Kappa
(95% CI)

Brain Lobe Agreement

MRI
positive

26 patients

7/26
(27%)

0.392
(0.211–0.398)

• Concordant: 5/26
• Partially concordant: 2/26
• Discordant ipsilateral: 1/26
• Discordant contralateral: 4/26
• Uninformative: 14/26

19/26
(73%)

0.909
(0.891–0.927)

• Concordant: 14/26
• Partially concordant: 5/26
• Discordant ipsilateral: 3/26
• Discordant contralateral: 1/26
• Uninformative: 3/26

20/26
(77%)

0.943
(0.885–0.968)

• Concordant: 14/26
• Partially concordant: 6/26
• Discordant ipsilateral: 4/26
• Discordant contralateral: 0/26
• Uninformative: 2/26

MRI
negative

39 patients

7/39
(18%)

0.385
(0.160–0.336)

• Concordant: 4/39
• Partially concordant: 3/39
• Discordant ipsilateral: 1/39
• Discordant contralateral: 0/39
• Uninformative: 31/39

18/39
(46%)

0.819
(0.796–0.842)

• Concordant: 6/39
• Partially concordant: 12/39
• Discordant ipsilateral: 5/39
• Discordant contralateral: 1/39
• Uninformative: 15/39

25/39
(64%)

0.932
(0.896–0.941)

• Concordant: 11/39
• Partially concordant: 14/39
• Discordant ipsilateral: 5/39
• Discordant contralateral: 2/39
• Uninformative: 7/39
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In negative-MRI patients, 18 out of 39 presumed SOZ (46%) were correctly identified.
Definition of ASL abnormality lateralization showed good agreement with electro-clinical
presumed SOZ (Cohen’s k = 0.819). The location of the CBF abnormality was concordant
with the electro-clinical presumed SOZ for 6/39 patients, and partially concordant for
12/39 patients. In the remaining 21 negative-MRI patients, the localization was discordant
(5 ipsilateral and 1 contralateral) or uninformative (15 cases).

3.5. ASL cCBF Analysis

In the group of positive-MRI patients, 20 out of 26 SOZ (77%) were correctly identified,
with almost perfect agreement (Cohen’s k = 0.943) for the definition of lateralization. The loca-
tion of the CBF abnormality was concordant with the anatomo-electro-clinical presumed SOZ
for 14/26 patients, and partially concordant for 6/26 patients. In the remaining 6 positive-MRI
patients, the localization was discordant (4 ipsilateral) or uninformative (2 cases).

In negative-MRI patients 25 out of 39 presumed SOZ (64%) were correctly identified.
The definition of ASL abnormality lateralization showed almost perfect agreement with
electro-clinical presumed SOZ (Cohen’s k = 0.932). The location of the CBF abnormality
was concordant with electro-clinical presumed SOZ for 11/39 patients, and partially con-
cordant for 14/39 patients. In the remaining 14 negative-MRI patients, the localization was
discordant (5 ipsilateral and 2 contralateral) or uninformative (7 cases).

3.6. Agreement among ASL Analyses

In the group patients with a positive MRI, only 6/26 (23%) SOZs, concordant or
partially concordant with anatomo-electro-clinical localization, were correctly identified
by all three ASL analyses. Similarly, in the group of negative MRI patients, 6/39 (15%)
SOZs concordant or partially concordant with electro-clinical localization were correctly
identified by all three ASL analyses.

Focusing on the quantitative ASL analyses, 16/26 (61%) and 16/39 (41%) SOZs concor-
dant or partially concordant with their anatomo-electro-clinical localizations were correctly
localized by both AI-CBF and cCBF analyses in the group of positive- (X2 = 38.035; p < 0.001)
and negative-MRI patients (X2 = 26,761; p = 0.044), respectively (Figure 1). Of note, one
patient in the positive-MRI group and five patients in the negative-MRI group who did not
show concordant results in the AI-CBF analysis were found to be concordant in the cCBF
analysis. In contrast, no patients who did not show concordant results in the cCBF analysis
were found to be concordant in the AI-CBF analysis.

The detection scores of both AI-CBF and cCBF were significantly higher than qCBF in
both MRI-positive (p ≤ 0.001) and MRI-negative (p ≤ 0.007) patients at post-hoc analysis.
No significant differences were observed between cCBF and AI-CBF (Table 2).

Table 2. Comparison of ASL analyses.

ASL Analyses MRI-Positive
29 Patients

MRI-Negative
36 Patients

Method 1 Method 2 p-Value * p-Value *

qCBF AI-CBF 0.001 0.007

qCBF cCBF <0.001 <0.001

AI-CBF cCBF 0.500 0.086
Note: qCBF indicates qualitative analysis of ASL images; AI-CBF indicates quantitative analysis of Asymmetry
index; cCBF indicates quantitative analysis of CBF of each patient with baseline normative ASL data. * The p-value
indicates the results of post-hoc analyses of Chi-square test.

Similar results were obtained comparing the three ASL analyses in the subgroup of
patients with positive MRI undergoing surgical resection (15 out of 26 patients) (X2 = 17.253;
p < 0.001). In particular, the detection score of operated lesions was significantly higher
for both AI-CBF and cCBF analyses compared to qASL (p = 0.02 and p = 0.01, respectively)
(Table 3). No significant differences were observed between AI-CBF and cCBF (p = 0.511)
(Figure 2).
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Figure 1. Two cases of pediatric patients with focal epilepsy and frontal left EEG abnormalities.
In the first patient (a–d), axial FLAIR image (a) shows left frontal focal cortical dysplasia (white
arrow), while axial ASL-CBF map (b) identified a slight reduction of CBF in the left frontal region.
Quantitative voxel-based analysis of the Asymmetry Index (c) confirmed a region of asymmetry of
CBF in the frontal lobes with reduced perfusion in the left side. Quantitative voxel-base analysis of
cCBF (d) identified a region of significant reduction of CBF in the left frontal lobe compared with
age-matched healthy controls. In the second patient (e–h), axial FLAIR image (e) and axial ASL-CBF
map (f) did not show any structural lesion or perfusion abnormalities at visual qualitative analysis. In
contrast, quantitative voxel-based analysis of the Asymmetry Index (g) showed a region of asymmetry
of CBF in frontal lobes with reduced perfusion in the left side. Quantitative voxel-base analysis of
cCBF (h) identified a region of significant reduction of CBF in the left frontal lobe compared with
age-matched healthy controls. Note: Color bars in (b,f) indicate CBF values mL/min/100 g. Color
bars in (c,g) indicate values of the Asymmetry index with red-to-yellow indicating positive values
and blue-to-lightblue indicating negative values. Colorbars in (d,h) indicate z-score values of the CBF
comparison between the single subject and healthy controls.

Table 3. Comparisons of three ASL analyses in the subgroup of patients with a positive MRI
undergoing surgery. Concordance was evaluated between the site of the resected lesion and the area
identified as SOZ at ASL analyses.

ASL Analyses Concordance between Site
of Lesion and ASL Results p-Values

qASL

• Concordant: 5/15
• Partially concordant: 2/15
• Discordant ipsilateral: 4/15
• Discordant contralateral: 1/15
• Uninformative: 3/15

qASL vs AI-CBF: 0.02
qASL vs cCBF: 0.01

AI-CBF

• Concordant: 11/15
• Partially concordant: 2/15
• Discordant ipsilateral: 1/15
• Discordant contralateral: 0/15
• Uninformative: 1/15

AI-CBF vs qASL: 0.02
AI-CBF vs cCBF: 0.511

cCBF

• Concordant: 11/15
• Partially concordant: 3/15
• Discordant ipsilateral: 1/15
• Discordant contralateral: 0/15
• Uninformative: 0/15

cCBF vs qASL: 0.01
cCBF vs AI-CBF: 0.511

Note p-values indicate statistical levels in post-hoc analysis based on the analysis of adjusted standardized residuals.
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Figure 2. MR images of Engel class I patient with focal left parietal epilepsy undergoing surgery.
3D-FLAIR images (a–c) show left parietal bottom-of-sulcus cortical dysplasia (white arrows). Quali-
tative analysis of the ASL-CBF map (d) identified a slight reduction of CBF in the left parietal region.
Quantitative voxel-based analysis of the CBF Asymmetry Index (e) confirmed a region of asymmetry
in the parietal lobes with reduced perfusion in the left side. Quantitative voxel-base analysis of
cCBF (f) identified in the same region of the left parietal lobe a region of significant reduction of
CBF compared with age-matched healthy controls. Axial T2-weighted image acquired after surgery
(g) shows a resected area in the left parietal lobe. AI-CBF (h) and cCBF z-score maps (i) overlaid on
post-surgery T2-weighted image show perfect correspondence of the cluster of significant results
with the area of resected lesion.

4. Discussion

In this study, we found that quantitative voxel-based ASL analyses improve the
detection rate of SOZ in pediatric patients with focal epilepsy with both positive and
negative brain MRI studies, compared with the qualitative visual analysis of CBF maps.
Our results suggest ASL as a safe and manageable imaging technique that can be adopted
to assist in the localization of SOZ in pediatric focal epilepsy in clinical practice.

Indeed, ASL MR perfusion employs magnetically labeled blood water protons as
endogenous diffusible tracers to noninvasively estimate whole-brain perfusion. Moreover,
ASL provides an absolute quantification of CBF in different brain regions that do not require
exogenous contrast injection or exposure to ionizing radiation, which is suitable for patients
who require multiple MR evaluations. Several studies have already analyzed the localiza-
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tion value of ASL in patients with epilepsy, such as in MRI-negative children with new
onset seizures, mesial temporal lobe epilepsy, intractable epilepsy, partial epilepsy status,
and tuberous sclerosis [22–26]. Epilepsy generally induces cortical hyperperfusion during
seizures and in the peri-ictal period (≤5 h from the last seizure), which is likely related
to the extreme electrophysiological state, with the activated cortex exhibiting increased
glucose and oxygen usage leading to increased local CBF in the SOZ [27,28]. The origin of
relative hypoperfusion occurring during the interictal phase is not fully understood. This
could indicate local brain atrophy and gliosis. Indeed, with the prolonged course of the
disease, a progressive reduction of local neurons can be observed within the SOZ, thus
resulting in reduced CBF during the interictal phases [23]. On the other hand, the focal
hypometabolism during the interictal state of the SOZ might be related to its functional
and metabolic isolation from the surrounding brain regions [29,30].

Although several visual qualitative control score systems have been developed to
provide standardized quality indications before using ASL for clinical assessments [31],
the ability of ASL to identify the SOZ is still unsatisfactory when perfusion maps are
assessed with a qualitative visual approach. Of note, So Me Lee et al. analyzed perfusion
abnormalities on ASL in 43 pediatric patients with newly developed seizures who did
not show abnormalities in structural MRI using a qualitative visual approach, finding
perfusion change in only 58.1% of the patients, with moderate concordance (k = 0.542) with
the electro-clinical SOZ based on semiology and EEG findings [25]. Better results have been
reported in additional case series that analyzed the diagnostic utility of ASL on seizure
evaluation in pediatric epilepsy with focal structural brain abnormalities (i.e., focal cortical
dysplasia [32], cortical tubers [26], and focal brain lesions in neonatal periods [33]). In our
study, we obtained similar results from the qualitative analysis of ASL maps that allowed
us to identify 27% and 18% of electro-clinical SOZs in MRI positive and negative patients’
groups, respectively, confirming the low accuracy of the qualitative analyses of ASL in the
localization of SOZ in the clinical setting.

Moreover, we obtained better results from both quantitative voxel-based analyses
of CBF maps. In particular, we found that cCBF analysis properly localizes the highest
number of SOZs concordant with the electro-clinical findings (77% and 64% of cases in
MRI-positive and MRI-negative patients). These results are in agreement with previous
studies performed on adult patients with focal epilepsy. In particular, Pereira et al. found
that statistical maps obtained comparing single-subject CBF maps with healthy controls
may provide localizing or lateralizing information for specific cases that were missed
through qualitative analysis of ASL maps [15]. This higher sensitivity of cCBF analysis
may be related to its ability to reveal minimal variations of CBF from normal values, which
might otherwise not be identified through visual qualitative assessments of ASL maps.
However, these improvements in ASL sensitivity in the identification of SOZ were observed
in the face of a lower specificity. Indeed, we observed the highest numbers of cases with
“partially concordance” between ASL and electro-clinical data (6 out of 26 MRI-positive
cases and 14 out of 39 MRI-negative cases) in the identification of SOZ using the quantitative
cCBF approach. This might reflect the greater number of cases with multifocal significant
perfusion changes that were seen with the cCBF analysis, where some areas of significant
hypoperfusion were outside the SOZ defined by the electro-clinical analysis.

Interestingly, there is increasing evidence to consider focal epilepsy as a brain network
disease in which long-range connections need to be taken into account [34]. Of note, the
presence of perfusion alterations not only in the regions of seizure onset might support
the presence of complex altered epileptic networks with perfusion abnormalities involving
seizure propagation pathways [35]. These findings suggest that quantitative cCBF analysis
may be useful for a better localization of single seizure foci, as well as for understanding
the widespread epileptic networks involved by the EZ.

Moreover, our analysis revealed a higher specificity of AI-CBF analysis in the local-
ization of SOZ. Indeed, AI-CBF revealed fewer “Partially concordant” and “Discordant
ipsilateral” cases than cCBF. The analysis of AI-CBF is mainly based on the voxel-wise calcu-
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lation of perfusion asymmetries between the two hemispheres. This approach has already
been successfully applied in previous studies and proved clinically useful for detecting fo-
cal abnormalities in both perfusion and metabolic maps of patients with epilepsy [12,36,37].
Of note, voxel-wise AI-CBF data were evaluated in a two-fold way: (i) comparing the
estimated AI values to a reference threshold derived from a control group to identify the
significant voxels of asymmetry [38,39] or (ii) using a qualitative analysis of asymmetry
in the brain regions of the presumed SOZ [12]. In this study, we used a novel approach of
analysis of AI maps, which applies an individually-tailored z-score test to the estimated AI
values using the information derived from each patient, to automatically identify areas with
statistically significant asymmetries [14]. This approach allows us to perform a quantitative
voxel-based analysis of a single patient without using the information derived from a nor-
mal database, thus overcoming the limitations imposed by the lack of normative data. In
particular, we used AI-CBF z-values with thresholding |zAI-CBF| > 1.64 (corresponding
to p < 0.05), and we considered as presumed SOZ all clusters of voxels above this threshold.
Interestingly, several new methods for subject-specific adaptive thresholding were recently
tested to improve the sensitivity and specificity of AI-CBF to localize SOZ [40]. More
specifically, the computation of a preliminary subject-specific AI-CBF histogram allows us
to derive different thresholds (i.e., minimal product criterion, minimal distance criterion,
and elbow criterion) that showed better results in terms of positive predictive and true
positive rate of SOZ localization [40]. However, these new methods require additional steps
and specific tools for AI-CBF analysis that may represent a limitation for clinical use.

Furthermore, the identification of techniques to locate lesions before surgery has
become the key to presurgical evaluation. Structural brain MRI and Video EEG are effective
investigation methods for EZ localization. However, in the presurgical evaluation of
pediatric epilepsy, the occurrence of negative findings in MRI can be as high as 30–40% [15].
Therefore, it is essential to find alternative approaches to improving the sensitivity of MRI
in patients with refractory focal epilepsy for presurgical evaluation.

Although many patients with epilepsy have visible structural lesions, the most chal-
lenging group is the subset of patients that have no structural or functional abnormalities
visible on MRI, and the question remains how to improve localization of EZ in this group.
We found that ASL was able to identify regions of perfusion change in 18 out of 39 (46%)
patients with AI-CBF analysis (6 “Concordant” and 12 “Partially concordant” with electro-
clinical SOZ), and in 25 out of 39 patients (64%) with cCBF analysis (11“Concordant”
and 14 “Partially concordant” with electro-clinical SOZ). On the contrary, the qualitative
analysis detected only perfusion changes in 7 out of 39 patients (18%) without structural
brain lesions on MRI, thus confirming the low diagnostic performance of the visual ap-
proach reported in previous studies performed on adults. In particular, Lam et al. [41] and
Sierra-Marcos et al. [42] reported a very poor detection rate in their non-lesional group
using a visual analysis of ASL maps. In contrast, a more recent study in adults evaluating
AI-CBF reported ASL hypoperfusion, which was concordant with the final electro-clinical
hypothesis in 13 of 20 patients with MRI-negative [14]. In our study, we showed that both
ASL quantitative analyses may improve the detection of SOZ in children with uninforma-
tive MRI, and we suggest using both methods in more complex clinical cases with subtle
MRI signal abnormalities that are not directly obvious from the radiological interpretation
of MRI. This may substantially help in refining the final decision of the SOZ location in
surgery candidates.

It is worth noting that this should be considered a hypothesis, since, in order to
prove the added value of the ASL in presurgical assessment, the concordance/discordance
of zones identified by different methods should be analyzed according to postoperative
outcome (i.e., Engel class) and the accuracy of planned cortical resection.

In this regard, the majority of subjects in the subgroup undergoing epilepsy surgery
(92% Engel class I) presented good concordance between the results of quantitative ASL
analyses and anatomo-electro-clinical SOZ. On the other hand, poor concordance was
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observed in the qASL analysis. These findings should also be confirmed in patients with
MRI negative patients submitted to surgery after SEEG.

There are several limitations of our study. In particular, the localization accuracy of
ASL depends on the quality of the sequence in terms of noise and motion artifacts and
signal-to-noise ratio. For example, there could be substantial noise artifacts close to bone
and scalp on ASL maps, which may affect visualization and CBF calculation in adjacent
cortical areas. In addition, differences in perfusion of white matter are difficult to detect
due to the inherent low perfusion of white matter. However, the aim of ASL is to localize
perfusion changes within the cerebral cortex.

Moreover, all patients were studied during the inter-ictal period (i.e., at least 48 h from
the last seizure), thus not thoroughly considering the effect on cerebral perfusion of time
elapsed since the last seizure, with special regard to the peri-ictal period, i.e., within 48 h
of seizure.

Furthermore, we did not evaluate the influence of antiseizure medications on the
ability of ASL to localize SOZ [43]. Further studies might provide further insights into
these aspects.

In conclusion, our findings suggest that advanced quantitative voxel-based analyses,
performed on ASL data could provide additional information for the localization of the
SOZ in pediatric patients with focal epilepsy. While waiting for further studies to validate
the added value in the epilepsy surgery work-up, due to the relative convenience and
noninvasive nature, we suggest that ASL be performed as part of the presurgical evaluation
in all children with focal epilepsy, as well as in those with a negative MRI. Indeed, the
added value of quantitative ASL analyses could be for patients with focal epilepsy in
whom no lesions or controversial signal abnormalities are seen on an MRI. In these cases,
advanced quantitative analyses of ASL data might be integrated in a multimodal evaluation
in combination with other advanced methods available for the presurgical protocol (i.e.,
DTI, PET, and SPECT, Electrical Source Imaging) [44].

Author Contributions: Conceptualization, D.T., M.S., L.N., M.C. and A.R. (Andrea Rossi); method-
ology, D.T., C.P., A.R. (Antonia Ramaglia), F.S. and A.R. (Andrea Rossi); software, D.T. and C.P.;
validation, D.T., A.R. (Andrea Rossi), A.R. (Antonia Ramaglia), M.S., M.M., G.P. (Giulia Prato) and
L.S.; formal analysis, D.T. and C.P.; investigation, A.C., M.P., G.P. (Giulia Prato), E.C., T.G. and G.N.;
resources, G.P. (Gianluca Piatelli), A.R. (Andrea Rossi), L.N. and D.A.; data curation, D.T. and M.C.;
writing—original draft preparation, D.T., M.C. and L.N.; writing—review and editing, D.T., M.S.,
L.N. and A.R. (Andrea Rossi); supervision, P.S., A.R. (Andrea Rossi), L.N. and G.P. (Gianluca Piatelli).
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethics Committee of Regione Liguria (N. Reg 533REG2015).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data used for the analysis can be requested by correspondence with
domenicotortora@gaslini.org.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Camfield, P.; Camfield, C. Incidence, prevalence and aetiology of seizures and epilepsy in children. Epileptic Disord. 2015, 17,

117–123. [CrossRef] [PubMed]
2. Jayalakshmi, S.; Vooturi, S.; Gupta, S.; Panigrahi, M. Epilepsy surgery in children. Neurol. India 2017, 65, 485–492. [CrossRef]

[PubMed]
3. Lüders, H.O.; Najm, I.; Nair, D.; Widdess-Walsh, P.; Bingman, W. Definition and localization of the epileptogenic zone The

epileptogenic zone: General principles. Epileptic Disord 2006, 8 (Suppl. 2), S1–S9. [PubMed]
4. Ryvlin, P.; Cross, J.H.; Rheims, S. Epilepsy surgery in children and adults. Lancet Neurol. 2014, 13, 1114–1126. [CrossRef]
5. Téllez-Zenteno, J.F.; Ronquillo, L.H.; Moien-Afshari, F.; Wiebe, S. Surgical outcomes in lesional and non-lesional epilepsy: A

systematic review and meta-analysis. Epilepsy Res. 2010, 89, 310–318. [CrossRef] [PubMed]

http://doi.org/10.1684/epd.2015.0736
http://www.ncbi.nlm.nih.gov/pubmed/25895502
http://doi.org/10.4103/neuroindia.NI_1033_16
http://www.ncbi.nlm.nih.gov/pubmed/28488608
http://www.ncbi.nlm.nih.gov/pubmed/17012067
http://doi.org/10.1016/S1474-4422(14)70156-5
http://doi.org/10.1016/j.eplepsyres.2010.02.007
http://www.ncbi.nlm.nih.gov/pubmed/20227852


Diagnostics 2022, 12, 811 14 of 15

6. Sebastiano, D.R.; Tassi, L.; Duran, D.; Visani, E.; Gozzo, F.; Cardinale, F.; Nobili, L.; Del Sole, A.; Rubino, A.; Dotta, S.; et al.
Identifying the epileptogenic zone by four non-invasive imaging techniques versus stereo-EEG in MRI-negative pre-surgery
epilepsy patients. Clin. Neurophysiol. 2020, 131, 1815–1823. [CrossRef]

7. Foged, M.T.; Martens, T.; Pinborg, L.H.; Hamrouni, N.; Litman, M.; Rubboli, G.; Leffers, A.-M.; Ryvlin, P.; Jespersen, B.;
Paulson, O.B.; et al. Diagnostic added value of electrical source imaging in presurgical evaluation of patients with epilepsy: A
prospective study. Clin. Neurophysiol. 2020, 131, 324–329. [CrossRef]

8. Mayoral, M.; Niñerola-Baizán, A.; Marti-Fuster, B.; Donaire, A.; Perissinotti, A.; Rumià, J.; Bargalló, N.; Sala-Llonch, R.; Pavia, J.;
Ros, D.; et al. Epileptogenic Zone Localization With 18FDG PET Using a New Dynamic Parametric Analysis. Front. Neurol. 2019,
10, 380. [CrossRef]

9. Kim, S.; Mountz, J.M. SPECT Imaging of Epilepsy: An Overview and Comparison with F-18 FDG PET. Int. J. Mol. Imaging 2011,
2011, 813028. [CrossRef]

10. Alsop, D.C.; Detre, J.A.; Golay, X.; Günther, M.; Hendrikse, J.; Hernandez-Garcia, L.; Lu, H.; MacIntosh, B.J.; Parkes, L.M.;
Smits, M.; et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of
the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn. Reson. Med. 2015, 73, 102–116.
[CrossRef]

11. Nagesh, C.; Kumar, S.; Menon, R.; Thomas, B.; Radhakrishnan, A.; Kesavadas, C. The Imaging of Localization Related Symp-
tomatic Epilepsies: The Value of Arterial Spin Labelling Based Magnetic Resonance Perfusion. Korean J. Radiol. 2018, 19, 965–977.
[CrossRef] [PubMed]

12. Wolf, R.L.; Alsop, D.C.; Levy-Reis, I.; Meyer, P.T.; Maldjian, J.A.; Gonzalez-Atavales, J.; French, J.A.; Alavi, A.; Detre, J.A. Detection
of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR
imaging. Am. J. Neuroradiol. 2001, 22, 1334–1341. [PubMed]

13. Zhang, J.; Zhang, H.; Li, Y.; Yuan, M.; Zhang, J.; Luo, H.; Yao, Z.; Gan, J. Arterial spin labeling for presurgical localization of
refractory frontal lobe epilepsy in children. Eur. J. Med. Res. 2021, 26, 88. [CrossRef] [PubMed]

14. Galazzo, I.B.; Mattoli, M.V.; Pizzini, F.B.; De Vita, E.; Barnes, A.; Duncan, J.S.; Jäger, H.R.; Golay, X.; Bomanji, J.B.; Koepp, M.;
et al. Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous
acquisition of 18 F-FDG PET and arterial spin labeling. YNICL 2016, 11, 648–657. [CrossRef]

15. Perera, T.; Gaxiola-Valdez, I.; Singh, S.; Peedicail, J.; Sandy, S.; Lebel, R.M.; Li, E.; Milne-Ives, M.; Szostakiwskyj, J.; Federico, P.
Localizing the seizure onset zone by comparing patient postictal hypoperfusion to healthy controls. J. Neurosci. Res. 2020, 98,
1517–1531. [CrossRef]

16. Engel, J., Jr. Outcome with Respect to Epileptic Seizures. In Surgical Treatment of the Epilepsies; Raven PRess: New York, NY, USA,
1987; pp. 553–571.

17. Paniukov, D.; Lebel, R.M.; Giesbrecht, G.; Lebel, C. Cerebral blood flow increases across early childhood. Neuroimage 2020, 204,
116224. [CrossRef]

18. Jehi, L. The Epileptogenic Zone: Concept and Definition. Epilepsy Curr. 2018, 18, 12–16. [CrossRef]
19. Shan, G.; Gerstenberger, S. Fisher’s exact approach for post hoc analysis of a chi-squared test. PLoS ONE 2017, 12, e0188709.

[CrossRef]
20. Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [CrossRef]
21. Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.;

et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia
2017, 58, 512–521. [CrossRef]

22. Mohamed, R.E.; Aboelsafa, A.A.; Dawoud, R.M. Arterial spin-labelling and magnetic resonance spectroscopy as imaging
biomarkers for detection of epileptogenic zone in non-lesional focal impaired awareness epilepsy. Egypt. J. Radiol. Nucl. Med.
2020, 51, 200. [CrossRef]

23. Pendse, N.; Wissmeyer, M.; Altrichter, S.; Vargas, M.; Delavelle, J.; Viallon, M.; Federspiel, A.; Seeck, M.; Schaller, K.; Lövblad, K.O.
Interictal arterial spin-labeling MRI perfusion in intractable epilepsy. J. Neuroradiol. 2010, 37, 60–63. [CrossRef] [PubMed]

24. Oishi, M.; Ishida, G.; Morii, K.; Hasegawa, K.; Sato, M.; Fujii, Y. Ictal focal hyperperfusion demonstrated by arterial spin-labeling
perfusion MRI in partial epilepsy status. Neuroradiology 2012, 54, 653–656. [CrossRef] [PubMed]

25. Lee, S.M.; Kwon, S.; Lee, Y.J. Diagnostic usefulness of arterial spin labeling in MR negative children with new onset seizures.
Seizure 2019, 65, 151–158. [CrossRef]

26. Pollock, J.M.; Whitlow, C.T.; Tan, H.; Kraft, R.A.; Burdette, J.H.; Maldjian, J.A. Pulsed arterial spin-labeled MR imaging evaluation
of tuberous sclerosis. Am. J. Neuroradiol. 2009, 30, 815–820. [CrossRef]

27. Takahara, K.; Morioka, T.; Shimogawa, T.; Haga, S.; Kameda, K.; Arihiro, S.; Sakata, A.; Mukae, N.; Iihara, K. Hemodynamic state
of periictal hyperperfusion revealed by arterial spin-labeling perfusion MR images with dual postlabeling delay. eNeurologicalSci
2018, 12, 5–18. [CrossRef]

28. Yoo, R.-E.; Yun, T.J.; Yoon, B.-W.; Lee, S.K.; Lee, S.-T.; Kang, K.M.; Choi, S.H.; Kim, J.; Sohn, C.-H.; Park, S.-W.; et al. Identification of
cerebral perfusion using arterial spin labeling in patients with seizures in acute settings. PLoS ONE 2017, 12, e0173538. [CrossRef]

29. Warren, C.P.; Hu, S.; Stead, M.; Brinkmann, B.H.; Bower, M.R.; Worrell, G.A. Synchrony in normal and focal epileptic brain: The
seizure onset zone is functionally disconnected. J. Neurophysiol. 2010, 104, 3530–3539. [CrossRef]

http://doi.org/10.1016/j.clinph.2020.05.015
http://doi.org/10.1016/j.clinph.2019.07.031
http://doi.org/10.3389/fneur.2019.00380
http://doi.org/10.1155/2011/813028
http://doi.org/10.1002/mrm.25197
http://doi.org/10.3348/kjr.2018.19.5.965
http://www.ncbi.nlm.nih.gov/pubmed/30174487
http://www.ncbi.nlm.nih.gov/pubmed/11498422
http://doi.org/10.1186/s40001-021-00564-0
http://www.ncbi.nlm.nih.gov/pubmed/34362444
http://doi.org/10.1016/j.nicl.2016.04.005
http://doi.org/10.1002/jnr.24646
http://doi.org/10.1016/j.neuroimage.2019.116224
http://doi.org/10.5698/1535-7597.18.1.12
http://doi.org/10.1371/journal.pone.0188709
http://doi.org/10.2307/2529310
http://doi.org/10.1111/epi.13709
http://doi.org/10.1186/s43055-020-00326-8
http://doi.org/10.1016/j.neurad.2009.05.006
http://www.ncbi.nlm.nih.gov/pubmed/19674791
http://doi.org/10.1007/s00234-012-1027-7
http://www.ncbi.nlm.nih.gov/pubmed/22418862
http://doi.org/10.1016/j.seizure.2019.01.024
http://doi.org/10.3174/ajnr.A1428
http://doi.org/10.1016/j.ensci.2018.06.001
http://doi.org/10.1371/journal.pone.0173538
http://doi.org/10.1152/jn.00368.2010


Diagnostics 2022, 12, 811 15 of 15

30. Tenney, J.R.; Rozhkov, L.; Horn, P.; Miles, L.; Miles, M.V. Cerebral glucose hypometabolism is associated with mitochondrial
dysfunction in patients with intractable epilepsy and cortical dysplasia. Epilepsia 2014, 55, 1415–1422. [CrossRef]

31. Fallatah, S.M.; Pizzini, F.B.; Gomez-Anson, B.; Magerkurth, J.; De Vita, E.; Bisdas, S.; Jäger, H.R.; Mutsaerts, H.J.M.M.; Golay, X. A
visual quality control scale for clinical arterial spin labeling images. Eur. Radiol. Exp. 2018, 2, 45. [CrossRef]

32. Blauwblomme, T.; Boddaert, N.; Chémaly, N.; Chiron, C.; Pages, M.; Varlet, P.; Bourgeois, M.; Bahi-Buisson, N.; Kaminska, A.;
Grevent, D.; et al. Arterial Spin Labeling MRI: A step forward in non-invasive delineation of focal cortical dysplasia in children.
Epilepsy Res. 2014, 108, 1932–1939. [CrossRef] [PubMed]

33. Mabray, P.; Thewamit, R.; Whitehead, M.T.; Kao, A.; Scafidi, J.; Gaillard, W.D.; Chang, T.; Tsuchida, T.N. Increased cerebral blood
flow on arterial spin labeling magnetic resonance imaging can localize to seizure focus in newborns: A report of 3 cases. Epilepsia
2018, 59, e63–e67. [CrossRef] [PubMed]

34. Zijlmans, M.; Zweiphenning, W.; van Klink, N. Changing concepts in presurgical assessment for epilepsy surgery. Nat. Rev.
Neurol. 2019, 15, 594–606. [CrossRef] [PubMed]

35. Pittau, F.; Megevand, P.; Sheybani, L.; Abela, E.; Grouiller, F.; Spinelli, L.; Michel, C.M.; Seeck, M.; Vulliemoz, S. Mapping Epileptic
Activity: Sources or Networks for the Clinicians? Front. Neurol. 2014, 5, 218. [CrossRef]

36. Theodore, W.H.; Sato, S.; Kufta, C.V.; Gaillard, W.D.; Kelley, K. FDG-positron emission tomography and invasive EEG: Seizure
focus detection and surgical outcome. Epilepsia 1997, 38, 81–86. [CrossRef]

37. Duncan, R.; Patterson, J.; Roberts, R.; Hadley, D.M.; Bone, I. Ictal/postictal SPECT in the pre-surgical localisation of complex
partial seizures. J. Neurol. Neurosurg. Psychiatry 1993, 56, 141–148. [CrossRef]

38. Leiderman, D.B.; Balish, M.; Sato, S.; Kufta, C.; Reeves, P.; Gaillard, W.D.; Theodore, W.H. Comparison of PET measurements of
cerebral blood flow and glucose metabolism for the localization of human epileptic foci. Epilepsy Res. 1992, 13, 153–157. [CrossRef]

39. Ding, Y.-S.; Chen, B.-B.; Glielmi, C.; Friedman, K.; Devinsky, O. A pilot study in epilepsy patients using simultaneous PET/MR.
Am. J. Nucl. Med. Mol. Imaging 2014, 4, 459–470.
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