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Simple Summary: ARID1A mutations are emerging as a prognostic and predictive factor in gastric
cancer. Recent studies suggest their potential role in predicting patient response to novel treatment
strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors, mammalian
target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive complex
2 subunit (EZH2) inhibitors. The aim of the present review is to provide a detailed appraisal
of the significance of the loss of ARID1A functionality in GCs, and examine its prognostic and
therapeutic implications.

Abstract: AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastroin-
testinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component
of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex
is instrumental in regulating gene expression by modifying the structure of chromatin to affect the
accessibility of DNA. Mutations in ARID1A have been identified in various gastrointestinal cancers,
including colorectal, gastric, and pancreatic cancers. These mutations have the potential to disrupt
normal SWI/SNF complex function, resulting in aberrant gene expression and potentially contribut-
ing to the initiation and progression of these malignancies. ARID1A mutations are relatively common
in gastric cancer, particularly in specific adenocarcinoma subtypes. Moreover, such mutations are
more frequently observed in specific molecular subtypes, such as microsatellite stable (MSS) cancers
and those with a diffuse histological subtype. Understanding the presence and implications of
ARID1A mutations in GC is of paramount importance for tailoring personalized treatment strategies
and assessing prognosis, particularly given their potential in predicting patient response to novel
treatment strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors,
mammalian target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive
complex 2 subunit (EZH2) inhibitors.

Keywords: ARID1A; gastric cancer; SWI/SNF complex; PD-L1; microsatellite instability; PARP
inhibitors
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1. Introduction

According to the American Cancer Society estimates, there were 26,500 new diagnoses
and 11,130 deaths attributable to stomach cancer in the US in 2023 alone, accounting for
around 1.5% of new diagnoses of malignancy [1]. Gastric adenocarcinoma accounts for
about 95% of gastric cancer (GC) cases and exhibits high morphological and molecular
heterogeneity [2–4]. The high mortality rate of GC is mainly explained by the fact that most
cases are diagnosed as late-stage disease and the existing lack of effective treatments, which
has driven research endeavors into the molecular mechanisms driving the disease [2–4].

The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ACRG)
performed a whole genome analysis study to investigate genomic alterations in gastric
tumors [5]. Based on genetic, epigenetic, and gene expression profiles, four distinct GC
subtypes have been identified: Epstein–Barr virus (EBV) positive, microsatellite instability
(MSI), genomically stable (GS), and chromosomal instability (CIN) [6]. This novel classifi-
cation reflects the wide molecular heterogeneity of GCs but also holds crucial prognostic
and therapeutic implications [7–10]. However, taking into account the high turn-around
times and the costs of the whole genome analysis used in TCGA classification, immuno-
histochemistry (IHC) and EBV-RNA in situ hybridization (EBER-ISH) have emerged as
alternative surrogates for molecular classification in daily clinical practice [7–13].

Recent studies have focused on AT-rich interaction domain 1A (ARID1A) as a new
molecular driver gene in GC [14,15]. ARID1A is a component of the SWItch/sucrose
non-fermentable (SWI/SNF) chromatin remodeling complex, which dynamically alters
chromatin structure and orchestrates gene expression [14–17]. ARID1A is frequently mu-
tated in GC, with mutation rates ranging from 14% to 24% [17–19]. The predominant
types observed are nonsense and frameshift mutations, which result in either functional
or expression abnormalities in the ARID1A protein [17–19]. Consequently, the absence of
ARID1A protein expression may serve as an indicator of the mutation status in the ARID1A
gene [14–19]. In this regard, numerous studies have demonstrated the link between ARID1A
expression and several clinicopathological features of GC [14–19].

ARID1A plays a key role in promoting tumorigenesis principally through three mech-
anisms: increased proliferation, disrupted differentiation, and suppression of apopto-
sis [14–19]. Notably, in GCs as well as other tumors, a correlation exists between ARID1A
and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) muta-
tions [20–28]. In detail, PIK3CA mutations are linked to the EBV subtype in the TCGA
classification and are associated with microsatellite-stable (MSS)/TP53 and microsatellite
instability (MSI)-High subtypes in the ACRG classification [8,19,20]. These subtypes also
exhibit a higher prevalence of ARID1A loss-of-function mutations [8,19,20]. The aim of the
present review is to provide a detailed appraisal of the significance of the loss of ARID1A
functionality in GCs and examining its prognostic and therapeutic implications.

2. Biological Functions of ARID1A

All relevant findings concerning ARID1A status in gastric cancer have been summa-
rized in Figure 1 and Tables 1 and 2.

Table 1. Clinical and prognostic significance of ARID1A mutation in gastric cancer.

Study ARID1A
Expression Status Sample Size OS PFS Prognostic

Significance

Zhou et al. [20] Lower than normal
tissue Not specified Not specified Reduced Not specified

Wang et al. [29] Loss. 272 primary
GCs

Associated with poor
prognosis Not specified Independent risk factor

for poor prognosis

Ibarrola–Villava
et al. [30] Loss Not specified Higher than those with

positive expression Not specified
Challenges the

association with poor
prognosis
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Table 1. Cont.

Study ARID1A
Expression Status Sample Size OS PFS Prognostic

Significance

Wiegand et al. [31] Loss 173 GCs No clear relationship
observed Not specified Conflicting findings

Table 2. ARID1A implications in gastric cancer.

References

Frequency of ARID1A
mutations in GC

- 8–27% of cases,
predominantly in
EBV-positive subtype

- 44.2% in MSI
- 13.9% in MSS/EMT
- 18.6% in MSS/TP53+
- 5.9% in MSS/TP53-

Qadir et al. [32]
Blanchet et al. [33]
Reske et al. [34]
Lei et al. [35]

Prognostic role of ARID1A

loss of ARID1A expression is
associated with both reduced
progression-free survival (PFS)
and overall survival (OS)

Wang et al. [36]
Yang et al. [37]
Inada et al. [38]
Kim et al. [29]
Fontana et al. [39]

Interaction of ARID1A with
other gene pathways

- TP53
- PIK3/AKT pathway

Zhang et al. [40]
Guan et al. [41]
Bosse et al. [42]
Loe et al. [43]

Immune-related biomarkers
related to ARID1A loss

- MSI
- PD-L1
- TILs
- TMB

Setia et al. [44]
Kim et al [45]
Carrasco et al. [46]

Therapeutic strategies in
ARID1A-deficient GC

- PD-1/PD-L1 inhibitors
- PARP inhibitors
- mTOR inhibitors
- PI3K inhibitors
- AKT inhibitors

Lu et al. [47]
Yang et al. [48]
Bitler et al. [49]
Yamada et al. [50]
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As a SWI/SNF complex component, ARID1A is typically located in the nucleus
and is strongly expressed across various tissue types [14]. ARID1A expression plays a
role both in the development and regulation of cell function, thus fulfilling a range of
biological activities [51,52]. More specifically, ARID1A plays a central role in regulating
the differentiation of stem cells, including cardiac progenitor, neural stem/progenitor, and
embryonic stem cells [51,52]. The absence of ARID1A results in the destruction/loss of
function of the SWI/SNF complex, which in turn leads to an imbalance in the expression
of genes involved in cell stemness and differentiation [51,52]. Recent findings have also
indicated that ARID1A is essential in the two main DNA damage repair pathways: non-
homologous end joining (NHEJ), which occurs mainly in the S phase of the cell, and
homologous recombination (HR), which occurs primarily in the G1 and G2 phases [47]. The
balanced development of the two repair pathways keeps the genome stable. In this context,
the recruitment of the SWI/SNF complex ATPase subunit to sites of the DNA damage site
depends on ARID1A [47]. Thus, inhibition or loss of ARID1A leads to the inactivation of
the NHEJ pathway. Moreover, ARID1A interacts with the phosphatidylinositol (PI)3/PI4
kinase family proteins which are essential for HR-mediated responses [47].

ARID1A is generally considered to be a tumor suppressor gene that can inhibit the
biological behavior of malignant tumors and regulate the cell cycle to promote apoptosis to
exert its anticancer effects [14,47,53]. Several studies on cancer cell lines demonstrated that
ARID1A inhibition promotes the migration and invasion of neoplastic cells, inhibits apopto-
sis, and induces angiogenesis [14,47,53,54]. Additionally, other studies have demonstrated
that ARID1A inhibition induces epithelial–mesenchymal transition (EMT) and promotes
tumor cell metastasis [55,56].

3. ARID1A Mutations in Gastric Cancer

ARID1A mutations have recently emerged as a key event in the pathogenesis of
GC [47]. Following TP53, this gene is the second-most mutated in this setting, with
mutations detected in 8–27% of cases [32]. The intriguing aspect of these mutations is
their variation and distribution across different GC subtypes [32–34]. Notably, ARID1A
mutations were predominantly found in the EBV-positive subtype, suggesting a specific
pathway of disease development in this group [35]. Building upon this molecular landscape,
in 2015, the ACRG reclassified gastric cancer into four distinct subtypes to better direct
treatment and prognosis [57,58]. These subtypes are MSI, MSS/EMT, MSS/TP53+, and
MSS/TP53−. The mutation rates of ARID1A in these subtypes were: 44.2% in MSI, 13.9%
in MSS/EMT, 18.6% in MSS/TP53+, and 5.9% in MSS/TP53− [57,58]. In this scenario,
recent studies have highlighted that the deletion and/or mutation of ARID1A increases the
efficiency of EBV infection in gastric epithelial cells, linking genetic alterations in GC with
viral infection, and suggesting potential novel avenues of therapeutic intervention [59,60].
Moreover, these alterations pose challenges in recruiting mismatch repair proteins, thereby
initiating the development of specific subtypes like EBV-positive and MSI subtypes of
gastric cancer [59,60].

Setia et al. further simplified the classification of gastric cancer using immunohisto-
chemistry and in situ hybridization, identifying subtypes such as EBV-positive, MSI-high,
and variations based on E-cadherin and P53 expression [44]. Their work also demonstrated
that EBV-positive and MSI-high gastric cancers generally show a better prognosis compared
to other histotypes [44].

The relationship between ARID1A mutational status and GC also has significant
implications for immunotherapy. The loss of ARID1A protein expression in GC inversely
correlates with the positive expression of MSI-H subtype and PD-L1. Since these two
latter subtypes respond more effectively to immune checkpoint inhibitors (ICIs), ARID1A
expression represents a potential biomarker for guiding immunotherapy in GC [45,46].
Notably, ARID1A expression appears to play a crucial role in modulating the tumor
microenvironment and influencing the response to immunotherapy in gastric cancer (GC).
In detail, ARID1A expression in GC appears to be closely linked with several biomarkers
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that influence response to immunotherapy. In this regard, the upregulation of PD-L1
expression, association with higher TMB levels, and potential as a predictive biomarker
suggest that ARID1A status could overcome the limitations of classical biomarkers and
provide valuable insights into patient stratification for immunotherapy [8,19,20,44].

4. Clinical and Prognostic Significance of ARID1A Mutation in Gastric Cancer

While Zhou et al. have reported lower ARID1A protein expression levels in GCs
compared to normal gastric tissue, recent studies suggest that complete or partial loss
of ARID1A expression is associated with both reduced progression-free survival (PFS)
and overall survival (OS) in patients with GC [15,20,22,29,36–39]. In this respect, Wang
et al. performed an immunohistochemical and molecular study of 272 primary GCs, where
ARID1A protein deletion emerged as an independent risk factor of poor prognosis [29].
More specifically, a correlation between ARID1A deletion and critical clinico-pathological
parameters including tumor differentiation, lymph node metastasis, and tumor size has
also been demonstrated [36]. However, other studies challenge the notion that an absence of
ARID1A protein expression is a marker of poor prognosis [29,30,39]. For instance, Ibarrola–
Villava and co-workers have reported that patients with absent ARID1A expression had a
significantly higher OS compared to those with positive expression profiles [30]. Similarly,
in a cohort study utilizing tissue microarrays of 173 GCs, no clear relationship emerged
between OS and the loss of ARID1A expression [31]. The reasons behind these conflicting
findings could be explained by multiple factors, including intra-tumoral heterogeneity, the
limited sample sizes in existing studies, and potential variations in immunohistochemical
procedures, including the sensitivity of detection methods and the non-standardized
interpretative criteria used.

5. Molecular Pathways Involved in ARID1A Mutation

Recent research has shed light on the interaction between ARID1A and TP53 in gastric
cancer [40–43]. Studies have demonstrated that silencing ARID1A in GC cells in vitro leads
to a decrease in the expression of two downstream target genes of TP53 [40–43]. This finding
suggests that ARID1A and TP53 may influence the transcription of certain target genes,
thereby inhibiting tumor growth [40–43]. This hypothesis aligns with previous research
conducted by Guan in the field of ovarian cancer, further strengthening the proposed
synergy between ARID1A and P53 in cancer suppression [41].

Although clinical studies in this area are limited, emerging evidence suggests that
the loss of ARID1A expression could serve as a biomarker for protein kinase B (AKT)
pathway activation and might predict the effectiveness of AKT inhibitors in patients with
GC [40–43]. In this regard, Zhang et al. reported that knocking out ARID1A in GC cell
lines in vitro directly impacts the transcription of 3-phosphoinositide-dependent protein
kinase-1 (PDK1) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA) within
the PIK3/AKT pathway [40]. This alteration leads to phosphorylation changes in key
components of the PIK3/AKT signaling pathway, including AKT and the mammalian
target of rapamycin (mTOR) [40]. Further supporting these findings, other in vitro studies
have confirmed that in ARID1A-deficient GC cells, the PI3K/AKT pathway is activated,
promoting the proliferation of GC cells [61]. Of note, these ARID1A-deficient cells showed
increased sensitivity to inhibitors targeting PI3K and AKT [61].

6. Therapeutic Approach in ARID1A-Deficient Gastric Cancer

New therapeutic paradigms, such as targeted therapy, immunotherapy, and anti-
angiogenic therapy have recently emerged as alternative and potentially useful approaches
for the management of GC (Table 3) [47]. Immunotherapy with immune checkpoint in-
hibitors, especially PD-1/PD-L1 inhibitors, has generated considerable interest in recent
clinical trials due to their efficacy in the treatment of solid tumors [47]. However, a signifi-
cant proportion of GC patients remains unresponsive to such interventions, underscoring
the urgent need to identify reliable biomarkers to identify patients who could benefit
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most from immune checkpoint blockers (ICBs) [47]. In this regard, the KEYNOTE-059
trial demonstrated that pembrolizumab was more effective in treating gastric or gastroe-
sophageal junction (GEJ) adenocarcinoma with a PD-L1 combined positive score (CPS) of
1 or higher [62]. Similarly, the CHECKMATE-649 trial showed that nivolumab, in com-
bination with chemotherapy, improved OS in advanced GC and EGJ cancers compared
to chemotherapy alone, particularly in cases where PD-L1 CPS was five or higher [63]. A
pivotal factor in this context is the tumor mutation burden (TMB), which gauges a tumor’s
ability to generate neoantigens and predicts the effectiveness of immunotherapy across vari-
ous tumor types [47]. Defects in mismatch repair (dMMR), typically arising from mutations
in mismatch repair protein-encoding genes, lead to a microsatellite instability-high (MSI-H)
status [47]. Patients with MSI-H/dMMR tumors show significant responses to immunother-
apy, as highlighted by studies including the KEYNOTE-016, 164, 012, 028, and 158 trials [47].
As a result, pembrolizumab received US Food and Drug Administration (FDA) approval for
treating metastatic or unresectable solid tumors bearing dMMR or MSI-H biomarkers [64].
In addition, the degree of tumor-infiltrating lymphocytes (TILs) has been recognized as a
potential biomarker for predicting the success of PD-1/PD-L1 immunotherapy [65]. Inter-
estingly, ARID1A expression in GC is closely aligned with these biomarkers which influence
response to immune blockade therapy [47]. The loss of ARID1A in GC inversely correlates
with PD-L1 expression. ARID1A deficiency has been shown to upregulate PD-L1 expression
by activating the PI3K/AKT/mTOR pathway [66,67]. Moreover, bioinformatics studies
have suggested that gastrointestinal cancers with ARID1A mutations exhibit higher TMB
levels and thus may benefit from immunotherapy [67]. Thus, the discovery of a link be-
tween ARID1A deletion and the profile of immunotherapy biomarkers (PD-L1, TMB, MMR,
and TILs) in GC suggests the possible role of ARID1A deletion as a predictive biomarker
for responses to immunotherapy. Another recent discovery is the reported sensitivity of
ARID1A-deficient tumors to poly(ADP ribose) polymerase (PARP) inhibitors [48,68]. How-
ever, the efficacy of PARP inhibitor monotherapy in cancers lacking ARID1A is somewhat
limited, often requiring combination therapy for enhanced effectiveness [69]. For example,
the combination of the PARP inhibitor olaparib with the PI3K inhibitor BKM120 has shown
promising results as a potential treatment strategy for ARID1A-deficient GC [69]. Moreover,
recent studies have identified ARID1A expression as a marker to identify GC patients
who may benefit from mTOR inhibitor therapy [47]. Inhibition of the PI3K/AKT pathway
has also been shown to enhance the sensitivity to tumor-specific CD8+ T cell-mediated
cytotoxicity [69,70]. In light of these findings, combining PI3K/AKT/mTOR inhibitors with
ICIs (including PD-1 and CTLA-4 inhibitors or other forms of immunotherapy) appears to
offer patients an avenue for effective treatment [47,69,70]. Another promising area of re-
search involves the enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), an
enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2), which is frequently
overexpressed and aberrantly regulated in several tumors [47,49,50]. Targeting EZH2
with specific inhibitors is particularly relevant in ARID1A-mutated cancers since EZH2 is
known to influence tumor-infiltrating lymphocytes, thereby contributing to creating an
immunosuppressive tumor microenvironment that facilitates immune evasion by tumor
cells [47,49,50]. By inhibiting EZH2, existing immunotherapies may be enhanced, leading to
more effective treatment [47,49,50]. However, given the documented risk of inflammatory
and autoimmune system complications, a deeper understanding of the interplay between
EZH2 inhibitors and ICB in treating ARID1A mutated cancers remains crucial [47,49,50].
Collectively, these findings open the way for more tailored and potentially effective treat-
ment strategies for GC. However, understanding the intricate relationships between these
biomarkers and patient stratification for suitability to receive immunotherapy efficacy
requires further research to enhance the survival prospects of those receiving ICB therapy.
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Table 3. Therapeutic approach in ARID1A-deficient tumors.

Biomarker Therapeutic Approach Clinical Evidence References/
Clinical Trials

PD-L1 Expression Correlates with response to
PD-1/PD-L1 inhibitors

KEYNOTE-059: Pembrolizumab effective in
GC with PD-L1 CPS ≥ 1

CHECKMATE-649: Nivolumab +
chemotherapy improved OS in GC/EGJ with

PD-L1 CPS ≥ 5

NCT02335411
NCT02872116

Tumor Mutation Burden
(TMB)

Predicts effectiveness of
immunotherapy across tumor

types

Pembrolizumab FDA approved for
metastatic/unresectable solid tumors with

dMMR or MSI-H biomarkers

Li et al. [67]
Lemery et al. [65]

Mismatch Repair
Deficiency

Significantly responds to
immunotherapy KEYNOTE-016, 164, 012, 028, and 158 trials

NCT01876511
NCT02460198
NCT01848834
NCT02054806
NCT02628067

Tumor-Infiltrating
Lymphocytes

Potential biomarker for
PD-1/PD-L1 immunotherapy

success

Recognized for predicting PD-1/PD-L1
immunotherapy success Angelico et al. [65]

ARID1A Expression
Correlates with PD-L1

expression, TMB,
dMMR/MSI-H, and TILs

Associated with upregulation of PD-L1 via
PI3K/AKT/mTOR pathway—Bioinformatics
suggest ARID1A-mutated GC may benefit

from immunotherapy

Kim et al. [66]
Li et al. [67]

EZH2 Overexpression
Influences tumor-infiltrating

lymphocytes and
immunosuppression

Targeting EZH2 may enhance existing
immunotherapies in

ARID1A-mutated cancers

Lu et al. [47]
Bitler et al. [49]

7. ARID1A Immunohistochemistry in Gastric Cancer

The loss of ARID1A expression evaluated by immunohistochemistry (IHC) can be
utilized as a surrogate marker for some ARID1A mutations, and it is correlated to MSI-H
type and EBV positivity [71,72]. However, several studies reported higher percentages of
ARID1A IHC losses compared to molecularly confirmed ARID1A-deficient cases [73–75].
These discrepancies could be accounted for by epigenetic silencing through promoter
methylation or post-transcriptional modification which can also cause the loss of ARID1A
expression [73–75]. Furthermore, a recent study suggested that EBV-encoded miRNA in
EBV-positive GCs can regulate ARID1A expression [29]. As such, further studies are needed
to clarify the range of mechanisms responsible for ARID1A silencing in GC.

According to existing literature, ARID1A expression in GC can be categorized either as
positive (diffuse nuclear staining) or negative (complete nuclear loss of ARID1A expression,
with positive stromal cells as internal controls) (Figure 2) [72]. However, recent studies
emphasized that two additional staining patterns may be observed in a subset of tumors:
heterogeneous (also called ‘checkerboard’ staining pattern) and ‘clonal loss’ pattern (pres-
ence of a neoplastic cell subpopulation within the tumor showing abrupt absence of nuclear
staining) [73–75] (Table 4). Several studies have demonstrated that heterogeneous and
clonal loss staining patterns are associated with mutations in ARID1A and therefore should
be scored as ‘loss of expression’ [73–75]. In this regard, partial loss of ARID1A IHC (hetero-
geneous or clonal loss) has also been correlated with an increased expression of PD-L1 in
GC cells and higher levels of PD-1+ TILs [73–75]. Furthermore, it is widely accepted that
heterogeneous ARID1A loss is significantly correlated with the PIK3CA mutation [73–75].
Nevertheless, a recent study proposed that any ARID1A loss—irrespective of the percent-
age area of the tumor affected (heterogeneous/clonal/diffuse)—may be associated with
specific clinicopathological or molecular features [76].
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Figure 2. Immunohistochemical staining patterns of ARID1A (images taken from author’s patho-
logical archives): (A,B) Diffuse nuclear staining for ARID1A in a case of intestinal-type tubular
adenocarcinoma of the stomach is depicted. (C) Diffuse nuclear staining in a diffuse-type gastric
carcinoma (poorly cohesive carcinoma). These stainings are considered positive. (D,E) Another ex-
ample of tubular adenocarcinoma of the stomach showing negative staining for ARID1A is depicted.
Positive ARID1A staining, observed in the stromal cells as well as non-neoplastic glands, served as a
positive internal control.

Table 4. Immunohistochemical interpretation of ARID1A in gastric cancer.

Staining Pattern Interpretation References

Diffuse nuclear staining Positive: no ARID1A mutations
Guan et al. [72]
Ye et al. [73]
Bosse et al. [74]
Saito et al. [75]

Complete nuclear loss of ARID1A expression Negative: associated with mutations in ARID1A

Heterogeneous ARID1A staining Negative: associated with mutations in ARID1A

Neoplastic cell subpopulation showing abrupt
absence of nuclear staining Negative: associated with mutations in ARID1A

To date, the main limitations of ARID1A IHC relate to the variety of immunohisto-
chemical assays (including antibodies) staining platforms, cut-offs, and scoring systems in
use which likely explain the divergence in the reported percentages of ARID1A-deficient
cases. It is widely known that intratumoral heterogeneity frequently occurs in GC, and
this phenomenon may also account for the different expression patterns of ARID1A ob-
served across published studies [72–75]. Therefore, ARID1A IHC assessment should ideally
be performed in surgical resection specimens since smaller tissue specimens and tissue
microarrays may lead to sampling errors [72–75].

Interestingly, spatial heterogeneity of ARID1A expression has also been reported to
occur in GCs [75]. A recent study reported markedly different ARID1A staining patterns
between primary tumors and their matched lymph node metastases [75]. In this study,
patients with heterogeneous ARID1A expression in the primary tumor showed different
lymph node metastases staining patterns as diverse as complete loss of ARID1A (53.2%),
retained expression (21.3%), and heterogeneous expression (25.5%) [75].

8. ARID1A Loss in Precursor Lesions

Abnormalities of ARID1A have also been documented in precancerous lesions. In the
study by Abe et al., the authors evaluated ARID1A loss in EBV-associated gastric carcinoma,
by performing in situ hybridization of EBV-encoded RNA and immunohistochemistry
of ARID1A in non-neoplastic gastric mucosa and intramucosal cancer tissue [77]. In
this study, authors have shown that the absence of ARID1A is associated with specific
morphological characteristics (tubular structure) in the mucosal layer. It also facilitates
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EBV infection in gastric epithelial cells, suggesting its potential role in initiating viral-
driven carcinogenesis [77]. In a subsequent study by the same authors, ARID1A loss was
investigated by immunohistochemistry in early gastric cancer and non-neoplastic gastric
mucosa [78]. ARID1A loss was detected in 10% of non-neoplastic mucosa including pseudo-
pyloric and intestinal metaplastic glands devoid of dysplastic changes [78]. Moreover, in
early gastric cancer cases, ARID1A loss was frequently detected in EBV-associated gastric
cancer cases [78]. Therefore, the authors concluded that epithelial cells lacking ARID1A can
undergo malignant transformation through a distinct pathway compared to p53-deficient
intestinal metaplasia. This progression typically involves one or more steps leading to the
development of carcinoma, such as EBV infection [77,78].

9. Role of ARID1A in Development and Progression of Tumors Other Than Gastric Cancer

ARID1A, a member of the SWI/SNF chromatin remodeling complex, has gained
increasing attention in cancer research due to its roles in tumor initiation and suppression
in several tumor types other than gastric cancer [16].

• Hepatocellular Carcinoma (HCC): ARID1A is one of the most frequently mutated
genes in hepatocellular carcinoma, with mutations occurring in 10% to 17% of cases.
ARID1A mutations affect several pathways critical for tumor growth [16,79,80]. Low
ARID1A expression correlates with shorter patient survival, suggesting its involve-
ment in HCC development and metastasis [79–81].

• Endometrial Cancer: The rate of ARID1A mutation in low-grade endometrioid adeno-
carcinomas is 47%, while in high-grade endometrioid adenocarcinomas, serous ade-
nocarcinomas, and carcinosarcomas, it is 60%, 11%, and 24%, respectively [16,82–84].
Moreover, in 14–22% of uterine endometrial clear cell carcinoma, ARID1A expres-
sion is also found to be downregulated [16,83,84]. Notably, ARID1A mutations have
been reported to occur also in preneoplastic lesions, indicating its role in early cancer
development. [16,83,84].

• Ovarian Cancer: The mutation rate of ARID1A in ovarian clear cell carcinoma and
ovarian endometrioid carcinomas (OEC) is 46–57% and 30%, respectively [16,85,86].
Additionally, ARID1A is more frequently lost in mismatch repair deficient ovarian
clear cell carcinoma [16,85–87].

ARID1A is also involved in the development of choriocarcinoma, where its overex-
pression of ARID1A suppresses migration and invasion of choriocarcinoma cells, while
its inhibition promotes migration and invasion, suggesting a tumor-suppressor role of
ARID1A in choriocarcinoma progression [16,85,88,89].

• Colorectal Cancer: ARID1A mutations are detected in 10% of colorectal cancers and
are strictly related to mismatch repair deficiency [16,90,91]. In detail, ARID1A down-
regulation has been reported to influence the proliferation of colorectal cancer cells and
their resistance to chemotherapy [16,90,91]. Moreover, ARID1A loss has been shown
to promote epithelial–mesenchymal transition (EMT) in colon cancer, contributing to
metastasis [16,90,91].

• Pancreatic Cancer: Recent comprehensive sequencing analyses of pancreatic cancer
have demonstrated ARID1A mutations in 6% of cases [16,92,93]. ARID1A may rep-
resent a tumor suppressor gene in pancreatic carcinogenesis, as its expression levels
correlate with tumor differentiation and stage, although not with lymph node or
distant metastasis, sex, or age [16,92,93]. In mouse models, ARID1A deficiency has
been shown to accelerate tumor progression, leading to high-stage disease [16,92,93].

• Breast Cancer: ARID1A not only exerts antitumor effects such as inhibiting cancer
cell migration and invasion in breast cancer but also enhances the sensitivity of breast
cancer cells to chemotherapy [16,94–97]. Moreover, it has been shown to influence the
activity of estrogen receptor α+ [16,94–97]. This receptor, when activated, induces an
oncogenic signal which regulates tumor cell proliferation in breast cancer [77,92–95].
Therefore, wild-type ARID1A has been shown to correlate with improved clinical
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outcomes in ER+ breast cancer patients [77,92–95]. By contrast, ARID1A inactivat-
ing mutations are more frequently detected in treatment-resistant and metastatic
tumors [16,94–97].

10. Clinical Utility of ARID1A in GC: Limitations, Challenge and Future Directions

The clinical and prognostic significance of ARID1A in gastric cancer is still a matter
of debate. Much of the current clinical evidence is based on small case series, which may
introduce bias and other influencing factors. Additionally, due to the limitations in both
single therapy resistance and combined treatment adverse reactions, careful monitoring of
dosage and usage of ARID1A-mutant GC-targeted therapy drugs is essential. Furthermore,
further research is needed to fully understand the role that ARID1A mutation plays in
tumor formation, development, predictive response to treatments, as well as biological
mechanisms. In this perspective, large-scale prospective clinical studies are needed to
provide more useful insights into the predictive and prognostic value associated with
ARID1A mutations in GC patients. Future studies should also prioritize examining the
association between ARID1A deficiency and PD-L1 expression, building on previous
studies that have found this link in various groups of patients. This could pave the way for
a combined treatment approach targeting both PD-L1 and ARID1A.

11. Conclusions

There is mounting scientific and clinical evidence supporting the importance of, and
the molecular mechanism underlying, ARID1A mutations in GC. ARID1A assessment by
IHC may represent a potential prognostic biomarker related to several clinicopatholog-
ical features, including tumor differentiation, nodal metastases, and specific GC TGCA
subtypes. Moreover, ARID1A loss may contribute to predicting patient response to novel
treatment strategies such as immunotherapy, PARP inhibitors, mTOR inhibitors, EZH2
inhibitors, and histone deacetylase inhibitors. Additionally, ARID1A alterations could
be associated with resistance to platinum chemotherapy and estrogen receptor modula-
tors [98]. Collectively, these findings suggest the utility of testing this gene either by IHC or
by molecular techniques in order to expand our knowledge of its role in GC and to improve
the therapeutic strategies available for GC patients.

In conclusion, in this comprehensive review, we have focused on detailing the clinical
significance, predictive value, underlying mechanisms, and potential treatment strategies for
ARID1A mutations in gastric cancer. Our primary aim was to contribute theoretical support
for future research on utilizing ARID1A as a biomarker to stratify individuals with gastric
cancer and enable precision therapy. We expect that our analysis will lead to improved clinical
outcomes for the subset of patients afflicted by GC with an ARID1A mutation.
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