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Genetic map of regional sulcal morphology
in the human brain from UK biobank data

Benjamin B. Sun 1,2 , Stephanie J. Loomis1,10, Fabrizio Pizzagalli3,4,10,
Natalia Shatokhina4, Jodie N. Painter 5, Christopher N. Foley 6,7, Biogen
Biobank Team*, Megan E. Jensen8, Donald G. McLaren8,
Sai Spandana Chintapalli9, Alyssa H. Zhu4, Daniel Dixon4, Tasfiya Islam4,
Iyad Ba Gari 4, Heiko Runz 1, Sarah E. Medland 5, Paul M. Thompson4,11 ,
Neda Jahanshad4,11 & Christopher D. Whelan 1,11

Genetic associations with macroscopic brain structure can provide insights
into brain function and disease. However, specific associations with measures
of local brain folding are largely under-explored. Here, we conducted large-
scale genome- and exome-wide associations of regional cortical sulcal mea-
sures derived frommagnetic resonance imaging scans of 40,169 individuals in
UK Biobank. We discovered 388 regional brain folding associations across 77
genetic loci, with genes in associated loci enriched for expression in the cer-
ebral cortex, neuronal development processes, and differential regulation
during early brain development.We integrated brain eQTLs to refine genes for
various loci, implicated several genes involved in neurodevelopmental dis-
orders, and highlighted global genetic correlations with neuropsychiatric
phenotypes. We provide an interactive 3D visualisation of our summary
associations, emphasising added resolution of regional analyses. Our results
offer new insights into the genetic architecture of brain folding and provide a
resource for future studies of sulcal morphology in health and disease.

Human brain structure and function are complex drivers of basic and
higher cognitive processes, which vary between individuals and in
numerous neurological, psychiatric and cognitivedisorders. Structural
magnetic resonance imaging (MRI) scans provide a reliable, non-
invasive measure of brain structure and are widely used in research
and clinical settings. Genetic variants influencing brain structure and
function are important to identify, as they can help uncover patho-
physiological pathways involved in heritable brain diseases and
prioritise novel targets for drug development. Several large-scale

genome-wide association studies (GWAS) have identified genetic
influences on variations in brain structure and function1–3 revealing
novel insights into processes guiding brain development, and high-
lighting potential shared genetic aetiologies with neurodegenerative
and psychiatric conditions4,5.

To date, most neuroimaging GWAS have focused on broad,
macroscale anatomical features such as subcortical volume, cortical
thickness and white matter microstructure6. Anomalies of cortical
gyrification - the folding of the cerebral cortex into its characteristic
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concave sulci (fissures) and convex gyri (ridges) - contribute to many
neurodevelopmental and neuropsychiatric conditions7,8, but the
genetic underpinnings of gyrification remain relatively understudied9.
Sulcal characteristics and folding patterns are altered across a range of
neurodevelopmental disorders, from cortical dysplasias10 to neuro-
genetic syndromes11, and radiologists often use sulcal widening as an
early indicator of atrophy in degenerative diseases12, as it offers a clear
and sensitive biomarker of disease progression13,14. Recent neuroima-
ging genetics investigations have broadened in scale and scope,
examining sulcal morphology across the full brain15,16, but primarily
focusing on isolated sulcal descriptors such as depth15, and largely
overlooking localised effects.

Using four independent datasets, we recently outlined a range of
heritable sulcal measures that can be reliably quantified at high resolu-
tion across the whole brain, irrespective of MRI platform or acquisition
parameters17: sulcal depth, length, width and surface area. Sulcal depth
represents the distance between the cortical surface and the exposed,
gyral surface (also known as the hull18). Sulcal length represents the
distance of the intersection between the medial sulcal surface and the
hull. Sulcal width, also known as sulcal span19 or fold opening20, repre-
sents the distance between each gyral bank, averaged over all points
spanning the median sulcal surface18. Sulcal surface area represents a
composite of sulcal width, depth and length measures. Sulcal descrip-
tors strongly correlate with measures of thickness in their adjacent
cortical regions21; however, sulcal measures are likely more sensitive to
increased age21, cognitive performance22, and genetic effects17 com-
pared with more commonly analysed metrics of gyral morphometry.

Here we conducted a comprehensive genome-wide analysis of
four regional sulcal shape parameters, extracted from themulti-centre
brain MRI scans of 40,169 participants in the UK Biobank. To discover
rare and common genetic variants influencing cortical gyrification, we
conducted GWAS and exome-wide analysis of a total of 450 sulcal
parameters17. Sulcal shape descriptors, comprising length, mean
depth, width, and surface area,were extracted fromadiscovery cohort
of 26,530 individuals of European ancestry and a replication cohort of
13,639 individuals. After mapping the genetic architecture of regional
sulcal measures across the cortex, we highlight putative biological and
developmental pathway involvement as well as links to neu-
ropsychiatric conditions. Finally, we provide a portal to interactively
visualise our results in 3D (https://enigma-brain.org/sulci-browser),
demonstrating various complex patterns of associations, to help
inform future investigations of human cortical morphology.

Results
Regional brain sulcal measurements (including sulcal length, width,
mean depth and surface area), regional delineations, and phenotype
nomenclature are summarised in Supplementary Data 1 and Fig. 1a.
Reliability of themethod used to extract sulcal characteristics has been
extensively outlined in17 and summarised in Supplementary Informa-
tion. We determined the overall clustering of the high-dimensional
sulcal phenotypes through nonlinear dimensionality reduction using
t-distributed stochastic neighbour embedding (t-SNE)23, revealing that
sulcal measures formed distinct clusters compared with existing UK
Biobank brain imaging phenotypes (Supplementary Fig. 1a, Supple-
mentary Data 2, Methods). In addition, we found that sulcal width
parameters formedadistinct cluster compared to theother three sulcal
shape parameters (Supplementary Fig. 1b). Notably, for sulcal width in
particular, the t-SNE representation broadly retained expected brain
lobe organisation (Fig. 1b, bottom left). Phenotypes with missingness
>75% were excluded from subsequent analysis, leaving 450 measure-
ments (224 left and 225 right hemisphere measures) for analysis.

Genetic architecture of regional brain sulcal folds
We conducted GWAS of 450 independent regional brain sulcal mea-
surements across the left and right hemispheres for 11.9 million

combined imputed and whole-exome sequenced variants in UKB
participants, divided into a discovery cohort (n = 26,530) and a repli-
cation cohort (n = 13,639) (Methods, Supplementary Fig. 2).

At a significance threshold of p < 2 × 10−10, which accounts for the
effective number of independent sulcalmeasures analysed (Methods),
we found and replicated - at p <0.05 - a total of 186 specific sulcal
parameter associations (for at least one hemisphere) across 41 genetic
loci (388 associations across 77 loci at p < 5 × 10−8) (Fig. 1c, Supple-
mentary Data 3). We also performed GWAS on 220 additional bilateral
sulcal measurements, averaging values from left and right brain
hemispheres, identifying a total of 162 replicated associations across
47 loci at p < 2 × 10−10 (335 associations across 107 loci at p < 5 × 10−8),
where 6 (across 3 loci) and 108 additional associations (across 42 loci)
were also found at p < 2 × 10−10 and p < 5 × 10−8 respectively (Supple-
mentary Data 4). We performed association testing using permutated
samples (n = 100 times) to empirically estimate the expected number
of associations that also replicate under the null (Supplementary
Information). Even at nominal GWAS significance (p < 5 × 10−8) and
replication (p <0.05) thresholds, the median false discovery rate was
~1% (99th percentile = 2.1%), suggesting false positive discoveries were
well-calibrated below 5% (Supplementary Information). Genomic
inflation was well controlled (median λgc = 1.02, range: 0.99–1.07). We
found an inverse relationship between effect sizes and minor allele
frequency (MAF) (Supplementary Fig. 3), in line with other disease and
intermediate trait results, and consistent with the assumption that
variants showing strong effects are deleterious and rarer. Additional
sensitivity analyses, adjusting for (1) effects of single X/Y/Z plane head
scaling and (2) potential effects of cortical thickness and surface area,
revealed that sulcal associations are largely independent of these
effects (Supplementary Information).

We found a similar number of statistically significant associations
for left- and right-hemispheric traits. Approximately 59% of significant
associations were with sulcal width, followed by 17% of associations
withmean sulcal depth, 16%with sulcal surface area, and 8%with sulcal
length measures (Supplementary Data 5). These genetic association
patterns are consistent with their heritability estimates and with prior
studies17 indicating that sulcal width represents the most heritable
measure, followed by sulcal depth, surface area and length (Supple-
mentary Fig. 4). Comparing the absolute Z-scores of lead associations
across hemispheres (left, right and bilateral, Supplementary Fig. 5), we
found no significant difference between left and right hemisphere
(paired t-test p = 0.25). Bilateral associations tended to exhibit stron-
ger associations (mean abs(Z-score) 1.00 higher vs right, p = 4.1 × 10−96

and 0.92 higher vs left, p = 1.8 × 10−82), consistent with their heritability
estimates (Supplementary Figs. 4 and 5).

Some genetic loci exhibited highly pleiotropic associations across
multiple brain regions; for example, 10 genetic loci were associated
with 10 or more sulcal measures, showing different association pat-
terns across sulcal parameters. Notably, the chr1:215Mb locus (near
KCNK2) and chr12:106Mb locus (12q23.3,NUAK1) were associated with
23 and 22 width measures respectively across multiple brain regions.
Similarly, the chr16:87Mb locus (6q24.2, nearC16orf95) was associated
with 16 width measures across multiple brain regions, 4 mean depth
measures and 1 surface area measure, mostly in the frontal lobe. The
chr17:47Mb locus (17q21.31, containing MAPT and KANSL1) was asso-
ciated with 16 width, 9 surface area, 6 mean depth and 2 length mea-
sures, mostly in the temporal and calcarine-occipital regions, whilst
the chr6:126Mb locus (6q22.32, containing CENPW) was associated
with 9 surface area, 4 length, 4 mean depth and 2 width measures -
mostly in the frontal and calcarine-occipital regions (Fig. 1c, Supple-
mentary Data 3). We performed multi-trait colocalization and cluster-
ing using HyPrColoc24 across loci associated with ≥2 sulcal measures
(n = 72 loci, Supplementary Data 6) and found 62 (86%) of the loci
colocalised to a single cluster, 8 (11%) to two clusters, and one to three
clusters. The MAPT-KANSL1 region contained a large number of sulcal
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associations which were not colocalised with others in the region
(Supplementary Data 6).

We cross-referenced the replicated lead variants and their proxies
(r2 > 0.8) for significant (p < 5 × 10−8) associations in prior brain imaging
GWAS studies of non-sulcal traits6 (LD proxy r2 > 0.8, +/−500Kb
around the lead variant; see Supplementary Information). We found
that 56 of the 119 loci identified at p < 5 × 10−8, and 23 of the 44 loci
identified atp < 2 × 10−10, were associatedwith non-sulcal brain imaging
phenotypes of brain volume, surface area and white matter micro-
structure. The 10 highly pleiotropic genetic loci identified in this study
(e.g. CENPW-containing locus 6q22.32,MAPT-KANSL1-containing locus

17q21.31, C16orf95 locus 6q24.2, NUAK1 locus 12q23.3) have been
implicated across multiple prior neuroimaging studies (Supplemen-
tary Data 7). Approximately half of all replicated associations were not
previously implicated in published genetic studies of non-sulcal brain
imaging endpoints; this may, however, reflect differences in the par-
cellation strategies or the sample sizes achieved across studies rather
than any unique genetic influences on sulcal parameters.

Coding variant associations
We also examined whether any of the lead variants were in strong LD
(r2 > 0.8) with coding variants (pdiscovery < 5 × 10−8 and preplication < 0.05).

a

c
Gene�c correla�on

Phenotypic correla�on

ba d

Fig. 1 | Summary of brain sulcal association results. a Schematic of brain sulcal
folds and shape parameters. Brain region legend corresponds to colours in figures
a–c. b t-SNE of regional brain sulcal measures for each shape parameter.
c Manhattan plots by brain region, shape parameter and side. Diamonds indicate
lead associations that replicated (p <0.05). N = 26,530 (discovery) and n = 13,639
(replication) biologically independent sample measures. Points above 0 in the
y-axis in each plot refers to associations with left sided sulcal measures, below 0
with right sidedmeasures. Diamonds along0 in the y-axis indicate lead associations
for bilateral sulcal measures. Dashed horizonal line indicate GWAS significance
thresholds (grey: p = 5 × 10−8, dark red: p = 2 × 10−10). High resolution of the figure is

available in the Supplementary Files. d Top: boxplot of genetic and phenotypic
correlations between left and right sides. Number of sulcal traits listed beneath the
boxplot. Each box plot presents the median, first and third quartiles, with upper
and lowerwhiskers representing 1.5× inter-quartile range above andbelow the third
and first quartiles respectively. Middle: Genetic correlation between shape para-
meters. Bottom: Phenotypic correlation between shape parameters. Middle and
bottom: left hemisphere correlations in upper triangle, right hemisphere correla-
tions in lower triangle. Phenotypic and genetic correlations were averaged across
each hemisphere separately per sulcal parameter. Extended phenotypic and
genetic correlation heatmap is shown in Supplementary Fig. 6.
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We identified 10 common (MAF > 5%) loci harbouring coding variants
or proxies (coding/splice region variants) in strong LD with lead var-
iants (Supplementary Data 8). With the exception of the complex
chr17:47Mb (17q21.31, MAPT) locus, which contained coding/splice
region proxies for multiple genes (ARHGAP27, PLEKHM1, CRHR1,
SPPL2C, MAPT, STH, KANSL1), the other 9 loci contained coding var-
iants affecting proxies for single genes. These included ROR1
[rs7527017, Thr518Met], THBS3 [rs35154152, Ser279Gly], SLC6A20
[rs17279437, Thr199Met], EPHA3 [rs35124509, Trp924Arg], MSH3
[rs1650697, Ile79Val], GNA12 [rs798488, start-lost], PDGFRL
[rs2705051, splice region variant], EML1 [rs34198557, Ala377Val] and
TSPAN10 [rs6420484, Tyr177Cys; rs1184909254/rs10536197, frame-
shift indel with stop codon gained]. Notably, the SLC6A20 Thr199Met
(rs17279437) variant, associated with widespread reductions in sulcal
width (Supplementary Data 8), has previously been associated with
reduced thickness of retinal components and with increased glycine
and proline derivatives in CSF and urine, consistent with the role of
SLC6A20 as co-transporter regulating glycine and proline levels in the
brain and kidneys (see Supplementary Information for details).

Rare variant gene burden associations
We examined the impact of the burden of rare (MAF < 1%), loss of
function protein-truncating variants (PTV) on sulcal measures across
all 40,169 imaging participants. We found 50 PTV-burden sulcal mea-
sure associations at p < 2.7 × 10−6 (0.05/18,406 genes tested) but no
significant associations after correcting for the number of sulcal
measures (p < 6.0 × 10−9, 0.05/18,406/450 sulcal measures) (Supple-
mentaryData 9). Of the 50 PTV-burden associations at p < 2.7 × 10−6, all
but one were not observed at the same p-value threshold
(p < 2.7 × 10−6) in the single variant primary associations in the same
regions (+/−500Kb). At the current sample size, the vast majority of
genetic influences on sulcal measures came from low frequency
(MAF > 1%) to common variants (MAF > 5%).

Genetic and phenotypic correlations of brain folding
We investigated phenotypic and genetic correlation (GC) between
measures from the right and left hemispheres as well as between

different shape parameters of the sulcal measurements. We found
high correlations between brain sulcal measurements across left
and right sides, within and between the four shape parameters
(Fig. 1c, Supplementary Fig. 6). In general, sulcal width measures
showed the strongest correlations between left and right hemi-
spheres compared to length, mean depth and surface area (Fig. 1d
top). The high genetic correlation between hemispheres may
explain the higher magnitudes of the association Z-scores of bilat-
eral brain sulcal measures compared to hemisphere-specific ana-
lyses. We found average length, mean depth and surface area
parameters to be positively correlated, with correlation between
length and surface area being the strongest, and width to be nega-
tively correlated with the other 3 shape parameters (Fig. 1d middle
and bottom). Similar patterns of correlations between shape para-
meters were seen for left and right hemispheres as well as for both
genetic and phenotypic correlations (Fig. 1d middle and bottom,
Supplementary Fig. 6).

Brain folding genes enriched for cortical expression and neu-
rodevelopmental processes
To determine whether genes in the associated regions were enriched
for expression in certain tissues, we performed enrichment analysis of
annotated genes in significant loci (p < 5 × 10−8) for tissue gene
expression in an independent dataset (HumanProtein Atlas,Methods).
We found significant enrichment of brain folding genes of approxi-
mately two-fold for expression in the cerebral cortex after multiple
testing correction (p = 7.3 × 10−7). Using the most stringent replicated
association threshold, p < 2 × 10−10, a similar two-fold enrichment for
cerebral cortex expression remained significant (p =0.026). The effect
also remained significant with other sensitivity analysis thresholds
(Fig. 2a), suggesting associated brain folding genes may have local
effects. We also performed enrichment analysis for gene ontology
(GO) processes and KEGG pathways. Notably, we found significant
(FDR <0.05) enrichment for various neurodevelopmental processes,
including neurogenesis and a range of cellular GO biological processes
including synapse development, neuronal path finding and axon gui-
dance, among others (see Fig. 2b).

Fig. 2 | Enrichment of genes in significant loci for tissue expression, pathways
and brain developmental stages. a Gene expression across various tissues (inset
shows sensitivity analysis at other GWAS thresholds), blue points indicate multiple
adjustedp <0.05. Hypergeometric test used to derive p-values (uncorrected).bGO

and KEGG pathways (FDR <0.05). c Differentially expressed genes across brain
development stages. Hypergeometric test used to derive p-values. Blue points
indicate FDR <0.05.
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We also examined patterns of expression of the closest genes to
each lead SNP using FUMA25. The extent and timing of gene expres-
sion across brain developmental stages was investigated using
BrainSpan data26. This revealed a higher number of genes than
expected (FDR <0.05) were downregulated in early infancy com-
pared to other developmental stages (Fig. 2c), driven by clusters of
genes with higher expression levels during pre- compared to post-
natal periods (Supplementary Fig. 7). These clusters include genes
previously linked to neurodevelopment, with roles in the negative
regulation of cell growth and proliferation, including DAAM127,
NT5C228 and NEO129. Using GTEx v8 data30 significant downregulation
of the closest gene set was seen across multiple adult tissues,
including adult cortex (Supplementary Fig. 8a). Investigation of gene
expression in embryonic cortical cells31 revealed significant upregu-
lation of expression in gestation week (GW) 10 stem cells (Supple-
mentary Fig. 8b) and suggestive evidence of upregulation
particularly for GW10 and GW16 microglia, although these were no
longer significant following FDR correction.

Colocalization with brain eQTLs to prioritise candidate genes
We performed colocalization analysis between brain cortical folding
loci and the largest cortical expression quantitative trait locus (eQTL)
summary dataset generated to date, Metabrain32. We found 27 of 119
loci to be colocalized for at least one sulcal measure, with one ormore
cis eQTLs in the cerebral cortex at a posterior probability (coloc
PP4) > 0.7 and an additional 7 at a suggestive PP4 >0.5 (Supplementary
Data 10, Supplementary Fig. 9). A total of 53 unique cortical gene
eQTLs colocalized (PP4 >0.7)with at least one sulcal trait in the cortex.
15 of the 27 loci were colocalizedwith one unique eQTL in the cortex, 9
loci colocalized with 2 eQTLs, and the pleiotropic chr17:47Mb MAPT-
KANSL1 locus colocalized with 14 different eQTL genes in a complex
pattern (Supplementary Fig. 9, Supplementary Data 10). Across other
brain-related tissues including the cerebellum, basal ganglia, hippo-
campus and spinal cord, we found a total of 25 loci in the cerebellum, 7
in the basal ganglia, 6 in the hippocampus and 3 in the spinal cord that
colocalized (PP4 > 0.7) with at least one eQTL, with 9, 2 and 1 coloca-
lized loci in the cerebellum, hippocampus and basal ganglia respec-
tively, not found in cortex tissue.

Multi-trait colocalization of cortex specific KCNK2 eQTL and
sulcal widths
The pleotropic chr1:215Mb locus near KCNK2 associated with multi-
ple sulcal measures across the cortex in a largely symmetrical man-
ner. The strongest lead variant ~40Kb upstream of KCNK2,
rs1452628:T, exhibited its strongest associations with reduced sulcal
widths in superior brain regions (Fig. 3a, Supplementary Data 3 and
4). Notably, sulcal width associations at this locus showed evidence
of co-localisation with cortex-specific KCNK2 eQTLs fromMetaBrain32

(Supplementary Fig. 9, Supplementary Data 10), where rs1452628:T
was associated with increased KCNK2 expression in the cortex only
(beta = 0.14, p = 8.0 × 10−7) (cf. cerebellum, hippocampus, basal
ganglia and spinal cord, all p > 0.1, Fig. 3b, left). We formally tested
whether regional sulcal width associations at this locus were driven
by the same underlying variant influencing cortical KCNK2 expres-
sion using the HyPrColoc multi-trait colocalization approach24. We
found that all associations multi-colocalized to the same variant
(posterior probability of colocalization = 0.74), with the candidate
causal variant, rs1452628, explaining all of the posterior probability
of colocalization (Fig. 3b right). We further assessed sensitivity to our
choice of prior probability of colocalization. Joint colocalization
across all or almost all of the traits remained, even after sequentially
reducing the prior probability (Supplementary Information). These
results suggest that a shared underlying variant drives all sulcal
morphology associations and cortex-specific KCNK2 expression at
this locus.

Genetic correlation between brain folding and neuropsychiatric
phenotypes
Cross referencing with previous non-imaging trait and diseases in the
GWAS Catalogue, we found that 56 of the 119 loci (at p < 5 × 10−8, 19 of
44 loci at p < 2 × 10−10) were associated with one or more diseases or
intermediate phenotypes (Supplementary Data 11). We further inves-
tigated the genetic correlation (GC) of regional brain folding with 12
brain-related phenotypes, including neurological diseases, psychiatric
illnesses and cognitive assessments (Methods, Supplementary Infor-
mation). Using an empirical permutation threshold of p < 0.0044 to
account for extensive correlations within brain folding phenotypes
andneuro-related illnesses (Methods),we observed 158 significantGCs
between regional brain folding measures and 10 distinct neu-
ropsychiatric and cognitive phenotypes (Supplementary Data 12).

We examined GC between each of the four shape parameters,
averaged across brain sulci, and neuropsychiatric phenotypes -
observing at least two distinct clusters. Attention deficit hyperactive
disorder (ADHD) and major depressive disorder (MDD) showed
negative GCs with mean sulcal depth, length and surface area across
multiple regions (Fig. 4a, b, Supplementary Data 12). Cognitive per-
formanceandParkinson’s disease (PD) showedpositiveGCswith sulcal
length, surface area and depth (Fig. 4a, b, Supplementary Data 12).
Focusing on specific brain sulci, we found the strongest GCs between
PD and the length (rG = 0.40, p = 3.0 × 10−3) and surface area (rG = 0.33,
p = 6.0 × 10−4) of the central sulcus (Supplementary Data 12), poten-
tially indicating involvement of the sulcal folds adjoining the primary
motor cortex in PD. We noted that sulcal width measures showed
largely opposite directions of GC with neuropsychiatric phenotypes
comparedwith sulcal depth, length or surface area (Fig. 4a), in keeping
with their correlation structure (Fig. 1d).

Interactive 3D visualisation of associations
Given the complexity and interdependencies of regional brain folding,
visualising variant association results interactively in 3Dmay provide a
more intuitive context to interpret association results, facilitating
insights into genetic effects across multiple brain regions. We created
an interactive resource (https://enigma-brain.org/sulci-browser)
where users can query individual genetic variants and visualise their
effects on sulcal width, depth, length and surface area across all
regional brain folds interactively (Fig. 5).

For example: Visualising results for significant pleiotropic asso-
ciations, such as chr12:106Mb (NUAK1), chr16:87Mb (near C16orf95)
and chr6:126Mb (containing CENPW), reveals how these loci affect
multiple, widespread brain regions and shape parameters in distinct
and complex ways (Fig. 5a–c). In contrast, visualising the chr15:40Mb
(15q14) locus associations, mostly tagged by rs4924345, reveals how
these effects are more localised (Fig. 5d). More specifically, we
observed strong positive effects of the minor rs4924345:C allele on
bilateral central sulcusmean depth (betadis = 0.29,pdis = 3.1 × 10−79) and
surface area (betadis = 0.15, pdis = 6.0 × 10−25) but negative effects bilat-
erally on neighbouring superior postcentral intraparietal superior
sulcus mean depth (betadis = −0.14, pdis = 1.0 × 10−18) and surface area
(betadis = −0.11, pdis = 6.5 × 10−13); retro central transverse ramus of the
lateral fissuremean depth (betadis = −0.16, pdis = 7.9 × 10−21) and surface
area (betadis = −0.15, pdis = 2.8 × 10−18); inferior precentral sulcus mean
depth (betadis = −0.14, pdis = 5.6 × 10−16), surface area (betadis = −0.16,
pdis = 8.0 × 10−19) and length (betadis = −0.11, pdis = 1.3 × 10−9).

This sulcal visualisation tool can provide renderings based on
effect sizes, Z-scores or p-values, as well as an option to download
query results.

Discussion
Cortical morphogenesis is an orchestrated, multifaceted process that
shows striking consistency across individuals33. The formation of the
brain’s characteristic convex folds (gyri) and valleys (sulci) is regulated
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by a complex interplay of cellular, biomechanical and genetic
influences9, but our understanding of its genetic underpinnings has
been limited34,35. Recent investigations have revealed insights into the
genetic architecture of sulcal depth15 but genetic factors influencing
other important and heritable features, such as sulcalwidth, depth and
surface area, have not been examined at comparable scale16,17. Mea-
sures of sulcalmorphology can serve as sensitivemarkersof aging21,22,36

and intelligence37, and effects on these measures are partially inde-
pendent of thoseon cortical thickness or surface area38. Thus, studying
genetic influences on brain sulci may complement investigations of
more traditional structural measures, offering greater understanding
of the mechanisms guiding variation in human brain organisation and
downstream associations with human health and disease17.

Here, combining densely-imputed genetic variants with whole-
exome sequencing, we performed the most comprehensive genetic
mapping of regional cortical sulcal morphometry to date, identifying
119 unique genetic loci influencing human sulcal depth, width, length
and surface area. We discovered over 60 novel loci not previously
implicated in any brain imaging-related association studies. The
number of genetic associations observed across different sulcal para-
meters was approximately in accordance with their heritability17. We

observed stronger genetic correlations than phenotypic correlations
between left and right sides, suggesting that environmental and non-
genetic factors may play a role in structural and functional lateralisa-
tion. Notably, regional sulcal width measures clustered in a manner
that reflected broad brain topology, potentially underlining strong
prenatal influences on sulcal development39–42, and the relatively
higher heritability of sulcal width versus sulcal depth, length, or sur-
face area17. We note that the vast majority of observed associations
were driven by low frequency (MAF > 1%) to common variants
(MAF > 5%) well-covered by genotyping with imputation. Therefore, at
the current sample sizes, single rare (MAF < 1%) variants and aggre-
gated burden of rare PTVs provide limited additional benefits to
imputation for detection of genetic influences on brain sulcal mor-
phology. Potential rare variant associations with large effects could
still be detected at increased sample sizes.

We demonstrated the highly polygenic genetic architecture of
brain folding, which has both local and widespread effects within the
brain. When visualised in 3D, local effects are apparent, that are likely
to be missed in globally aggregated brain measurement studies. We
also implicated specific candidate genes in several cases through
coding variants in LD. We added exonic resolution through WES, as

Fig. 3 | KCNK2 locus associations. a Association of the lead rs1452628:T variant
with reduced sulcal widths across the brain. (Grey colours indicate associations
with prep >0.05). b Left: regional association plot of MetaBrain KCNK2 eQTLs for
spinal cord, basal ganglia, hippocampus and cerebellum. Right: regional

association plots and colocalization of cortex KCNK2 eQTL and different lead var-
iants in the KCNK2 locus. A subset of associations shown for each different lead
variant shown due to space constraints. P derived from regression-based tests.
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Fig. 4 | Genetic correlations with neuropsychiatric conditions. a Genetic cor-
relations between shape parameters and neuropsychiatric conditions. Genetic
correlations (GCs) were averaged across all brain regions for each sulcal parameter
separately– themeanGCs aredisplayed ineach entry. * indicatep <0.001 (adjusted

for number of tests) derived from two-sided t-tests. b Examples of genetic corre-
lations across brain sulcal folds with cognitive performance, Parkinson’s disease,
attention deficit hyperactive disorder (ADHD) and major depressive disorder.

Article https://doi.org/10.1038/s41467-022-33829-1

Nature Communications |         (2022) 13:6071 7



well as through colocalization with brain eQTLs using a large-scale
brain-specific dataset for better power and specificity32. We observed
pleiotropic associations at genetic loci consistently implicated in prior
genetic studies of neuroimaging phenotypes, such as the MAPT-
KANSL1 locus43,44, while resolving other associations to specific brain
regions and sulcal folding parameters, such as the KCNK2 locus and
sulcal width. We also show that the majority of the associations at
pleiotropic loci co-localise to one or two shared signals, suggesting
largely homogeneous effects at these loci. The MAPT-KANSL has an
extensive heterogeneous pleiotropy, in keepingwith the complexity at
this locus45.

Our results provide evidence of enrichment of associated genes
for expression in the cerebral cortex, strongly implicating genes
involved in neurodevelopment. We found enrichment for differential
gene expression occurring in early brain development, indicating
that genetic effects on cortical gyrification occur most prominently
during early life, likely via modulation of neurodevelopmental
pathways. Inherited functional impairments of these genes and their
associated pathways may increase the risk for neurodevelopmental
disorders. For example, homozygous and compound heterozygous
mutations at EML1 - a gene associated with right insula surface area -
cause band heterotopia, a neuronal migration disorder characterised
by intellectual disability and epilepsy46. Similarly, heterozygous
deletion of ZIC1 and ZIC4 is associated with Dandy-Walker mal-
formation, a congenital cerebellar malformation47, whereas con-
tiguous deletions at the 16q24.3 locus encompassing CENPW cause

microcephaly, distichiasis, vesico-ureteral and intellectual
impairment48. Additionally, genetic variants at NUAK1 - a pleiotropic
locus associated with frontal, temporal and precentral sulcal widths -
have shown links to autism spectrum disorder49,50, ADHD51 and cog-
nitive impairment52.

Globally, genetic variants influencing cortical gyrification showed
robust, widespread correlation with variants influencing cognitive
performance, schizophrenia, ADHD and depression, suggesting a
shared molecular system potentially underpinning neurodevelop-
mental and neuropsychiatric disorders53,54. The strongest correlations
were observed for localised sulcal measures, such as those between
anterior inferior temporal sulcus length and ADHD, warranting further
investigations in independent datasets. We also observed significant
positive genetic correlations between Parkinson’s disease (PD) and
various sulcal traits – most notably, with bilateral calcarine and occi-
pital lobe surface area and length – contrasting with significant nega-
tive correlations between Alzheimer’s disease and the same sulcal
measures. These findings expand upon prior reports of positive
genetic correlations between PDandcortical surface area55. Our results
may indicate divergent genetic contributions to cortical thickness and
cortical surface area in PD, whereby increased cortical surface area
reflects genetic influences on neural progenitor differentiation,
defining the number of neocortical columns, during embryogenesis,
whereas reduced cortical thickness reflects events later in develop-
ment, influencing the number of synapses and neurons per neocortical
column56,57.

rs12146713 – chr12:106Mb NUAK1

rs2033939 – chr15:39Mb Intergenic

rs4843553 – chr16:87Mb C16orf95

rs11759026 – chr6:126Mb contains CENPW

a b

c d

Fig. 5 | Three-dimensional visualisation of brain sulcal associations (Z-scores)
for four exemplar pleiotropic loci. An interactive online tool, available at https://
enigma-brain.org/sulci-browser, was used to visualise genetic influences on sulcal
morphology in three dimensions, revealing (a) widespread, positive associations
between rs12146713 (NUAK1) and sulcal width measures, (b) widespread positive

and negative associations between rs4843553 (near C16orf95) and sulcal width,
depth and surface area measures, (c) widespread positive associations between
rs11759026, containing CENPW, and all four sulcal measures, and (d) bilateral
associations between an intergenic variant, rs2033939, and length, width, depth
and surface area of the central sulci, precentral sulci, and posterior lateral fissures.
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Through multi-trait colocalization, we identified a shared under-
lying genetic driver of increased cortical KCNK2 expression and
pleiotropic effects on reduced sulcal widths. KCNK2, also known as
TREK-1, is a two-pore domain potassium channel highly expressed in
the central nervous system and modulated by both chemical and
physical stimuli58,59. KCNK2 regulates immune-cell trafficking into the
CNS58 and genetic ablation of Kcnk2 is associated with neuroin-
flammation, blood-brain barrier impairment60 and increased sensitiv-
ity to ischaemia and epilepsy inmice61. In addition to brain volume, the
KCNK2 locus was previously implicated in sulcal opening16 and the
same lead variant, rs1452628:T, was associated with difference
between predicted brain age and chronological age62. Our findings re-
emphasize the role of KCNK2 in cerebral cortex development, along-
side similarly pleiotropic and widely-investigated therapeutic targets
suchasNUAK163 andMAPT64. Further investigation of the links between
these proteins and disease processes downstream of cortical gyr-
ification may support therapeutic development.

One notable limitation of the present study is that genetic asso-
ciations were identified in a population of mostly British individuals.
Additionally, dividing UK Biobank participants into discovery and
replication cohorts prioritised robustness of genetic associations, but
reduced power to detect rare and low frequency variant associations.
Larger sample sizes will increase power and refine the estimates
reported here. Our method to ascertain brain folding phenotypes is
applicable across different MRI scanning protocols, which vary across
sites17. This should facilitate large-scale, cross-biobank studies of cor-
tical folding and minimise site- and cohort-specific effects. Notably,
our study shows partial overlap with a recent genetic investigation of
sulcal depth in the UK Biobank15. Although the cohorts under investi-
gation are comparable, our study focuses on four sulcal descriptors
instead of one, integrates a greater number of rare variants via WES,
incorporates finer-grained brain expression datasets with downstream
colocalization, and provides amore regionalised genetic investigation,
based on an established probabilistic atlas of brain sulci65. Finally, we
note that while sulcal characteristics form distinct phenotypic clusters
compared with pre-extracted measures of cortical thickness and sur-
face area, all novel associations reported in this study should not be
interpreted as unique genetic influences on sulcal morphology, given
that larger-scale investigations may reveal overlapping associations
with independent brain imaging measures.

To aid interpretation and increase the utility of our results to the
wider scientific community, we created an interactive 3D visualisation
of our associations, where users can query specific variant associations
across the entire brain and the shape parameters simultaneously. We
highlighted various cases where complex and pleiotropic associations
differ in brain region and shape parameter distributions, which
become more apparent when represented visually in three dimen-
sions. However, care is needed to avoid over-interpreting weaker and
more heterogeneous associations.

In conclusion, we provide the most comprehensive genetic atlas
of regional brain folding to date, identifying novel associations and
insights into processes that drive the genetic effects, as well as pro-
viding a resource for the wider community for further elucidation of
specific findings.

Methods
Samples and participants
UK Biobank (UKB) is a UK population study of ~500,000 participants
aged 40–69 years at recruitment66. Participant data include
genomic, imaging data, electronic health record linkage, biomarkers,
physical and anthropometric measurements. Further details are
available at https://biobank.ndph.ox.ac.uk/showcase/. Informed
consent was obtained from all participants. Analyses in this study
were conducted under UK Biobank Approved Project numbers 26041
and 11559.

Brain folding imaging phenotypes
TheUKBiobank began collecting brainMRI scans in 2014with the goal
of scanning 100,000 individuals. The protocol includes isotropic 3D
T1-weighted (T1w) MP-RAGE images (voxel size 1mm3; field-of-view:
208 × 256× 256) that have undergone bias-field correction in the
scanner. Full acquisition details can be found in67. T1w images were
processed using FreeSurfer (v7.1.1) and quality controlled using pro-
tocols developed by the Enhancing Neuro Imaging Genetics for Meta-
Analysis (ENIGMA) consortium (http://enigma.ini.usc.edu/). BrainVISA
(http://brainvisa.info) was implemented for sulcal classification and
labelling65,68. Prior applications of BrainVISA to study human brain
development and disease are summarised in Supplementary Infor-
mation. Morphologist 2015, an image-processing pipeline included in
BrainVISA, was used to measure sulcal shape descriptors. To improve
sulcal extraction and build on current protocols used to analyse
thousands of brain scans, quality controlled FreeSurfer outputs
(orig.mgz, ribbon.mgz and talairach.auto) were directly imported into
the pipeline to avoid re-computing intensities inhomogeneities cor-
rection and grey/white matter classification. Sulci were then auto-
matically labelled according to a predefined anatomical
nomenclature68,69. This protocol is part of the ENIGMA-SULCI working
group; a Docker and a Singularity container have been created to
facilitate the processing on computational clusters (https://hub.
docker.com/repository/docker/fpizzaga/sulci). We retained length,
width, depth, and surface area for all 121 sulcal measurements derived
from this protocol for a total of 484 phenotypes (https://surfer.nmr.
mgh.harvard.edu/)68,69.

Phenotypes with missingness >75% were excluded from sub-
sequent analysis, leaving 450 measurements (224 left and 225 right
hemisphere measures) for analysis. Missingness occurs mainly with
smaller sulci that are not identified in some individual MRIs. Prior to
analysis, all imaging phenotypes were inverse-rank normalised to
approximate a standard normal distribution and minimise effects of
outliers.

Non-linear dimension reduction method, t-distributed stochastic
neighbour embedding (t-SNE) was used to maps the high-dimensional
brain imaging phenotypes to two dimensions whilst preserving local
structure, such that close neighbours remain close and distant points
remain distant23. This approach has been widely used in high-
dimensional data (such as transcriptomics), compared to principal
component analysis, which is a linear dimension reduction method
that aims topreserve global (cf local) structure70. T-SNEoftenperforms
better on high-dimensional data in revealing local structures23,70. We
performed t-SNE on inverse-rank normalised imaging phenotypes
(after imputation for missing data using imputePCA function from the
missMDA R package71) for the combined sulcal measures and existing
UKB structural brain imaging phenotypes (T1 structural brain MRI, T2-
weighted brain MRI, diffusion brain MRI, n = 2125, Supplementary
Data 2), all sulcal measures, as well as separately within each sulcal
parameter.

Discovery and replication cohorts
We partitioned UKB samples with MRI measurements into discovery
and replication approximately in 2:1 split. The discovery cohort were
comprised of MRI measures in individuals of European ancestry from
Newcastle, Cheadle and Reading imaging centres, whilst the replica-
tion cohort composed of the remaining (non-European) individuals
from the aforementioned three centres, and mostly all individuals
from the Bristol imaging centre. Subsequent analyses were performed
treating the discovery and replication cohorts as completely separate
to minimise data contamination and biases.

Genetic data processing
UKB genetic QC. UKB genotyping and imputation (and QC) were
performed as described previously66. WES data for UKB participants
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were generated at the Regeneron Genetics Center (RGC) as part of a
collaborationbetweenAbbVie, AlnylamPharmaceuticals, AstraZeneca,
Biogen, Bristol-Myers Squibb, Pfizer, Regeneron and Takeda with the
UK Biobank72. WES data were processed using the RGC SBP pipeline as
described in73,74. RGC generated a QC-passing “Goldilocks” set of
genetic variants from a total of 454,803 sequenced UK Biobank par-
ticipants for analysis. Additional QC were performed prior to associa-
tion analyses as detailed below.

AdditionalQCandvariant processing. In addition to checking for sex
mismatch, sex chromosome aneuploidy, and heterozygosity checks,
imputed genetic variants were filtered for INFO>0.8, MAF > 0.01
(rarer variants around coding regions would be better captured by
WES) globally across UKB and chromosome positions were lifted to
hg38 build. WES variants were filtered for MAC> 10 within the UKB
subset with MRI measurements. Imputed and WES variants were
combined by chromosome position (hg38) and alleles and in the case
of overlaps, the WES variant was retained (as WES generally have
higher quality calls compared to imputation). Variant annotation was
performed using VEP75 with Ensembl canonical transcripts used where
possible.

Genetic association analyses. GWAS were performed using REGENIE
v2.0.1 via a two-step procedure to account for population structure
detailed in76. In brief, the first step fits a whole genome regression
model for individual trait predictions based on genetic data using the
leave one chromosome out (LOCO) scheme. We used a set of high-
quality genotyped variants: minor allele frequency (MAF) > 1%, minor
allele count (MAC) > 100, genotyping rate >99%, Hardy-Weinberg
equilibrium (HWE) test p > 10−15, <10% missingness and linkage-
disequilibrium (LD) pruning (1000 variant windows, 100 sliding win-
dows and r2 < 0.8). The LOCO phenotypic predictions were used as
offsets in step 2 which performs variant association analyses using
standard linear regression. We limited analyses to variants with
MAC> 50 to minimise spurious associations. The association models
in both steps also included the following covariates: age, age2, sex,
age*sex, age2*sex, imaging centre, intracranial volume, first 10 genetic
principal components (PCs) derived from the high-quality genotyped
variants (described above) and additionally first 20 PCs derived from
high-quality rare WES variants (MAF < 1%, MAC> 5, genotyping rate
>99%, HWE test p > 10−15, <10% missingness) as additional control for
fine-scale population structure.

Definition and refinement of significant loci. To define significance,
we used multiple testing corrected threshold of p < 2 × 10−10 (5 × 10−8/
273 approximate number of independent trait). We used phenotypic
PCs accounting for 90% of phenotype variance to estimate the
approximate number of independent traits to account for correlations
between regions, side and parameters. Additionally, we also require at
least nominal significance (p < 0.05) with concordant directions in the
replication cohortwhich should limit false positives even atp < 5 × 10−8.
For reporting, we also included the standard genome-wide significant
loci (p < 5 × 10−8) that replicated at p <0.05 in the replication cohort.

We defined independent trait associations through clumping
±500Kb around the lead variants using PLINK77, excluding the HLA
region (chr6:25.5-34.0Mb) which is treated as one locus due to
complex and extensive LD patterns. As overlapping genetic regions
may be associated with multiple correlated measurements and to
avoid over-reporting genetic loci, we merged overlapping indepen-
dent genetic regions (±500Kb) across traits and collapsed them into
one locus.

Rare variant burden analyses. We investigated the impact of rare loss
of function variant burdens on sulcal measures across the entire
40,169 imaging cohort. Protein-truncating variants (PTVs) were

defined using VEP v96 and LOFTEE78. LOFTEE applies a range of filters
on stop-gained, splice-site disrupting and frameshift variants to
exclude putative PTVs due to variant annotation and sequencing
mapping errors that areunlikely to substantially disrupt gene function.
We extracted variants predicted as PTVs with ‘high confidence’ by
LOFTEE for 18,406 genes. Burden testing was performed with variant
MAF cut-offs of 1%, 0.1%, 0.01% and singleton, in REGENIE as part of the
step 2 procedure with the same covariates as the single variant
analyses.

Cross reference with known genetic associations. We cross-
referenced the lead variants and their proxies (LD proxy r2 > 0.8,
+/−500Kb around the lead variant, with HLA region treated as one
region) for significant associations (p < 5 × 10−8) in GWAS Catalogue6.
Brain imaging studies were separated from other intermediate and
disease phenotypes as defined by the list of brain imaging studies
in Supplementary Information.

Expression enrichment. We examined whether genes within asso-
ciated loci are enriched for expression the various brain tissues.
Enrichment analysis was performedusing theTissueEnrichRpackage79

using the annotated genes (available canonical genes mapped in VEP)
for all genome-wide significant variants (p < 5 × 10−8, additional sensi-
tivity analysis thresholds of p < 5 × 10−7, 5 × 10−6, 5 × 10−5 were used for
cortex) and a background of annotated genes for all variants analysed.
Specifically, we used the RNA dataset from Human Protein Atlas using
all genes that are found to be expressed within each tissue.

GO and KEGG process enrichment. Using the same significant
annotated genes and backgrounds as for the expression enrichment
analyses,weperformedenrichment testing forGOandKEGGpathways
using theWEB-basedGEneSeTAnaLysisToolkit (WebGestalt)80 (http://
www.webgestalt.org/). We used the over-representation analysis
method, analysing GO Biological Process, GOCellular Component, GO
Molecular Function and KEGG, with Benjamini-Hochberg FDR thresh-
old of 0.05 for significance. We used the default parameters of mini-
mum of 5 and maximum 2000 genes per category. Related process
and pathway entries were grouped through the inbuilt weighted set
cover redundancy reduction approach.

FUMA analyses of expression timing. The closest genes to each lead
SNPwere annotated usingMAGMA81, and this set of closest genes used
in all FUMA analyses. Gene expression timing and tissue enrichment
was assessed for the set of genes closest to each lead SNP using the
GENE2FUNC function, basedon averaged log2 transformedexpression
levels compared across each label (i.e. Brainspan brain age for the
expression enrichment analysis, and GTEx tissue types for the tissue
specificity analysis). Gene sets are defined as differentially expressed
when the Bonferroni corrected p ≤0.05 and the absolute log fold
change ≥0.58 between a specific label (brain age or tissue type) com-
pared to others25. All other annotated genes/transcripts in each dataset
were included asbackgroundgenes for comparison inhypergeometric
tests of the ‘closest gene’ set. Significantly enriched gene sets had FDR
corrected p ≤0.05. All other annotated genes/transcripts in the
BrainSpan data were included as background genes for comparison in
hypergeometric tests of gene sets. Significantly enriched gene sets had
FDR corrected p <0.05.

Cell-type specificity analyses were conducted using human
embryonic prefrontal cortex single-cell RNA expression data (nor-
malised as the number of specific transcript reads per million tran-
scripts per cell) generated by Zhong et al. (2018)31, to investigate
expression of the closest gene set across the foetal neurodevelop-
mental period. As above significant enrichment of a gene set for a
specific label (cell type per age) is indicated by an FDR-
corrected p ≤0.05.
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Genetic correlation analysis. We performed genetic correlation
analysis between brain folding phenotypes (including hemispheres
and shape parameters), and 12 neuropsychiatric conditions with
readily available summary data using LD score regression (LDSC
v1.0.1)82. We also performed SNP-based heritability estimation using
LDSC. Genetic variants were filtered and processed using the “mun-
ge_sumstats.py” in LDSC and we used LD scores recommended by the
software authors82.

To account for multiple testing of extensive related and corre-
lated phenotypes, we permuted each neuropsychiatric condition
Z-score 100 times (limited by computational cost) and tested
each permuted neuropsychiatric condition with each brain folding
phenotype to generate an empirical multiple testing threshold
of p = 0.0044 (approximately adjusted p < 0.01 from 100
permutations).

Colocalization analyses. We performed colocalization analyses83

between brain eQTLs fromMetaBrain and brain folding loci using the
coloc R package. We used the default priors (p1 = 10−4, p2 = 10−4,
p12 = 10−5) with regions defined as +/−500Kb around the lead variant.
Evidence for colocalization was assessed using the posterior prob-
ability (PP) for hypothesis 4 (PP4; an association for both traits driven
by the same causal variant). PP4 >0.5 were deemed likely to colocalize
as it guaranteed that hypothesis 4 was computed to have the highest
posterior probability, and PP4 >0.7 were deemed highly likely to
colocalize.

To assess whether all traits jointly colocalize at the KCNK2 locus
(with brain eQTLs) and loci associated with multiple sulcal measures
we used the multi-trait colocalization software HyPrColoc24, using the
recommended default settings and priors (HyPrColoc’s default prior
parameters p = 10−4 and pc = 2 × 10−2 are equivalent to setting p1 = 10−4,
p2 = 10−4, p12 = 2 × 10−6 in coloc, hence the default prior probability of
colocalization p12 is slightly more conservative than in coloc). HyPr-
Coloc computes evidence supporting one or more clusters of traits
colocalizing at a single variant in the region, concluding that a cluster
of traits colocalize if the posterior probability of colocalization (PPC) is
above a user defined threshold (PPC >0.5 by default, which is
equivalent to setting the algorithms’ regional, PR, and alignment, PA,
thresholds to 0.7 respectively). We also performed additional sensi-
tivity analysis across different parameter specifications (Supplemen-
tary Information). Heatmaps produced using the ComplexHeatmap R
package.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The online browser for visualisation of results and links to summary
association data and is available at https://enigma-brain.org/sulci-
browser.Other datasets used in this study includeHumanProteinAtlas
(https://www.proteinatlas.org/). BrainSpan (https://www.brainspan.
org/). MetaBrain (https://www.metabrain.nl/) and GTEx (https://
gtexportal.org/home/).

Code availability
Codes used are part of standard software and tools. Additional details
available in Methods.
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