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Abstract: There is significant interest in using stem cells in the management of cutaneous wounds.
However, potential safety, efficacy, and cost problems associated with whole-cell transplantation
hinder their clinical application. Secretome, a collective of mesenchymal stem-cell-stored paracrine
factors, and immunomodulatory cytokines offer therapeutic potential as a cell-free therapy for the
treatment of cutaneous wounds. This review explores the possibility of secretome as a treatment
for cutaneous wounds and tissue regeneration. The review mainly focuses on in vitro and in vivo
investigations that use biomaterials and secretome together to treat wounds, extend secretome
retention, and control release to preserve their biological function. The approaches employed for the
fabrication of biomaterials with condition media or extracellular vesicles are discussed to identify
their future clinical application in wound treatment.
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1. Introduction

The skin is considered the largest human organ that protects the outer body against the
external environment. This includes physical, chemical, and microbial invasion, which lead
to skin injury or trauma upon exposure [1–3]. Skin wounds and complicated wound-healing
processes affect about one billion people worldwide and have an enormous influence on
the human health care system, leading to an increase in financial cost [4,5]. Wounds are
categorized as acute or chronic; acute wounds can heal quickly in a short period; however,
if not treated properly, they can become chronic wounds [6,7].

Wound healing is an organized and highly regulated process that comprises the follow-
ing phases; inflammation, proliferation, tissue remodeling, and extracellular matrix ECM
deposition [5,8–11]. Acute wounds can be managed generally with a physiological wound-
healing process. Chronic wounds can be managed with growth factors and cytokines, skin
substitutes composed of polymeric materials and biologically derived substances to act
as a structural support at the wound site; hyperbaric oxygen therapy (HBO2); and skin
grafts [8,12]. Wound-healing management has been extending from traditional dressing
to modern advanced types, which to some extent solve the problems associated with the
traditional ones. Modern dressings must be biocompatible, biodegradable, and mimic the
biological molecules involved in the body’s natural healing stages to provide greater adapt-
ability to the wound bed, which is reflected in accelerated wound healing [6,13]. However,
the approaches mentioned above have practical limitations as wound treatments [14].

New therapeutic approaches for the treatment of non-healing wounds have now
been developed. One of the most promising approaches is using stem-cell-based therapy
as an alternative approach for tissue repair and wound healing. Stem cells have a high
capacity for self-renewal, interacting with the wound environment, and emitting bioactive
secretions that accelerate wound healing. However, this technique has been faced with
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limitations such as biosafety, immune compatibility, potential tumorigenicity, infection
risk, complicated material storage, and higher treatment costs [15–18]. Therefore, the
development of more effective therapeutic strategies for advanced wound healing with
minimized cost should be carried out.

Recent research proposed that it is worthwhile to use the paracrine activity of stem
cells, where their secreted molecules yield higher therapeutic impacts than using cells. The
secretome or condition media of stem cells play an essential role in regenerative medicine
alternatives to living cells [16,19–21]. Secretome is defined as a range of bioactive molecules
produced by a cell in the extracellular space, which includes but is not limited to proteins,
nucleic acids, proteasomes, exosomes, microRNA, and membrane vesicles [22–24]. Se-
cretome components are classified into the following: (a) a soluble portion comprising
cytokines, chemokines, and immuno-modulatory molecules and growth factors; and (b) the
extracellular vesicle, which is composed of microvesicles and exosomes that play an impor-
tant role in cell–cell communication due to their involvement in microRNA and protein
delivery [16,25,26].

Secretomes gained considerable attention in skin-wound management, as presented
in vitro and in vivo studies that show the ability of secretomes to improve the wound-
healing process by accelerating angiogenesis, inflammation reduction, and the stimulation
of fibroblast and keratinocytes proliferation [27,28]. Secretome can exert the tissue-repair
capability through different administration methods such as intravenous, intraperitoneal,
or subcutaneous injection, either locally or systemically. However, these delivery methods
can lead to rapid clearance. Biomaterials have been a promising approach to overcome the
decreased retention time of secretome components in regenerative medicine. Enhanced
bioavailability is reflected in a combination of secretome and biomaterials, which leads to
increased therapeutic potential [29,30].

As an attempt to increase the retention time of secretome bioactive at the wound site,
biocompatible biomaterials are used as carriers [31]. These biomaterials have the potential
for re-epithelization and angiogenesis, decrease the possibility of infection after injury, and
increase biocompatibility [32]. Both natural and synthetic polymers are widely used in
regenerative medicine to deliver entrapped bioactive to tissues. They act as structural
supports and controlled delivery systems [31,33]. This review provides insight into
the combination of secretome with biomaterials for potential wound-healing applica-
tions. In addition, it highlights the approaches employed to fabricate biomaterials with
condition media or extracellular vesicles to identify their future clinical applications in
wound therapy.

2. Secretome
2.1. Secretome Composition

Secretome can be collected from a variety of human stem cell sources, with the most
mentioned being umbilical cord tissue [34], bone marrow (BM-MSCs) [35], Wharton’s jelly
mesenchymal stem cells (WJ-MSCs) [36], peripheral blood [37], adipose tissue (ASCs),
placental tissues, and human umbilical cord perivascular cells (HUCPVCs) [38]. However,
human adipose tissue-derived stem cells (ADSCs) gained a prime focus in tissue engi-
neering due to their ease of separation and high harvesting rate [39]. ADSCs secretome
has a great magnitude in regenerative medicine due to the positive effects of bioactive
components in the treatment of cutaneous wounds, cardiovascular diseases, and CNS
regeneration, amongst others [23]. ADSCs secretome can promote wound healing and
accelerate wound closure via secreted growth factors [40,41].

An analysis of secretome harvested from human adipose-tissue-derived mesenchy-
mal stem cells confirmed the presence of increased levels of endothelial growth factor
(EGF), hepatocyte growth factor (HGF), and basic fibroblast growth factor (bFGF). These
proteins integrate with the cellular components of the dermis and facilitate the following
processes: EGF promotes fibroblast migration and proliferation, HGF inhibits apoptosis,
and bFGF promotes skin regeneration without fibrosis [42]. The secretome of human
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gingival fibroblasts revealed high amounts of pro-inflammatory cytokines such as IL-6,
Arginase, MCP-1, and IL-8 [43]. HGF, FGF-2, VEGF, Ang-1, Ang-2, MMP-2, MMP-9,
and TIMP-1 [43]. The cytokines revealed enhanced cutaneous wound healing of rapid
re-epithelialization, decreased inflammation, angiogenesis promotion, and collagen
deposition elevation, in addition to growth factors and ECM protein expressions [43].
The components of MSC secretome play an important role in wound-healing phases, as
described in Figure 1 below.
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roles of MSCs in each phase of wound healing. (A) Skin injury and hemostasis. (B) Inflamma-
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Copyright 2021, Elsevier B.V. Ltd.

2.2. Advantage of Secretome over Cell Therapy

Cell-based therapy has been applied for decades in regenerative medicine and tis-
sue repair to treat different pathological conditions. Skin wounds are one of the cases
that are treated with cell-based therapy; however, improved ones are required to over-
come the wound problem worldwide. Cell-based skin substitutes as an example of cell-
based-therapy-exerted positive results in accelerated wound closure with improved re-
epithelization and vascularity [45,46]. However, they are very costly, require specific storage
conditions, and cause the patient to become susceptible to infection and rejection [22]. Stem
cell secretome has significant advantages over cell-based therapy, which circumvents living-
cell-associated problems represented in tumorigenicity, infection transmission, and immune
reactions [40].

Secretome can be produced according to the GMP-compliant process to be treated
in the same manner as pharmaceutical agents, and this can be viewed as an additional
advantage [40,47]. The use of a conditioned medium from human uterine cervical stem cells
(CM-hUCESCs) for eye corneal ulcers in a lyophilized form gives a clear indication that
secretome can be stored for an extended period without deterioration or loss of potency [48].
Mesenchymal stem-cell-conditioned media (MSC-CM) was implemented in bone regener-
ation rather than MSC and showed beneficial effects in avoiding the invasion-collection
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procedure of cells [49]. ADSC secretome produced by the maturation process could be
helpful in the mass-production of secreted factors and account for a readily available supply
of bioactive factors [40]. Secretome therapy’s cost-effectiveness can overcome the high
cost of cellular therapy. The reduction of cell culture and immediate secretome therapies
can be applied to manage acute pathological conditions such as military trauma, cerebral
ischemia, and myocardial infarction, and modification of the biological product can take
place to achieve a cell-specific effect [19,50].

Based on the advantages listed above, secretome has the potential to overcome the
ethical problems associated with cellular transplantation. In addition to that, complications
related to the survival and inaccurate differentiation of cells in the host tissue are reduced.
The overall capability of cell therapy can be maintained by paracrine activity. Secretome-
based therapies provide advantages such as availability, scalability, and longer shelf life [51].
In general, both cell-based therapy and secretome have advantages and disadvantages.
However, the prolongation of the survival of transplanted cells and knowing how to
predict decreased cell viability and biological functions during in vitro culture are the
current challenges of cell-based therapies [40]. Accordingly, several strategies have been
developed to improve the therapeutic efficacy of stem cells and secretome, such as genetic
modification, preconditioning, and tissue engineering [40].

2.3. The Role of the Secretome in Different Stages of Wound Healing

Skin wound healing is a choreographed and closely regulated process comprised of
inflammation, proliferation, matrix formation, and remodeling phases [52]. After skin
injury, wound healing can be coordinated normally by keratinocytes, dermal fibroblasts,
and immune cells [26,44]. However, secretome-based therapy has the potential to contribute
to the acceleration of the wound-healing process. This is due to its components that promote
anti-inflammatory factors, cell mitogenesis, re-epithelization, proliferation, and tissue
remodeling, and induce neovascularization, leading to overall wound healing, particularly
wound closure [42].

The secretome components relevant to various wound-healing stages include growth
factors (PDGF, IGF-1, EGF, FGF, granulocyte-colony stimulating factor (G-CSF), GM-CSF,
HGF, PGE2, TGF-βs, VEGF, and KGF), inflammatory proteins (IL-1, IL-8, IL-10, IL-6, tumor
necrosis factor-alpha (TNF), leukemia inhibitory factor (LIF), IL-11, MCP-1, PGE2, IL-9, and
IL-13), ECM proteins (MMP-1, MMP-2, MMP-3, MMP-7, TIMP-1, TIMP-2, ICAM, elastin,
collagens, decorin, and laminin), and angiogenic factors (VEGF, ANG-1, ANG-2, PDGF,
MCP-1, TGF-β1, FGF, EGF, CXCL5, MMPs, and TGF-α). The secretome effect on the inflam-
matory phase has been assessed by Lotfinia et al.; the report indicated the use of mesenchy-
mal stem-cell-secretome to treat peripheral blood mononuclear cells in vitro [53]. The study
found that pro-inflammatory cytokine production was reduced, while anti-inflammatory
cytokine production increased [53]. Another study on mice excisional wounds injected
with bone-marrow-derived stem cell secretome resulted in the promotion of wound healing
by reduced inflammation mediated by macrophage polymerization [22].

A study by Park et al. indicated that secretome includes bioactive factors such as
EGF, bFGF, and HGF, which are known to activate the PI3K/Akt and/or FAK/ERK1/2
signaling pathway [42]. This pathway is involved in the migration and proliferation
of dermal cellular components during tissue repair. The bioactive and the activated
pathway are believed to improve the proliferative and migratory capabilities of dermal
fibroblasts, keratinocytes, and endothelial cells, among other biological components of
the dermis [42].

In the proliferation phase of wound healing, soluble substances of the secretome can
enhance fibroblast migration and the secretion of ECM components, particularly collagens
I and III, resulting in wound-healing acceleration within the wound bed [42]. During the
remodeling phase, the total collagen content increases, leading to wound contraction. This
effect has been confirmed in a study that applied a human gingival fibroblast condition
medium to treat wounds [43]. Endothelial cells treated with human multipotent adult pro-



Polymers 2022, 14, 2929 5 of 20

genitor cell-conditioned medium MAPC-CM also formed more vessel-like tubes [54]. The
secretome accelerates wound healing by promoting angiogenesis. This has been demon-
strated by a study carried out on wounds treated with MAPC-CM. The outcome of the
study was an increasing number of endothelial cells and blood vessels in the wound bed
due to increased VEGF in the CM, which accounts for a proangiogenic factor stimulat-
ing the vessel formation of endothelial cells [54]. Secretome components can accelerate
wound healing by promoting target cell proliferation, differentiation, vascularization, and
wound remodeling.

3. Secretome Applications in Wound Healing

Stem cell secretome or condition medium shows good outcomes in accelerating wound
closure and promoting skin regeneration in wound healing. This evidence has been outlined
in many studies due to secreted growth factors and cytokines and their potential for wound
healing [22]. Many physiological processes relevant to wound healing are mediated by
stem-cell-mediated paracrine and autocrine cell signaling pathways. Furthermore, the
secretome is composed of several constituents with extensive regenerative potential for
wound tissue.

An analysis of the human adipose-derived stem cell secretome revealed a high level
of various growth factors, as mentioned in Table 1. These biological factors play a crucial
role in wound healing and tissue repair as they can promote skin tissue regeneration and
modulate the immune response [55]. These secreted factors can act directly on normal
wound-healing stages to promote re-epithelialization and angiogenesis and indirectly by
immunomodulatory capacities. These factors can stimulate existing skin cells’ proliferative
and migratory abilities through PI3K/Akt or FAK-ERK1/2, signaling an acceleration of
wound healing [42]. The mechanisms of mesenchymal stem cell secretome in wound
healing are illustrated in Figure 2. Therefore, extensive studies take place in this area to
evaluate the different mechanisms for wound repair. Consequently, the focus is on the
secretome of stem cells as a novel tool for treating various types of wounds. Current
applications of the secretome from the various MSC sources, and their involvement in
wound closure acceleration, are summarized in Table 1.
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Table 1. The therapeutic outcomes of MSC secretome (MSC-S) in wound healing.

Stem Cell Type Type of Wound and Model Secretome Component In Vitro Outcome In Vivo Outcome Ref.

Human (BMSC) from
SCD patients

Murine excisional
wound/endothelial cells in a

mouse model

VEGF, IL8, MCP-1,
and ANG

Using HUVECs in a 3-dimensional in vitro
model demonstrates proliferation and

migration in the presence of hypoxic CM that
supports angiogenesis.

BMSC condition media exerts high trophic
factors that promote angiogenesis and skin

regeneration with accelerated wound healing.
[56]

ADMSC Full-thickness skin excision
on SD rats VEGF

Rat dermal fibroblast cell line was treated with
secretome revealed viability, proliferation

ability, and higher migration capability, which
represent better-wound healing. Macrophages
were treated with secretome exert reduction of
pro-inflammatory cytokines, including IL-6,

TNF-α, and MCP-1.

Rapid wound closure enhanced fibroblast
proliferation and migration. Moreover, the

higher expression of VEGF promotes
angiogenesis, which accelerates wound

healing potential.

[8]

hUCESCs Corneal epithelial
cells/corneal ulcer on SD rats

TIMP-1, TIMP-2,
FGF, and HGF

Enhanced epithelial wound healing, rapid
regeneration, and the constitution of the

corneal surface.

Bactericidal effect on corneal contact lenses
(CLs) infected with Escherichia coli and

Staphylococcus epidermidis.
[48]

hASC transfected with
miR-146a

In vitro model
using HUVECs

miR-146a UPA, (DPP IV),
HGF, FGF-1, and FGF 2

the secretome146a promotes proliferation,
migration, and tube formation of endothelial

cells, reflected in enhanced proangiogenic
properties. Additionally, the secretome

miR-146a has immunomodulation effect that
can potentially promote wound healing.

In vivo outcome was not studied. [57]

ADSCs

6-mm diameter
biopsy punch piercing in
mice dorsal skin of male

balb/c-nude mice

TGF-b1 and VEGF

Increased transdermal delivery of
secretome proteins was expressed in an ex
vivo porcine skin using iontophoresis as a

permeation enhancer.

Acceleration of wound
closure with reduced scars, represented by

rapid re-epithelization, proliferation,
increased tissue remodeling rate, and

high vascularization.

[40]

HAFS

The full-thickness
cutaneous excisional wound

created on the dorsal skin
of BALB/c mice

VEGF In vitro effect was not tested in this study.

Speeding up of wound closure due to a
decrease in myofibroblasts’ positive

expression of α-SMA-rather than contraction
enhanced re-epithelialization after

14 days of treatment, and overall fetal-like
wound healing without scarring as a result of

high expression of type III collagen
accomplished by transformation of

dermal fibroblasts into
fetal-like fibroblasts rather than

myelo fibroblasts.

[58]
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Table 1. Cont.

Stem Cell Type Type of Wound and Model Secretome Component In Vitro Outcome In Vivo Outcome Ref.

HGFs
Dorsal

excisional wounds of
female BALB/c mice

IL-6, arginase, MCP-1,
and IL-8 are examples of
cytokines. Growth factors
and ECM proteins such as

HGF, FGF-2, VEGF,
Ang-1, Ang-2, MMP-2,

MMP-9, and TIMP-1 are
also present.

Human keratinocytes and foreskin fibroblasts
cells were used in vitro to evaluate a higher
proliferation and migration rate. There was

also an increase in capillary density, indicating
enhanced angiogenesis. Additionally,

increased collagen deposition is
reflected in higher wound contraction

without reducing fibrosis.

Wound closure acceleration with reduced
inflammation, promotion of angiogenesis,

and higher collagen deposition.
Higher re epithelization.

[43]

Human bone
marrow MSC

Full-skin thickness incision
wound on the dorsal part of

diabetic Wistar male rats
(chronic diabetic wound)

bFGF and EGF expression

Human dermal fibroblasts cultured in a high
glucose concentration medium resulted in an
in vitro advanced wound closure due to rapid
fibroblast migration, higher proliferation, and

increased bFGF gene expression.

Acceleration of wound
healing in terms of reduction of inflammation,
increased vascularization, granulation tissue
formation and enhanced, collagen deposition,

and some trophic factor genes expression.

[59]

(WJ-MSCs)
Radiation-induced skin

injury on Female
Sprague–Dawley (SD) rats

————
(HUVECs) growth rate and proliferation rate

are increased. Enhanced number of blood
vessels due to increased a-SMA expression.

Acceleration of wound closure enhances the
quality of wound healing by promoting cell

proliferation, sebaceous gland cell-like
regeneration, and angiogenesis.

[60]

Gamma irradiation
to induce

apoptosis PBMCs

Burn wounds of 40 cm2 were
created on the dorsum of the

female Dan Bred pigs
IL-8 and VEGF Histology studies carried out by

using wound biopsies.

Improved epidermal regeneration and
differentiation, a better wound quality

without scarring, and increased numbers
of CD31+ and ASMA+ cells as

markers for angiogenesis.

[61]

MSC from fetal
umbilical cord

Burn wound on the dorsal
area of the Wister rat (Rattus

Norvegicus)
bFGF Histological analysis of skin tissues

using M and H stains

Acceleration of wound closure, a more
significant number of fibroblasts, high

density of collagen fiber, and significant
number of blood vessels.

[62]

Warton Jelly MSC
Burns on a 47-year-old

woman’s left hand due to hot
water exposure.

________ ________
Three weeks of treatment with 10%
secretome gel acceleration wound

healing without scarring t
[63]

UMSC-Exos Full-thickness skin wound on
ICR mice and nude mice.

Exosome enriched
microRNA represented

as (miR-21, -23a,
-125b and -145)

fibroblasts cells treated with recombinant
TGF-b protein upon exposure to CM, leading

to α-SMA suppression.

Wound healing promotion due to suppression
of myofibroblast and scar formation through

inhibition of transforming growth
factor-b2/SMAD2 pathway.

[64]
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4. Secretome Delivery in Wound Healing

Biomaterials play an important role in tissue regeneration, which comprises delivering
bioactives and provides structural support for endogenous cell invasion. For biomaterials
to be applied, they must fulfill the following criteria involving biocompatibility, degrad-
ability, and suitable mechanical properties. Biomaterials are classified into three categories:
naturally derived, synthetic, and chemically modified polymers. Natural biomaterials
shown in this field comprise alginate, collagen, hyaluronan, and decellularized extracel-
lular matrix (ECM). Biomaterial scaffolds made of synthetic polymers or ceramics such
as polylactide-co-glycolide (PLGA) or beta-tricalcium phosphate (β-TCP) are extensively
employed, with gelatin methacrylate (GelMA) being the natural material with chemical
modifications [65].

Synthetic materials offer multiple advantages, such as cost, supply, and batch-to-batch
homogeneity. However, they lack native tissue shape and structure. Hybrid hydrogels
combining natural and synthetic materials have also been employed to attain the biological
benefits of natural materials while attaining the benefits of tunable synthetic materials [66].
Biomaterials may be able to overcome the inadequate tissue retention of bolus EV and
MSC-CM injections by offering a controlled release platform for healing tissues.

Biomaterials, which include scaffolds, meshes, matrices, hydrogels, and substrates,
have completely transformed the way drugs are delivered and used. Some of the most fre-
quently employed scaffolds are collagen-derived matrices, silk-based meshes/matrices, dex-
tran hydrogels, and electrospun nanofiber matrices such as poly-L-lactic acid (PLLA) [67,68].
However, electrospun nanofiber matrices are recommended in biological applications.
These scaffolds provide a three-dimensional (3D) structure that is similar to that of the
extracellular matrix (ECM)-like nano-architecture [69]. These matrices have a similar tensile
strength to skin, making them a suitable candidate for skin wound healing.

Biomedical hydrogels, which have a comparable structure to the natural ECM, have
been highlighted as promising biomaterials for delivering therapeutics and cell components
to wounds. The following characteristics should be present in an ideal wound-healing
hydrogel scaffold: suitable mechanical qualities, good water retention, anti-infection capac-
ity, injectable capacity, and excellent cell biocompatibility. Exosome-based administration
via hydrogel, on the other hand, is likely to improve angiogenesis and tissue regeneration
during wound healing [70]. Table 2 mentions some examples of biomaterials and their
application in wound healing.
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Table 2. Biomaterials and their application in wound healing.

Polymer Secretome Source Bioactive Molecules Type of Hydrogel Biomedical Apps References

Polyisocyanate (PIC) Human adipose-derived
stem cells (hASCs) IL-10 Gel Fibroblast wound healing assay

or artificial wound [71]

Carrageenan/poly(vinyl alcohol SD-MSCs VEGF Hydrogel full-thickness excisional wounds [31]

Polycaprolactone/gelatin Bone marrow-derived
mononuclear cells —————- Electrospun scaffold Diabetic wounds [69]

Hyaluronic acid (HA) and
chondroitin sulfate (CS)

Bone-marrow-derived human
mesenchymal stem cells (hMSC) Viscoelastic gel Corneal wound [72]

Methacrylate anhydride,
Hyaluronic acid, N-(2-aminoethyl)-
4-[4-(hydroxymethyl)-2-methoxy-
5-nitrophenoxy]-butanamide (NB)

Amnion-derived conditioned
medium (AM-CM) VEGF and TGF-β1 In situ gel In vivo diabetic wound [50]

chitosan/collagen/β-
glycerophosphate

Human umbilical cord
mesenchymal stem cell Thermosensitive hydrogel In vivo burn wound [50,73]

Pluronic F-127 human umbilical cord-derived
MSC(hUCMSC)-derived exosomes VEGF/(TGFβ-1) A thermosensitive hydrogel In vivo diabetic wound [74]

Pluronic F127/oxidative
hyaluronic acid/(ε-poly-L-

lysine, EPL)

Adipose mesenchymal stem cells
(AMSCs)-derived exosomes ————- Hydrogel Diabetic full-thickness

cutaneous wounds [70]

Polycaprolactone/gelatin Bone-marrow-derived human
mesenchymal stem cells ————- Electrospun fiber In vitro corneal fibroblast cells and

rabbit corneal organ culture system [75]

Chitosan Human endometrial stem cell
(hEnSC)-derived exosome ————- Hydrogel full-thickness cutaneous wounds [76]

Carboxymethyl
chitosan/poloxamer 407

Human umbilical
cord-mesenchymal stem cells
(hUCSCs)-derived exosomes

————- Thermo and pH-sensitive
hydrogel Rat cutaneous wound [77]

Sodium Alginate/Sodium
hyalurinate/PEG Human BM-MSCs VEGF and FGF Hybrid gel Tissue regeneration after surgry [78]

Sodium alginate Peripheral blood
mononuclear cells (PBMCs) CD31+ cells NU-GEL™ Hydrogel Burn wound [61]

Chitosan/silk fibroin Gingival mesenchymal stem cells
(GMSCs) derived exosomes

Exosomal markers
CD9 and CD81 Sponge Diabetic rat cutaneous wound [79]
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5. Structural Formulation Using Biomaterials with Secretome for
Wound-Healing Applications

Polymer-based biomaterials are widely used in tissue engineering. They can mediate
tissue engineering through their in vitro structural support to help cell–cell interaction and
growth factors. They can aid in in vivo transplantation of the regenerated tissue to integrate
structurally and functionally with the system [80]. Hydrogels, which are three-dimensional
hydrophilic polymers, have been used as a bioactive scaffold material for drug delivery
and cell encapsulation [80]. However, recent studies have identified that biocompatible
hydrogels as carriers of MSC CM and MSC exosomes can maintain the bioactive molecules
of the CM at the wound site [81]. This is an attempt to overcome cell-based therapy-
associated risks in terms of lowering processing time and local storage conditions.

MSc-secreted factors, which include extracellular vesicles and soluble factors, con-
tribute mainly to their therapeutic benefit. However, the biomaterials can be combined
with those factors, offering a delivery system to enhance the secretome retention rate and
accelerate healing efficacy. This review highlights the use of biomaterials with secretomes
in wound healing, providing insight into different examples applied in vitro and in vivo.
Figure 3 below shows how secretome can be extracted from MSC and the CM and exo-
some mixed with polymers to develop a biomedical system that can be applied to treat
in vivo wounds.
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5.1. MSC Soluble Secretions and Their Combination with Biomaterials for Application in
Different Wounds

Secretomes collected from in vitro culturing of MSC is also known as MSC-conditioned
media (MSC-CM). The analysis showed the composition of the soluble factors, which are
made up of cytokines, chemokines, growth factors, and hormones, with immunomodula-
tory, angiogenic, and anti-apoptotic functions [82]. The second part of secretion is termed
extracellular vesicle secretions loaded with specific miRNA involved in both diagnosis
and treatment [83]. The advantages of the in vitro applications of MSC-CM include cell
proliferation and migration enhancement [84,85], the promotion of angiogenesis [85,86],
and revealing anti-apoptotic and anti-inflammatory effects [84,87,88]. Furthermore, in vivo
MSC-CM has demonstrated healing potentials in different wound types, which involve
cutaneous wounds [89], burn wounds [73], and diabetic chronic wounds [59].

MSC CM can be administered by bolus injection, resulting in a shorter half-life and
poor tissue retention. A combination of MSC CM with biomaterials presented a controlled
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release platform for healing tissues to overcome these adverse problems [65]. A recent
study by Vasily et al. demonstrated the use of placental multipotent mesenchymal stro-
mal cell (MMSC) secretome-loaded in chitosan hydrogel (MSC-Ch-gel) for infected burn
wounds [90]. The method used in developing the MSC-CH gel involved the addition of
chitosan solution to CM. The study revealed that MSC-Ch-gel had antimicrobial activity
along with high anti-inflammatory abilities [90]. The high level of anti-inflammatory medi-
ators was released upon the proteomic analysis of secretome besides proteins crucial for
the different stages of wound healing. Furthermore, MSC-CH gel promoted skin tissue
repair, which was observed after histological examination regarding higher vascularization
and angiogenesis [90].

Another study conducted by HonorataK et al. evaluated the effect of human adi-
pose tissue mesenchymal stem cell (HATMSC2) secretome-loaded hydrogel on chronic
wounds [90]. The collagen hydrogel was prepared by adding the concentrated PBS to the
type 1 collagen solution and then gently mixed. HATMSC supernatant was added to the
collagen mixture before adding the crosslinker. The last step was adding 10K 4-arm Succin-
imidyl Glutarate PEG crosslinker followed by gentle mixing; then, the formed hydrogel
was pipetted into Petri dishes and incubated at 37 ◦C for 1 h to allow for complete crosslink-
ing [90]. The developed hydrogel was tested in an in vitro wound model using different
cells, including endothelial, keratinocytes, and fibroblasts, during a 3-days culture. The
results showed highly released interleukin-8 and macrophage chemoattractant protein-1
proteins from endothelial cells [91]. Additionally, pro-angiogenic activity was assessed
using in vitro tube formation assay on human skin endothelial cells and confirmed by the
expression of pro-angiogenic miRNAs, especially miR126, which shows the highest expres-
sion and antimicrobial activity against Staphylococcus aureus MRSA, and Pseudomonas
aeruginosa was also confirmed [91].

A recent study developed by Victoria et al. focused on developing mesenchymal stem
cell (MSC)-conditioned media (CM) loaded in hydrogel and its application in an in vitro
hyperglycemic human dermal fibroblast to investigate the wound healing potential [92].
The components of the hydrogel were GelMA-PEGDA, loaded with MSC-CM, which
demonstrated higher proliferation of the hyperglycemic fibroblast due to the combined
effects of matrix properties together with the prolonged release of MSC-secreted bioactive
molecules. Hence, it was potentially beneficial in diabetic chronic wounds [92].

A study by Anny et al. investigated the use of biocompatible polymers as transporters
to preserve the bioactive molecules of CM at the wound site by combining MSC secretome
with carrageenan and polyvinyl alcohol [31]. After preparing each hydrogel, the condition
media embedded in each of it was polymerized, then it was derided and tested in in vitro
human umbilical vein endothelial cells for angiogenic activity. Additionally, in in vivo ap-
plication in mice, the cutaneous wound was carried, which showed the healing potential of
both hydrogels’ impeded CM based on the proangiogenic properties of the secretome [31].

Another study applied BM-MSC secretome in vitro to primary cultured human corneal
epithelial cells and an in vivo mouse model after both mechanical and alkaline corneal
burn, hyaluronic acid (HA), and chondroitin sulfate (CS) gel were used as carriers (they
were compared with secretome alone). The secretome was used in a lyophilized form to
impart long stability and consistency to the different products. The study revealed secre-
tome HA/CS gel accelerates epithelial wound closure after both injuries and can reduce
neovascularization, scar formation, and hemorrhage after chemical injury [93]. Yiqing et al.
developed a photo-crosslinking adhesive in situ-formed hyaluronic acid hydrogel grafted
with the methacrylic anhydride and N-(2-aminoethyl)-4-[4-(hydroxymethyl)-2-methoxy-5-
nitrophenoxy]-butanamide (NB) groups to encapsulate a lyophilized amnion-derived con-
ditioned medium (AM-CM) [50]. The hydrogel displayed strong tissue adhesion, excellent
mechanical properties, high elasticity, favorable biocompatibility, and prolonged AM-CM
release. This was reflected in in vitro and in vivo accelerated diabetic wound healing result-
ing from the regulation of macrophage polarization and the promotion of angiogenesis [50].
Another study by Gabriella et al. developed a viscoelastic gel composed of hyaluronic
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acid (HA) and chondroitin sulfate (CS) to deliver lyophilized secretome from human bone-
marrow-derived mesenchymal stem cells for the treatment of mechanical and chemical
corneal injuries [93]. The in vitro and in vivo results accelerated epithelial wound closure
and reduced corneal neovascularization, scar formation, and hemorrhage [93]. Vasily et al.
developed placental multipotent mesenchymal stromal cell (MMSC) secretome-based chi-
tosan hydrogel (MSC-Ch-gel) to treat infected burn wounds in rat [90]. Accelerated wound
healing, tissue regeneration, reduced inflammation, improved re-epithelialization, and
the encouragement of the development of well-vascularized granulation tissue were the
outcomes [90]. The secretome produced by human fetal mesenchymal stem cells (hfMSC)
in diabetic wounds was investigated by Bin Wang et al. [94]. The poly lactic-co-glycolic
acid (PLGA)-encapsulating lyophilized hfMSC exhibited improved wound healing by
encouraging vascularization and reducing inflammation in the cutaneous wound bed [94].
Chen et al. developed adipose-derived stem-cells-conditioned medium loaded in elec-
trospun micro-nano fibers using poly lactic acid (PLA), which imparted protection and
controlled release properties [95]. The in vitro and in vivo outcomes of the study were
wound-healing acceleration and tissue regeneration [95].

5.2. MSC EVs and Their Combination with Biomaterials for Application in Different Wounds

Extracellular vesicles (EV) are nano or micro-sized vesicles that constitute the insoluble
part of the secretome. They play a key role in cell-to-cell communication by transporting
cargo directly into the cell or activating specified cell surface receptors. They are important
in tissue repair and regeneration, disease detection, and oncology because they can trans-
port membrane and cytosolic proteins, lipids, and RNAs [16,96]. Exosomes, the nano-sized
vesicles, have become popular for application in cellular regenerative medicine, especially
in wound healing. They organize cell-to-cell communication by carrying mRNA, miRNA,
and proteins to target cells [70,97]. The following studies are examples demonstrating the
combination of EV with biomaterials for wound healing. A study carried out by SHI-CONG
TAO et al. describes the use of exosomes from microRNA-126-3p overexpressing synovium
MSC mixed with chitosan hydrogel for cutaneous wound healing [96]. After the isolation
and characterization of SMSC, the miRNA-126-3p lentiviral vector transfected them, then
the exosomes were isolated and identified by specific procedures. After that, chitosan
hydrogel-loaded exosome was prepared and tested in vitro and in vivo, which resulted
in an in vitro promotion of proliferation and migration in human dermal microvascular
endothelial cells (HMEC-1 cells) and human fibroblasts (FBs) [96]. However, a faster heal-
ing rate was reflected in diabetic wounded rats treated with CS-SMSC-126-Exos, which
was reflected by epithelialization, granulation tissue formation, collagen deposition, and
vascularization [96].

Another study demonstrated the preparation of chitosan/silk hydrogel sponge loaded
with exosome derived from human gingival MSC and application to diabetic rat wounds.
After the polymers dissolved, they stirred mechanically for 30 min. The hydrogel was
prepared by the freeze-drying method and lyophilized to produce a sponge to which the
collected exosomes were added [96]. Then, the hydrogel was applied to the wound area
of the diabetic rats and accelerated wound healing. This is a noninvasive delivery system
compared to the direct injection of exosomes, which can cause infection. The histological
results showed enhanced re-epithelization, collagen deposing, neovascularization, and
neuronal ingrowth [96].

An adipose-derived MSCs exosome loaded in alginate-based hydrogel has been ap-
plied to a full-thickness wound in a rat model. The study was performed by the isolation
of ADSCs first, followed by exosome isolation and characterization; after that, the algi-
nate hydrogel was prepared from alginates solution. The exosome was added and finally
crosslinked with calcium chloride. The hydrogel was applied to assess its healing po-
tential in a rat model. The exo-loaded hydrogel provided a novel delivery platform that
accelerated wound closure by the enhancement of fibroblast migration, collagen synthesis,
and vascularization [98]. A study done by Qijun Li et al. illustrated the dual-sensitive
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hydrogel comprised of poloxamer 407, and carboxymethyl chitosan encapsulates exosomes
derived from human umbilical cord mesenchymal stem cells (hUCMSCs). The polymers
were crosslinked with genipin, and the exosome suspension was mixed into the solution
to form the hydrogel that exhibited sustained release behavior upon application to the
cutaneous wound in a rat model, resulting in an enhancement of wound closure and
tissue regeneration.

In addition to that, the formation of skin appendages and the inhibition of inflamma-
tory reactions [77] occurred. Wang et al. fabricated self-healing hydrogel from methylcellu-
lose and chitosan via Schiff base reactions [99]. The hydrogel was loaded with exosomes
extracted from placental mesenchymal stem cells. The hydrogel-loaded exosome exhibited
accelerated wound healing, which was reflected in rapid wound contraction, new tissue
formation, vascularization, and hair follicle and gland appearance when applied to the
full-thickness wound in diabetic mice (Leprdb). Thus, wound healing promotion took
advantage of an injectable hydrogel and the biocompatibility of the polymers [99]. Liu et al.
explored the enhanced retention of adipose stem cell-derived exosome when combined
with HA in the acute cutaneous wounds of nude mice [100]. The outcomes demonstrated
that ASC-Exo+HA could significantly enhanced fibroblast activity, re-epithelialization, and
vascularization in wound healing [100]. Figure 4 represents the hydrogel formation method
using exosome-loaded polymers as one of the examples of the fabrication approach.
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Figure 4. Schematic illustration of the hydrogel crosslinking and full-thickness wound excision
mouse model used to evaluate the wound healing properties of alginate hydrogel-incorporated
exosome (Alg-EXO). (a) Alginate solution loaded with adipose-derived stem cells (ADSCs)-derived
EXOs cross-linked via ionic crosslinking. (b) Creation of a full-thickness wound excision rat model,
and the transplantation of hydrogel into the injury area. Image reproduced with permission from
Shafei et al. [98]. Copyright 2019, John Wiley and Sons.

5.3. Secretome in 3D Bioprinting

Three-dimensional printing technology can be used for wound healing and skin
engineering through the application of bioprintable materials known as bioinks. These
bioinks must have good printability, mechanical stability, biocompatibility, biodegradability,
non-toxicity, high availability, and high shape fidelity [101]. The 3D printing technology,
rather than conventional approaches, can generate scaffolds that can resemble the com-
plex ECM structures and provide a microenvironment for cell attachment, proliferation,
distribution, and differentiation, with the capability to create functional tissue [102]. 3D
technology can be used to carefully distribute cells, biological components, and growth
factors into complex 3D bioscaffolds to construct tissue engineering structures that mimic
biological ones. Leila et al. developed a collagen/alginate 3D bioprinted gel scaffold
loaded with adipose-derived stem cells (ADSCs) for burn-wound healing, which resulted
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in complete epithelization and accelerated healing [103]. A study in bone regeneration
used a 3D scaffold constructed from PCL and alginate hydrogel that contains lyosecretome
(freeze-dried MSC secretome) for the controlled release of secretome to promote in vitro
osteogenic differentiation [104]. Another study on 3D electrospun fiber scaffold, fabricated
with polycaprolactone (PCL) and gelatin, was used as a cell culture medium with harvest
(cell-free) MSC secretome, as well as continuous delivery from MSCs. The secretome was
harvested and used to evaluate in vitro wound healing on corneal fibroblasts and subse-
quently explored a chemical burn on rabbit corneas employing an organ culture model.
The outcome was epithelial layer recovery [105]. The effectiveness of 3D scaffold-based
exosome treatment for skin regeneration has been examined in several research. Wang et al.
verified that a biocompatible 3D porous self-healing methylcellulose-chitosan hydrogel,
supplied with placental MSC-derived exosomes, promoted wound healing by coopera-
tively promoting angiogenesis and inhibiting apoptosis [106]. Therefore, using secretome
3D printing technology for wound healing is a promising area for further research.

6. Conclusions

Comprehensive studies have been done on the wound healing capability of MSC. They
emphasized that their therapeutic benefit was mediated by paracrine secretions, including
soluble factors and extracellular vesicle components collectively named secretome. They
explore healing potential through the inhibition of apoptosis and inflammation, fibrosis,
and angiogenesis. The secretome components can be delivered to the wound site when
combined with biomaterials, which show better retention. Their effects proven in vitro and
in vivo demonstrate valuable results in accelerating wound healing and promoting skin
regeneration due to their tissue retention. To translate the experience of secretome to clinical
situations, it is necessary to further understand its production procedures, which will reveal
the way to enhance the production, advancement of isolation, and standardization methods
for purification and characterization.

7. Future Prospective

Secretome-based therapeutics have become a potentially effective replacement for
cell-based therapies. The secretome is at the vanguard of next-generation tissue and organ
regenerative engineering applications due to its capacity to be produced, stored, and used
as an off-the-shelf, ready-to-use product with minimal safety issues while maintaining the
therapeutic benefits of stem cells. Advancing secretome-based therapeutics and determin-
ing their safety and efficacy will require the creation and evolution of methodologies and
technology in MSC secretome culture, as well as a comprehensive grasp of secretome’s
components. Biomaterials have also have been investigated as a supplement to control
secretome production and as delivery systems. To accomplish clinical translation, the
expansion of MSCs should be carried out under defined GMP culture conditions that are
reproducible, scalable, and well-controlled, with the intention of limiting heterogeneity
and enhancing the predictability of secretome-derived products in terms of composition
and function.
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Abbreviations

Activated phosphatidylinositol 3 kinase/Protein kinase PI3K/Akt
Adipose tissue-derived stem cells ADSCs
Alginate hydrogel-incorporated exosome Alg-EXO
Angiopoietin Ang
Basic fibroblast growth factor bFGF
Beta-tricalcium phosphate β-TCP
Bone marrow mesenchymal stem cells BM-MSCs
Chemokine CXCL5
Conditioned medium from human uterine cervical stem cells CM-hUCESCs
Endothelial growth factor EGF
Extracellular matrix ECM
Extracellular signal regulated kinase 1 ERK1
Extracellular vesicles EV
Focal adhesion kinase FAK
Gelatin methacrylate GelMA
Good manufacturing practice GMP
Granulocyte-colony stimulating factor G-CSF
Hepatocyte growth factor HGF
Human adipose tissue mesenchymal stem cell
HATMSC
Human bone marrow mesenchymal stem cell BMSC
Human microvascular endothelial cells HMEC
Human umbilical cord perivascular cells HUCPVCs
Human umbilical vascular endothelial cells HUVECs
Human uterine cervical stem cells hUCESCs
Hyaluronic acid HA
Hyperbaric oxygen therapy HBO2
Interleukins IL
Keratinocyte growth factor KGF
Leukemia inhibitory factor LIF
Matrix metalloproteinase MMP
Mesenchymal stem-cell-conditioned media MSC-CM
Mesenchymal stem cells MSC
Mesenchymal stromal cell secretome-chitosan hydrogel MSC-Ch
Monocyte chemoattractant protein MCP
Multipotent adult progenitor cell-conditioned medium MAPC-CM
Multipotent mesenchymal stromal cell MMSC
Platelet-derived growth factor PDGF
Polyisocyanate PIC
Polylactide-co-glycolide PLGA
Poly-L-lactic acid PLLA
Sickle cell disease SCD
Smooth muscle actin SMA
Synovium mesenchymal stromal cell SMSC
Tissue inhibitors of metalloproteinases TIMP
Transforming growth factor TGF
Tumour necrosis factor-alpha TNF
Umbilical cord mesenchymal stem cells C-derived exosomes UMSC-Exos
Vascular endothelial growth factor VEGF
Wharton’s jelly mesenchymal stem cells WJ-MSCs
Polyethylene glycol PEG
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