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Dengue virus is a mosquito borne Flavivirus and the most prevalent arbovirus in tropical and subtropical regions around the
world. The incidence of dengue has increased drastically over the last few years at an alarming rate. The clinical manifestation
of dengue ranges from asymptomatic infection to severe dengue. Even though the viral kinetics of dengue infection is lacking,
innate immune response and humoral immune response are thought to play a major role in controlling the virus count. Here, we
developed a computer simulation mathematical model including both innate and adaptive immune responses to study the within-
host dynamics of dengue virus infection. A sensitivity analysis was carried out to identify key parameters that would contribute
towards severe dengue. A detailed stability analysis was carried out to identify relevant range of parameters that contributes to
different outcomes of the infection. This study provides a qualitative understanding of the biological factors that can explain the
viral kinetics during a dengue infection.

1. Background

Dengue virus (DENV) has emerged as the most prevalent
arthropod-borne disease in humans worldwide, with an
estimated 390 million individuals infected per year, leading
to approximately 500,000 hospitalizations and 25,000 deaths
[1]. Dengue occurs mainly in tropical and subtropical regions
around the world and is transmitted to humans through the
bite of an infected mosquito, Aedes aegypti. The etiological
agent of the dengue virus is a RNA virus that belongs to the
family of Flaviviridae viruses, of which there are four distinct
closely related serotypes (DENV-1, DENV-2, DENV-3, and
DENV-4) [2, 3]. Infection by one serotype provides lifelong
immunity against that particular serotype but only partial and
temporary cross-immunity to the other serotypes [4].

These four serotypes cause a variety of clinical symptoms
ranging from asymptomatic infection to dengue fever (DF)
to its more severe manifestations, dengue hemorrhagic fever
(DHF) and dengue shock syndrome (DSS). DF is a self-
limiting illness with onset of fever along with symptoms such
as headaches, muscle or joint pain, and rash [5–8]. Only
a few would proceed to severe dengue, DHF, a condition

characterized by plasma leakage, that may lead to circulatory
shock resulting in DSS. Without proper monitoring and
immediate treatment, DHF and DSS can be fatal. Currently
there are no specific treatments or vaccines available against
dengue. Therefore early diagnosis, bed rest, and maintaining
patient’s body fluid volume are critical for the care of severe
dengue.

The immune response to dengue infection plays an
important role in controlling the virus. The human immune
system is made up of two parts: the innate immune response
and adaptive immune response. The nonspecific innate im-
mune response provides immediate protection against an
invading pathogen and is the first line of defense. Innate
immune response produces type I interferon (IFN) mainly
IFN-𝛼/𝛽 that has been shown to induce resistance to infec-
tion in neighboring uninfected cells and limit the spread of
the virus [2, 9, 10]. In addition, IFN has the ability to activate
natural killer (NK) cells during early stage of infection,
which can destroy infected cells [9, 11, 12]. In dengue, IFN is
generally detected 24–48 hours after infection and correlates
with the virus titer peak [13]. Also early activation of NK cells
has been seen in dengue patients [14, 15].

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2018, Article ID 8798057, 18 pages
https://doi.org/10.1155/2018/8798057

http://orcid.org/0000-0001-8757-3722
http://orcid.org/0000-0002-6484-6000
https://doi.org/10.1155/2018/8798057


2 Computational and Mathematical Methods in Medicine

Interferon produced by infected epithelial cells is impor-
tant for the activation of the adaptive immune response [10,
16].The adaptive immune system takes longer to respond but
provides long term immunity against an invading pathogen
[5, 17, 18]. The adaptive immune response consists of
antibody-secreting B-cells (humoral immune response) and
cytotoxic T-cells (cell-mediated immune response). Both are
responsible in clearing the infection and providing lifelong
immunity against a pathogen [3, 17–19].

As virions enter the body, they infect dendritic cells,
macrophages, monocytes, and hepatocytes. As soon as the
body learns that the cells are infected with dengue virus, it
triggers the innate immune response. When the innate im-
munity is unable to curb the infection, it initiates the adaptive
immune response. Once the adaptive immune response starts
fighting the dengue infection, the antigens present on virus
particles activate B-cells, which mature into plasma cells
which then produce antibodies called IgM and IgG [5, 17].
These antibodies travel though the blood stream and bind
to the antigens making them noninfectious. The cytotoxic T-
cells recognize and kill cells that are infected with pathogens.
This is illustrated in Figure 1. The external appearance of this
whole process is onset of fever along with symptoms such
as headaches, muscle or joint pain, myalgia, arthralgia, and
rash which is termed as an acute febrile illness that gets cured
within 7–14 days by a complex immune response process
[5, 20].

Extensive research on mathematical modeling of dengue
epidemiology has been done for the last century [21–26] but
only a few models have been developed to study within-
host dengue viral dynamics. None of the existing models
[5, 6, 18, 27] considered the role that innate immune response
plays in clearing the dengue infection until recent published
work by [14], introduced innate immune response to a target
cell limited model, and showed that only innate immunity
is needed to recover the characteristic features of a primary
infection.

This study is an attempt to develop a computer simulation
model to reproduce the known dynamics of healthy cells,
infected cells, virus, B-cells, and immune response. Both
innate and humoral immune responses have been incorpo-
rated to the model to evaluate the effect of immune response
on viral control. This model is merely a conceptual model
to capture the qualitative behaviour of virus dynamics. Thus
we can then extend this model to fit quantitative data from
clinical experiments. In this study, two viral titer peaks were
observed during the course of infection. It was found that the
innate immune response is responsible for the first rapid viral
decline and for the subsequent second peak in viral load. It
is also noted that the humoral immune response is needed
to eventually clear the virus from the body. Next we identify
the significant parameters and carry out a sensitivity analysis
to investigate the virus dynamics with respect to parameter
variability.

In order to validate the results, we carry out a detailed
stability analysis followed by numerical simulations to iden-
tify the relevant ranges of key parameters which generates
different scenarios of the infection.

Experimental studies have shown that higher viremia
titer early in the course of infection is associated with more

severe disease [28, 29]. Peak virus titers were 100- to 1000-fold
higher for patients who developed severe dengue compared
to thosewithDF [28]. Some studies have shown that antibody
dependent enhancement causes severe dengue in secondary
infections [5] but [30] found that a significant proportion of
primary infections may also cause severe disease indicating
a non-ADE mechanism. Also there is evidence that excessive
activation of the immune systemmay lead to a cytokine storm
which may cross-react with vascular endothelium and cause
increased vascular permeability and vascular leak leading to
severe dengue disease [14, 31–33]. Thus by analyzing the sen-
sitivity of the model parameters, we can identify which para-
meters and parameter values may contribute towards severe
dengue.

2. Methods

2.1. Model Development. Here we develop a model to study
the within-host dynamics of dengue infection which incor-
porates both innate and adaptive immune response. We
assume that only one serotype of dengue virus circulates in an
infected host and the virus infects monocytes, macrophages,
dendritic cells, and hepatocytes in the blood stream. This
model is an extension of the model presented in [5] in which
only humoral immune response is considered in clearing
primary and secondary dengue infection. In acute infection,
apart from [14] which describes the role of innate immunity
in dengue infection, most influenzamodels highlight the role
of innate immune response on viral control [9, 34, 35].

To model the effects of innate immune response on
dengue viral dynamics, wemake the assumption that number
of activated NK cells is proportional to the level of IFN as
in the recently published dengue model [14] and influenza
model [9].

2.2. The Mathematical Model. The dynamics of healthy cells,
infected cells, virus, B-cells, antibodies, and interferon are
described in the following system of equations.

𝑑𝑆
𝑑𝑡 = 𝜇 − 𝛼𝑆 − 𝑎𝑆𝑉
𝑑𝐼
𝑑𝑡 = 𝑎𝑆𝑉 − 𝛽𝐼 − 𝜙𝐼𝐹
𝑑𝑉
𝑑𝑡 = 𝑘𝐼 − 𝛾𝑉 − 𝑝𝑉𝐴
𝑑𝐵
𝑑𝑡 = 𝜂 − 𝛿𝐵 + 𝑐𝐵𝑉
𝑑𝐴
𝑑𝑡 = 𝑓𝐵 − 𝑞𝐴𝑉 − 𝜅𝐴
𝑑𝐹
𝑑𝑡 = 𝑞1𝐼 − 𝑑𝐹,

(1)

where 𝑆 indicates susceptible cells (monocytes, macrophages,
dendritic cells, hepatocytes, ormast cells), 𝐼 indicates infected
cells,𝑉 indicates dengue virus particles,𝐵 indicates B-cells,𝐴
indicates antibodies, and 𝐹 indicates interferon. Susceptible
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Figure 1: Human immune system.

cells are produced at a constant rate 𝜇 and they die at a rate 𝛼.
Susceptible cells become infected by virus at a rate 𝑎𝑆𝑉, where𝑎 is the rate of infection. The infection period is assumed
constant given by 1/𝛽.The infected cells are killed byNK cells
at a rate proportional to 𝜙. Virus replicates in infected cells
and bursts out at a rate 𝑘 and decays at a rate 𝛾. Virus is being
neutralized by antibodies at a rate 𝑝. B-cells are produced at
a constant rate 𝜂 and die at a rate 𝛿. On coming into contact
with virus, B-cells become activated at a rate 𝑐.These activated
B-cells then transform into plasma cells (denoted by the same
variable as B-cells) which produce antibodies (𝐴) at a rate 𝑓.
Antibodies are destroyed by virus at a rate 𝑞 and naturally at
a rate 𝜅. IFN (𝐹) is produced by infected cells at a rate 𝑞

1
and

decays at a rate 𝑑. A schematic diagram of model (1) is shown
in Figure 2.

2.3. Parameters of the Model. Description of model param-
eters along with baseline parameter values is given in the
Nomenclature section.Weparametrize themodel parameters
using a combination of literature estimates [5, 6, 14].

3. Results

3.1. Numerical Simulation. A numerical simulation of the
model (1) is done inMATLAB using the ODE45 solver and is
given in Figure 3. The parameter values used for this simula-
tion are given in the Nomenclature section. In our simulation
model, we observe bimodal virus titer peaks. The first peak
occurs around day 1 after infection and the second virus
peak occurs around day 5. The viral load declines rapidly
after the first peak, then generates a second peak around
day 5, and finally declines to below detection limit within
7–14 days which is in line with clinical observations [20, 36].
Interferon also displays similar kind of behaviour which is

agreeable with experimental studies [30]. However there is
a delay in production of antibodies which rises above their
limit of detection approximately 4–7 days after infection, con-
sistent with experimental findings [19, 37]. The second viral
decline emerges with the generation of antibodies and with-
out antibodymediated immune response the virus will not be
cleared from the host.

Next, our aim is to analyze the effects ofmodel parameters
on dynamics of dengue infection. For this, we carry out a
sensitivity analysis for key parameters such as the infection
rate, 𝑎, antibody production rate, 𝑓, and virus burst rate, 𝑘,
and consider the mean virus count and the standard devia-
tions that can be used as basis for understanding the patterns
of disease severity.

3.2. Sensitivity Analysis. A sensitivity analysis of the model
was done with respect to 𝑎, 𝑓, and 𝑘. For this, we solve the
model for random values of each parameter using explicit
Euler method which is described as follows.

Given an initial value problem,
𝑑𝑦
𝑑𝑡 = 𝑓 (𝑡, 𝑦 (𝑡)) ,

𝑦 (𝑡
0
) = 𝑦
0
.

(2)

We decide upon what interval we desire to find the solution.
Then we subdivide this interval into small lengths of ℎ. Then,
using the initial condition as our starting point, we generate
the rest of the solution by using the iterative formulas:

𝑡
𝑛+1
= 𝑡
𝑛
+ ℎ

𝑦
𝑛+1
= 𝑦
𝑛
+ ℎ𝑓 (𝑡

𝑛
, 𝑦
𝑛
) . (3)

Thevalue of𝑦
𝑛
is an approximation of the solution to theODE

at time 𝑡
𝑛
. Thus 𝑦

𝑛
≈ 𝑦(𝑡
𝑛
).
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Figure 2: Schematic representation of the mathematical model.
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Figure 3: The dynamics of 𝑆, 𝐼, 𝑉, 𝐵, 𝐴, 𝐹. The parameter values used are 𝜇 = 20, 𝛼 = 0.05, 𝑎 = 0.0013, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007,𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9, 𝑓 = 0.8, 𝑘 = 2, 𝑞
1
= 0.8, 𝑑 = 0.7, 𝜙 = 0.002. Initial condition (𝑆, 𝐼, 𝑉, 𝐵, 𝐴, 𝐹) = (200, 50, 100, 200, 0, 0).
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The mean virus count and the standard deviation of the
virus count are visualized using MATLAB software package
and the algorithm used is given as follows.

Algorithm for the Sensitivity Analysis

Step 1. Input the parameter values except the parameter for
which the sensitivity analysis is carried for.

Step 2. Set up the initial conditions.

Step 3. Create 1000 random values of the parameter within a
specified interval.

𝑝 = (V − 𝑢) ∗ rand(1000, 1) + 𝑢
𝑝 = generates random numbers ∈ (𝑢, V).

Step 4. Create an iterative loop

𝑁 = number of time intervals
ℎ = (𝑡max − 𝑡0)/𝑁
for 𝑖 = 1 : number of random numbers do
for 𝑛 = 1 : 𝑁 do

for each 𝑖
𝑡
𝑛+1
= 𝑡
𝑛
+ ℎ

𝑦
𝑛+1
= 𝑦
𝑛
+ ℎ ∗ 𝑓(𝑡

𝑛
, 𝑦
𝑛
)

end for
end for
compute mean(𝑦)
compute sd(𝑦)

3.2.1. Sensitivity Analysis of Rate of Infection (𝑎). To analyze
the sensitivity of the model with respect to the rate of infec-
tion (the rate at which healthy cells are converted to infected
cells due to interaction with virus particles (𝑎)), we solve the
model numerically for randomized values of 𝑎. Using explicit
Euler method, we can analyze how sensitive the system
reacts to fluctuations in 𝑎. Here we use initial conditions(𝑆, 𝐼, 𝑉, 𝐵, 𝐴, 𝐹) = (200, 50, 100, 200, 0, 0) and the parameter
values used are 𝜇 = 20, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5,𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9, 𝑓 = 0.8,𝑘 = 2, 𝑞

1
= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.

In Figures 4(a), 5(a), 6(a), and 7(a), the mean value of the
virus count 𝑉 over 1000 runs of the model (1) is visualized.
Figures 4(b), 5(b), 6(b), and 7(b) show the standard deviation
of the solutions around the mean value. As seen from
Figure 4(a), for small values of 𝑎, after a first increasing phase,
the mean virus count declines rapidly and the infection gets
clearedwithin 15 days. Also it is seen that there are small vari-
ations in the virus count,𝑉, around the climax (Figure 4(b)).
Since there is only one predictable fluctuation and since the
standard deviation goes to negligible levels, it is inferred that
the system is insensitive to changes in 𝑎 between 00001 and0.0005.

It is clear from Figure 5(a), for values of 𝑎 between 0.0009
and 0.0018, the viral load increases rapidly and reaches its

first peak around day 1. After the peak, the viral load declines
and then experiences another peak around day 5. After the
second peak, the viral load declines again to its disease free
equilibrium. Figure 5(b) shows there are variations around
the means near both peaks. The variations around the two
peaks and infection clear-out point are quite high compared
to the mean.Thus we can confirm that the system is sensitive
for disturbances in 𝑎 in this region. From Figures 6(a) and
6(b), it is seen that for 𝑎 values between 0.0018 and 0.003 there
are fluctuations around the mean between the first peak and
the third peak. Thus we can infer that the system is sensitive
to changes in this region even though the standard deviation
of the virus count eventually goes to undetectable levels.

Figure 7(a) shows that, for high values of 𝑎, the viral
load increases rapidly, reaches its peak, and then declines
gradually to its endemic equilibrium.Thus the infection does
not clear up from the host. Also we can see from Figure 7(b)
that the variations in the mean approach zero. Thus we can
conclude that the mean virus count converges to some fixed
nonzero value.

Further, by comparing Figures 4(a), 5(a), 6(a), and 7(a)
it is observable that, for small values of 𝑎, the infection gets
cleared from the host and for larger values of 𝑎, the infection
remains endemic.Thus themodel is stable with respect to the
infection rate 𝑎.
3.2.2. Sensitivity Analysis of Production Rate of Antibodies (𝑓).
Here the variation of dynamics of (1) with respect to rate of
production of antibodies, 𝑓, is considered. The mean virus
count and the standard deviation of the virus count are visu-
alized for different ranges of 𝑓. The initial values and other
parameter values remain the same as in the sensitivity anal-
ysis for the infection rate to guarantee comparability.

In Figures 8(a), 9(a), and 10(a), the mean value of 𝑉 over1000 runs is visualized for different ranges of 𝑓. As seen
in Figure 8(a), for large 𝑓 values, the viral load increases
gradually to its peak and then declines rapidly to the disease
free equilibrium. It is clearly seen from Figure 8(b) that the
standard deviation of the virus count is high around the cli-
max. However, this variation around the mean exists only for
a short period and then the standard deviation converges to
zero. This confirms that the system is robust towards the
variations for high production rate of antibodies.

For 𝑓 between 0.7 and 1.5, it is evident from Figure 9(a)
that two peaks occur in the viral load and there is a high
standard deviation in the mean virus count near the second
peak (Figure 9(b)). These fluctuations remain only for a
short period of time and the smooth behaviour of the curve
afterward predicts that the system is not very susceptible for
disturbances in 𝑓 in this region.

Similarly, it is clear from Figures 10(a) and 10(b) that, for
low values of 𝑓, the infection remains endemic within host
and the fluctuations around the mean are very high. From
these observations, it can be inferred that the antibody dy-
namics has a predictable effect on the behaviour of the virus
count.

3.2.3. Sensitivity Analysis of Burst Rate of Virus Particles (𝑘).
Themean virus count and its standard deviation are depicted
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Figure 4: (a) Mean value of the virus count and (b) standard deviation of the virus count for randomized values of 𝑎 between 0.00001 and
0.0005. The parameter values used are 𝜇 = 20, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9, 𝑓 = 0.8,𝑘 = 2, 𝑞
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= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.
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Figure 5: (a) Mean value of the virus count and (b) standard deviation of the virus count for randomized values of 𝑎 between 0.0009 and
0.0018. The parameter values used are 𝜇 = 20, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9, 𝑓 = 0.8,𝑘 = 2, 𝑞
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= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.
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Figure 6: (a) Mean value of the virus count and (b) standard deviation of the virus count for randomized values of 𝑎 between 0.0018 and
0.003. The parameter values used are 𝜇 = 20, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9, 𝑓 = 0.8,𝑘 = 2, 𝑞
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= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.
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Figure 7: (a) Mean value of the virus count and (b) standard deviation of the virus count for randomized values of 𝑎 between 0.07 and 0.1.
The parameter values used are 𝜇 = 20, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9, 𝑓 = 0.8, 𝑘 = 2,𝑞
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= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.

5 10 150
Time (days)

0
20
40
60
80

100
120
140
160
180
200

M
ea

n 
vi

ru
s c

ou
nt

(a)

5 10 150
Time (days)

0

1

2

3

4

5

6

7

8

9
St

an
da

rd
 d

ev
ia

tio
n 

of
 v

iru
s c

ou
nt

(b)

Figure 8: (a) Mean value of the virus count and (b) standard deviation of the virus count for randomized values of 𝑓 between 1.5 and 2.5.
The parameter values used are 𝜇 = 20, 𝑎 = 0.0013, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9,𝑘 = 2, 𝑞

1
= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.

for different ranges of virus burst rate, 𝑘. In each case, the
immune response is also drawn for a random value of 𝑘
within each range to observe the immune response to changes
in viral load.The initial values remain the same as in previous
cases.

For small values of 𝑘, the mean virus count (Figure 11(a))
would yield only one peak and then rapidly converge to the
disease free equilibrium. It is clear fromFigure 11(b) that there
is a high standard deviation around themean near the climax
but the standard deviation rapidly declines to negligible levels
after a short time. The immune response to changes in 𝑘,
within this range, is visualized in Figure 15.

For 𝑘 between 1 and 1.8, an endemic state in the mean
virus count is observed. The standard deviation also varies
throughout this period and converges to an endemic equilib-
rium (Figure 12(b)). Further, from Figure 16, it is observed
that both innate immune response and antibody mediated
immune response fluctuate within a small range for 𝑘 within
this range. For 𝑘 between 1.9 and 2.7, two viral peaks are

observed in the mean virus count and if we increase 𝑘 fur-
ther, only one peak in the mean virus count is seen. This
phenomenon is shown in Figures 13(a) and 14(a), respectively.
The explanation for this phenomenon could be understood
by the immune response visualized in Figures 17 and 18, re-
spectively.

Even though only one peak is observed in the mean
virus count for high values of 𝑘, we see many oscillations
in the standard deviation around the mean virus count (Fig-
ure 14(b)). Also it can be seen from Figure 13(b) that fluctua-
tions in standard deviation around the mean exist for 𝑘 be-
tween 1.9 and 2.7. Thus we can infer that the system is highly
sensitive for changes in the parameter 𝑘.
4. Basic Reproduction Number and
Stability Analysis

4.1. The Basic Reproduction Number. Whether or not the
virus can grow and establish a persistent infection depends
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on the basic reproduction number. The basic reproduction
number, 𝑅

0
, is defined as the average number of infected

cells produced by each infected cell when almost all cells
are uninfected [38]. The basic reproduction number was
calculated using the next generation method and is given by
the following equation.

𝑅
0
= 𝑎𝛿𝜅𝜇𝑘
𝛼𝛽 (𝛿𝛾𝜅 + 𝜂𝑓𝑝) . (4)

If 𝑅
0
< 1, the infection will be cleared ultimately. Initially

the virusmay spread, but once the immune response becomes
fully activated, each infected cell will give rise to less than one
infected cell, in which the virus population may decline and
die out. If 𝑅

0
> 1, the infection will persist and give rise to

an endemic equilibrium where the virus count would settle
to some nonzero value.

4.2. Stability Analysis. In order to discuss the stability of the
model, we first solve system (1) for its equilibrium points.

The infection free equilibrium point is obtained when𝑉∗ = 0 and is given by the following equation.

𝐸
1
= (𝑆∗, 𝐼∗, 𝑉∗, 𝐵∗, 𝐴∗, 𝐹∗) = (𝜇𝛼 , 0, 0,

𝜂
𝛿 ,
𝑓𝜂
𝛿𝜅 , 0) . (5)

In this case, the virus gets cleared in a short time while the
antibodies persist in the body for a long time.

We next study the stability of the infection free steady
state. For this, we must first linearize the system about its
equilibrium points and the corresponding Jacobian matrix is
given by the following equation.

𝐽 =
[[[[[[[[[[[
[

− (𝛼 + 𝑎𝑉∗) 0 −𝑎𝑆∗ 0 0 0
𝑎𝑉∗ −𝛽 − 𝜙𝐹∗ 𝑎𝑆∗ 0 0 −𝜙𝐼∗
0 𝑘 − (𝛾 + 𝑝𝐴∗) 0 −𝑝𝑉∗ 0
0 0 𝑐𝐵∗ (𝑐𝑉∗ − 𝛿) 0 0
0 0 −𝑞𝐴∗ 𝑓 − (𝑞𝑉∗ + 𝜅) 0
0 𝑞

1
0 0 0 −𝑑

]]]]]]]]]]]
]

. (6)

After substituting the equilibrium points given in (5), the
characteristic equation of 𝐽 can be written as in the following
equation.

𝐺 (𝜆) = (𝑑 + 𝜆) (𝜅 + 𝜆) (𝛿 + 𝜆) (𝛼 + 𝜆) (𝛼𝛿𝜅𝜆2
+ (𝛼𝛿𝜅 (𝛽 + 𝛾) + 𝛼𝜂𝑓𝑝) 𝜆 + 𝛼𝛽 (𝛿𝛾𝜅 + 𝜂𝑓𝑝)
− 𝑎𝜇𝑘𝛿𝜅) .

(7)

The eigenvalues of (7) are

𝜆
1
= −𝑑

𝜆
2
= −𝜅

𝜆
3
= −𝛿

𝜆
4
= −𝛼

𝜆
5
= −𝑏 ± √𝑏2 + 4𝛼2𝛽𝛿𝜅 (𝛿𝛾𝜅 + 𝜂𝑓𝑝) (𝑅0 − 1)2𝛼𝛿𝜅

where 𝑏 = (𝛼𝛿𝜅 (𝛽 + 𝛾) + 𝛼𝜂𝑓𝑝) .

(8)

It can be seen that all eigenvalues will be negative if 𝑅
0
<1. Thus the infection free equilibrium is stable if 𝑅

0
< 1.

The basic reproduction number was calculated for dif-
ferent rates of infection and is depicted in Figures 19(a) and
19(b). As seen from Figures 4(a), 5(a), and 6(a), the mean

virus count converges to 0 for 𝑎 between 0.00001 and 0.003
and in this case it is seen by Figure 19(a) that 𝑅

0
< 1.

We can prove that model (1) has a unique endemic
equilibrium if 𝑅

0
> 1. The analytical proof is not shown here.

In Figure 19(b), 𝑅
0
was computed for randomized values of𝑎 within the range 0.07–0.1 and it was observed that 𝑅

0
> 1.

Also it can be seen by Figure 20 for 𝑎 between 0.07 and 0.1,
susceptible cells, 𝑆, infected cells, 𝐼, dengue virus particles,𝑉,
B-cells, 𝐵, antibodies, 𝐴, and interferon, 𝐹, converge to their
endemic equilibrium values marked with an asterisk. Thus
numerically it can be seen that the endemic equilibrium is
stable for 𝑅

0
> 1 and the virus count settles to some nonzero

value.
Similarly for 𝑓 between 0.7 and 2.5, we can see from Fig-

ure 21(a) that 𝑅
0
< 1 and for 𝑓 between 0.005 and 0.01, 𝑅

0
>1(Figure 21(b)). From Figure 22, it is clear that the endemic

equilibrium is stable for 𝑅
0
> 1 and the virus count con-

verges to some nonzero value.

5. Discussion

In this study, a conceptual simulation model was developed
using a system of ordinary differential equations to under-
stand the dynamics of dengue virus.The ordinary differential
equations describe the dynamical behaviour of healthy cells,
infected cells, virus count, B-cells, antibodies, and interferon.
We were able to generate bimodal virus titer peaks by adding
the effect of IFN. A simple immune response model cannot
produce a rapid viral decline after the first peak unless the
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Figure 9: (a) Mean value of the virus count and (b) standard deviation of the virus count for randomized values of 𝑓 between 0.7 and 1.5.
The parameter values used are 𝜇 = 20, 𝑎 = 0.0013, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9,𝑘 = 2, 𝑞

1
= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.
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Figure 10: (a) Mean value of the virus count and (b) standard deviation of the virus count for randomized values of 𝑓 between 0.005 and
0.01. The parameter values used are 𝜇 = 20, 𝑎 = 0.0013, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9,𝑘 = 2, 𝑞

1
= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.
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Figure 11: (a) Mean value of the virus count and (b) standard deviation of the virus count for randomized values of 𝑘 between 0.1 and 1. The
parameter values used are 𝜇 = 20, 𝑎 = 0.0013, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9, 𝑓 = 0.8,𝑞
1
= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.
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Figure 12: (a) Mean value of the virus count and (b) standard deviation of the virus count for randomized values of 𝑘 between 1 and 1.8. The
parameter values used are 𝜇 = 20, 𝑎 = 0.0013, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9, 𝑓 = 0.8,𝑞
1
= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.
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Figure 13: (a) Mean value of the virus count and (b) standard deviation of the virus count for randomized values of 𝑘 between 1.9 and 2.7.
The parameter values used are 𝜇 = 20, 𝑎 = 0.0013, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9,𝑓 = 0.8, 𝑞

1
= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.
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Figure 14: (a) Mean value of the virus count and (b) standard deviation of the virus count for randomized values of 𝑘 between 2.7 and 4.The
parameter values used are 𝜇 = 20, 𝑎 = 0.0013, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9, 𝑓 = 0.8,𝑞
1
= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.
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Figure 15: Immune response for 𝑘 = 0.5.

death rate of infected cells is chosen to be very large [9].
But this will completely eliminate the second peak which
is observed in this study. Thus the first viral decline in this
model can be explained by the killing of infected cells by IFN
activated NK cells during the innate immune response. The
proposed simulation model has made the assumption that
level of activated NK cells is proportional to the level of IFN.

As the innate immune response weakens, the killing of
infected cells by NK cells lapses, which would increase the
level of infected cells and give rise to a second viral titer peak.
After reaching the second peak around day 5 after infection,
the virus count declined to below detection level within
7–14 days which is agreeable with clinical observations [20,
36]. The second viral decline is mainly due to the antibody
mediated immune response which is needed in the model for
the eventual viral clearance. Numerical simulation presented
in Figure 3 confirmed this phenomenon. Also it can be seen
from Figure 3 that a positive correlation exists between virus
count and IFNwhich is in linewith experimental studies [30].

We then examined the sensitivity of the viral load with
respect to several key parameters including 𝑎,𝑓, and 𝑘 that are
thought to play a significant role in dengue infection. Accord-
ing to clinical expertise, a person with dengue infection is
advised to bed rest and frequent review of fluid management
is done. One can argue that this can affect model parameters

such as the infection rate or the virus burst rate of a host. For
example, it might be the case that, by bed rest, the infection
rate or the virus burst rate can be lowered. On the other hand,
if we consider a parameter such as production rate of healthy
cells, 𝜇, it might depend on age and sex. So if we arbitrarily
change it without considering different groups, it might not
display correct results. Thus the proposed qualitative model
can be enhanced to fit with clinical data if the significant
parameters are identified.

For very low values of the infection rate, 𝑎, the second
viral peak is not visible because of cytolysis of infected cells by
NK cells. Thus the infection is controlled by innate immune
response. However antibody mediated immune response
is needed for the ultimate virus clearance. For moderate
infection rates, both innate immune response and antibody
mediated immune response are needed to clear the virus
from the host. As we increase 𝑎, the number of peaks in
viral load also increases. For higher values of 𝑎, both immune
responses are unable to clear the infection from the host
and the infection remains endemic. In order to validate the
results, the basic reproduction number,𝑅

0
, was computed for

different ranges of 𝑎 and it was observed that, for small values
of 𝑎,𝑅

0
< 1, where the infection would eventually die out and

for high values of 𝑎,𝑅
0
> 1. It is clear from Figure 20, for high
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Figure 16: Immune response for 𝑘 = 1.5.

𝑎 values (𝑅
0
> 1), the virus count converges to some nonzero

value.
By looking at Figures 5(b) and 6(b) it can be seen that the

standard deviation of the mean virus count fluctuates within
the first ten days and then converges to zero. But this does not
mean that patients with such infection rates can be neglected,
as we have to greatly care for them within the first ten days
as their conditions can worsen. However from Figure 4(b) it
can be concluded that we do not have to worry about patients
with small infection rates because even though the standard
deviation of the virus count is relatively high near the climax,
the smooth behaviour of the curve and decreasing rapidly to
zero makes it negligible. Thus it can be concluded that the
system is highly sensitive to changes in 𝑎.

The same pattern of behaviour was observed with respect
to antibody production rate, 𝑓. Smaller production rates
generated an endemic equilibrium in the virus count and
high fluctuations in the standard deviation. Thus both innate
and antibody immune responses were unable to curb the
infection. In this case 𝑅

0
> 1 and from Figure 22 it is clear

that the endemic equilibrium is stable for small 𝑓 values.
For moderate and high values of 𝑓, the mean virus count
displayed two peaks and one peak, respectively, and the
standard deviations around themeans displayed a predictable
pattern and converged to zero ultimately. Higher production
rate of antibodies eliminated the second peak as antibody

mediated immune response alone controlled the infection.
For these two cases, 𝑅

0
was computed and was less than one

(Figure 21(a)) leading to an infection free steady state.Thus it
can be concluded that the production rate of antibodies has
a significant effect on the model but displays a predictable
behaviour.

A different sensitivity pattern was observed for changes
in virus burst rate, 𝑘. The human immune system is an enor-
mously complex interrelated system. When the virus burst
rate 𝑘 is small, there is only a less virus count. Since B-cells are
activated by virus, the number of B-cells is proportional to the
virus count. Therefore for low 𝑘 values, there is only a fewer
number of B-cells, thus less antibodies. Hence the first peak
is controlled by the innate immune system and the antibodies
would eventually lead to virus clearance, whereas when 𝑘
is large, there is a higher viral count and proportionally a
higher antibody count. The first peak is controlled by innate
immunity and by antibody mediated immune response and
this high antibody count eliminates the second viral peak.
This phenomenon can be seen in Figures 15 and 18, respec-
tively. For 𝑘 values between 1 and 1.8, an oscillatory behaviour
in the virus count is observed. The reason can be explained
by Figure 16. When the viral load decreases, IFN would also
decrease, since there is a positive correlation between IFN
and virus count [30]. When the number of virus counts is
small, the antibody level in human body would also be small.
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Figure 17: Immune response for 𝑘 = 2.

Hence both innate and antibody immune response are unable
to control the virus count, making it rise up.Then IFN would
also proportionally increase and decrease the virus count,
thus making less number of antibodies as the virus count is
proportional to number of antibodies. Thus both IFN and
antibodieswould fluctuatewithin a small range but are unable
to control the virus.

When 𝑘 is large enough, from Figure 18 a high viremia
titer peak and excessive activation of the immune response
can be seen. According to [28, 29], high viremia peaks in the
early course of infection are associated with severe disease.
Also in [14] it is noted that excessive activation of the immune
response may lead to severe disease. Thus it can be inferred
that when the virus burst rate is high, a person can experience
severe dengue. Oscillations in the standard deviation of the
virus count during the first few days as shown in Figure 14(b)
make it a worrisome condition even though the standard
deviation goes to zero eventually.Thus with close monitoring
and extra care, the spread of the virus can be controlled and
eliminated from the host.

6. Conclusions

In this study, a computer simulation model based on an ODE
dynamical systemwas developed to understand the dynamics

of dengue virus. A sensitivity analysis of some key parameters
was carried out to better understand the development of
severe disease and what role model parameters play in severe
dengue disease. Also the stability of the infection free steady
state and endemic steady state of the model were discussed
with respect to the basic reproduction number,𝑅

0
.Then a de-

tailed numerical analysis was done to identify the relevant pa-
rameter values that leads to infection free or infectious states.

Two viral titer peaks were observed in our simulation
model and was able to show that cytolysis of infected cells by
NK cells during innate immune response is responsible for
the rapid viral decline after the first peak and for the sub-
sequent second peak. Humoral immune response is needed
for the second viral decline and to eventually clear the virus.

Sensitivity analysis of the parameters 𝑎, 𝑓, and 𝑘 was
carried out to predict the viral load changes and to analyze
the dynamics of immune responses. As the infection rate 𝑎
is increased, the number of peaks in the viral load would
increase leading to a virus persistence state. In this case, it was
observed that the basic reproduction number 𝑅

0
> 1. Oscil-

lations in the standard deviations of the mean virus count
for all different values of 𝑎 implied that the model is highly
sensitive to changes in the parameter 𝑎.

As the antibody production rate 𝑓 increased, the number
of virus titer peaks and the mean viral load decreased. This
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Figure 18: Immune response for 𝑘 = 4.
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Figure 19: (a) 𝑅
0
for randomized values of 𝑎 between 0.00001 and 0.003 and (b) 𝑅

0
for randomized values of 𝑎 between 0.07 and 0.1. The

parameter values used are 𝜇 = 20, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9, 𝑓 = 0.8, 𝑞
1
= 0.8,𝑑 = 0.7, 𝜙 = 0.002.

implies that the antibody dynamics has a significant effect on
the viral load. Also for high 𝑓 values, 𝑅

0
< 1 and the virus

count converged to zero. The fluctuations in standard devia-
tion around the mean, for different values of 𝑓, displayed a
predictable behaviour.

As the virus burst rate is increased, the number of virus
titer peaks decreased. For high 𝑘 values, only one peak was

observed in the viral load. As the burst rate is high, the virus
count is high and since activated B-cells are proportional to
the virus count, there is a high B-cell count and propor-
tionally a high antibody count. Thus the viral load is con-
trolled by IFN and antibodies and because of high immune
response, the second peak is entirely eliminated. However
since this situation displays a high initial viral peak and excess
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Figure 20: Endemic equilibrium. In this case, 𝑅
0
> 1. The equilibrium points are marked with an “∗”.The parameter values used are 𝜇 = 20,𝑎 = 0.07, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9, 𝑓 = 0.8, 𝑞

1
= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.
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Figure 21: (a)𝑅
0
for randomized values of𝑓 between 0.7 and 2.5 and (b)𝑅

0
for randomized values of𝑓 between 0.005 and 0.01.The parameter

values used are 𝜇 = 20, 𝑎 = 0.0013, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9, 𝑞
1
= 0.8, 𝑑 = 0.7,𝜙 = 0.002.
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Figure 22: Endemic equilibrium. In this case, 𝑅
0
> 1. The equilibrium points are marked with an “∗”. The parameter values used are 𝜇 = 20,𝑎 = 0.0013, 𝛼 = 0.05, 𝛽 = 0.5, 𝜅 = 0.009, 𝛾 = 0.5, 𝑝 = 0.007, 𝜂 = 10, 𝛿 = 0.049, 𝑐 = 0.001, 𝑞 = 0.9, 𝑓 = 0.005, 𝑞

1
= 0.8, 𝑑 = 0.7, 𝜙 = 0.002.

activation of immune response, it can represent a severe
dengue condition. For intermediate 𝑘 values, we observed
oscillatory behaviour in the virus count, IFN, and antibody
count. Figure 16 represents this situation which leads to a
virus persistence state. Thus it cannot be predicted that as𝑘 increases, the virus count would lead to an endemic state,
which is a false statement. This explains the fact that human
body is an interrelated system and increasing one parameter
may not lead to an adverse effect.

Nomenclature

𝜇: Production rate of healthy cells, 20 cells/(day⋅𝜇l)𝛼: Death rate of healthy cells, 0.05/day𝑎: Rate at which healthy cells are converted to
infected cells due to their interaction with virus
particles, 0.0013 cells/(day⋅𝜇l)𝛽: Death rate of infected cells, 0.5/day𝜙: Rate at which infected cells are being killed by NK
cells, 0.002/day𝑘: Burst rate of virus particles, 2/day𝛾: Rate at which virus particles degrade, 0.5/day𝑝: Rate at which virus particles are neutralized by
antibodies, 0.007 cells/day𝜂: Production rate of B-lymphocytes,
10 cells/(day⋅𝜇l)𝛿: Death rate of B-lymphocytes, 0.049/day𝑐: Rate at which B-lymphocytes are stimulated by
virus particles, 0.001 cells/day

𝑓: Rate at which stimulated B-cells (Plasma
cells) produce antibodies, 0.8/day𝑞: Rate at which antibody virus complex
affects the antibody growth, 0.9/day𝜅: Rate at which free antibodies degrade,
0.009/day𝑞
1
: Production rate of IFN, 0.8 cells/(day⋅𝜇l)𝑑: Rate of decay of IFN, 0.7/day.
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