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Abstract

Under stable growth conditions, bacteria maintain cell size homeostasis through coordinated elongation
and division. However, fluctuations in nutrient availability result in dynamic regulation of the target cell size.
Using microscopy imaging and mathematical modelling, we examine how bacterial cell volume changes over
the growth curve in response to nutrient conditions. We find that two rod-shaped bacteria, Escherichia coli
and Salmonella enterica, exhibit similar cell volume distributions in stationary phase cultures irrespective
of growth media. Cell resuspension in rich media results in a transient peak with a five-fold increase in
cell volume ≈ 2h after resuspension. This maximum cell volume, which depends on nutrient composition,
subsequently decreases to the stationary phase cell size. Continuous nutrient supply sustains the maximum
volume. In poor nutrient conditions, cell volume shows minimal changes over the growth curve, but a markedly
decreased cell width compared to other conditions. The observed cell volume dynamics translate into non-
monotonic dynamics in the ratio between biomass (optical density) and cell number (colony-forming units),
highlighting their non-linear relationship. Our findings support a heuristic model comparing modulation of cell
division relative to growth across nutrient conditions and providing novel insight into the mechanisms of cell
size control under dynamic environmental conditions.
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Introduction1

Bacteria modulate their cell size by balancing cell elongation and division timing in response to environmen-2

tal conditions, which is crucial for the optimal use of resources [1]. Changes in cell size are subject to cell3

functionality optimization [2–5] as well as limitations imposed by the differing kinetics of chemical fluxes across4

growth conditions [3, 6–8]. The efficiency of nutrient uptake and waste excretion, for example, is determined5

by the physical dimensions of a cell, including volume, shape, and surface-to-volume ratio [9]. Furthermore,6

fluctuations in cell size are a key source of noise in gene expression, potentially decreasing cellular functionality7

and fitness [10–12]. This physiological efficiency, in turn, affects the cell elongation and replication rates, i.e.,8

the fitness of a population. Therefore, controlling cell size is crucial for bacterial fitness, indicating evolutionary9

pressure to optimize its regulation across nutrient conditions [13].10

Understanding cell size under variable nutrient conditions is of particular relevance, as natural growth con-11

ditions are rarely constant and require bacterial cells to adjust their size to these changing conditions [14]. With12

population growth, nutrients are depleted, leading to a slowing and eventually halting of cell growth. Recent13

developments in cell trapping, tracking and imaging techniques have revealed significant changes in bacterial14

cell volume during different stages of the growth curve [15–17] with larger cells found during exponential growth15

(in nutrient-rich conditions) and smaller cells during nutrient-poorer phases [18]. In such time-varying nutrient16
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environments, cell volume appears to be determined by the balance between prioritizing investment in biomass17

production or cell division [15, 19]. Investigating the dynamics and mechanisms of this balance is important to18

understand the synchronization of processes connected to growth and division, such as cell elongation, chro-19

mosome replication, and protein synthesis [15, 19], which are responsible for the rapid adaptation of bacterial20

cells to new nutrient environments [14,19].21

In this study, we used single-cell microscopy and modelling approaches to follow cell volume dynamics22

along the growth curve under various nutrient conditions for two gram-negative rod-shaped bacterial species23

– Escherichia coli and Salmonella enterica. We expand the scope of previous investigations by analyzing cell24

volume distributions over a wider set of nutrient conditions, revealing complex trends in volume dynamics that25

are not directly related to growth rate but the nutrient environment.26

We used microscopy images of rod-shaped bacterial cells at different stages of the growth curve to esti-27

mate their volume using recent cell segmentation techniques. We found that cell volume peaked in the early28

exponential phase and that the volume distribution at this peak could be sustained for several hours by culture29

dilution with fresh media. In nutrient-limited growth environments, however, cell volume peaks were transient.30

We found that the timing of the cell volume peaks was not correlated with maximum growth rate but rather the31

timing of growth rate decrease, i.e., nutrient depletion. Similarly, the magnitude of the peak was affected by32

nutrient composition. Further, cell volume converged in stationary phase across all conditions, aligning with33

the hypothesis of a minimum bacterial volume [20, 21]. We propose a heuristic mathematical model to explore34

the synchronization of growth and division processes necessary to produce and understand the observed cell35

volume dynamics [22].36

Figure 1: Cell volume dynamics of E. coli cells along the growth curve and for sustained exponential growth in
rich media. (A) Optical density (OD600) and (B) mean cell volume of an E. coli culture along the growth curve (blue).
(C) Examples of cells at different sampling points along the growth curve. (D) OD600 and (E) mean cell volume of an
E. coli culture in sustained exponential growth conditions (pink), which was achieved through consecutive dilutions. The
comparison with the regular growth curve is shown in light blue. (F) Examples of cells at different sampling points for
sustained exponential growth. Colored contours show the cell segmentation and black lines show the dimension used as
cell length.
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Results37

Cell volume peaks early in the growth curve38

First, we studied the growth curve in Lysogeny broth (LB), a standard, but undefined rich medium, by taking39

consecutive samples for microscopy imaging from an E. coli MG1655 culture that was grown under shaking40

conditions at 37°C (Materials and methods). The first sample was taken from an overnight culture, which had41

depleted most nutrients and reached stationary phase. These cells were then diluted into fresh LB medium42

1:1000 (t = 0) and regularly sampled (Fig. 1A-C). Cell volume was estimated from segmented bacterial contours43

in microscopy images, using the approximation that E. coli cells are rod-shaped. We also recorded the optical44

density of the population (OD600) as a proxy for biomass at each sampling point to characterize the growth curve45

dynamics (Fig. 1A) and link them to the estimated mean cell volume (Fig. 1B).46

Stationary overnight bacteria had a very small cell volume of ≈ 1µm3, which increased rapidly to ≈ 5µm3
47

over 2h (Fig. 1B,C). This peak volume was maintained only for ≈ 30min and then decreased over the next48

2h until it stabilized at a volume slightly larger than that of overnight cells. As previously observed [15], this49

peak in cell volume results in an opposing, albeit less pronounced, dip in the surface-to-volume ratio (Fig. S1).50

Analyzing the contributions of cell lengths and widths to volume changes, we observed an ≈ 1.5-fold increase in51

cell width and an ≈ 2.5-fold increase in cell length. The width increased ≈ 30min earlier than the length, while52

both decreased over similar time scales (Fig. S1A, S3). Cell length also showed a distinct broadening of the53

distributions and an increase in noise between 1 and 3h after t = 0 (Fig. S2A, S3), coinciding with the time frame54

of cell volume peak dynamics (Fig. 1B). Notably, the cell culture was still growing for several hours after the cell55

volume started to decrease. We hypothesized that the observed dynamics can be explained in two ways: either56

as a transient reaction to cell resuspension and awakening or as a consequence of changes in nutrient levels.57

Sustained exponential growth preserves peak cell volume distributions58

To test whether the decrease in cell volume was a transient event after leaving the lag phase or rather dependent59

on the changing growth environment, we kept the cell culture under sustained exponential growth conditions for60

6h. To do so, we diluted the culture 1:2 into fresh medium every 20min, beginning 2h after t = 0, i.e., around61

the time when cell volume peaked (Fig. 1D) (Materials and methods). Under sustained exponential growth,62

cells maintained a larger mean volume of ≈ 5µm3 (Fig. 1E) and a broadened volume distribution (Fig. S4) for63

the entire 6h. When we stopped diluting the culture, the cell volume immediately began to decrease. Cell size64

homeostasis under steady conditions has previously been reported, mainly from microfluidic experiments [23]65

and theoretically predicted [24, 25]. Our experiments demonstrate that the transient peak in cell volume in66

nutrient-limited growth is a physiological adaptation to changes in the growth environment – most likely nutri-67

ent depletion – and not a transient effect of growth initiation. This is supported by the fact that cell volume68

distributions remain broadened as long as the nutrient environment is maintained.69

Poor nutrient conditions lead to almost constant cell volume70

To understand how the dynamics of cell volume correlate with population growth, we next investigated cell71

volume along the growth curve under poor media conditions. We used a defined, minimal medium (M9) with72

glucose as the sole carbon source [26], which leads to slow growth, as cells need to synthesize amino acids73

rather than import them from the environment. Under these conditions, cell volume remained roughly constant74

throughout the growth curve around its stationary phase value of approximately 1µm3 (Fig. 2A). Cell length75

increased slightly during growth in M9 glucose while cell width remained constant, overall keeping the cell76

volume (as well as surface-to-volume ratio) constant (Fig. S1B).77

As cell volume dynamics in rich and poor nutrient media differed drastically, we repeated these experiments78

in another gram-negative microorganism, Salmonella enterica LT2. As S. enterica is also rod-shaped and divides79
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Figure 2: Cell volume dynamics across different nutrient conditions for E. coli and S. enterica. OD600 of the cell
culture (left) and mean cell volume (right) over time in different conditions: (A) rich to poor nutrient growth curves (blue,
dark and light green, orange) and sustained exponential growth (pink) for E. coli ; (B) rich (purple) and poor (red) nutrient
growth curves for S. enterica.

by symmetric binary fission, we would expect similar cell volume regulation as in E. coli, even though this has80

not been extensively studied before. Indeed, we found peak dynamics in rich (LB) media and almost constant81

cell volume in minimal (M9 glucose) media (Fig. 2B, S1A) as seen with E. coli (Fig. 2A, S1A).82

Peak cell volume is dependent on nutrient composition83

The contrasting cell volume dynamics in rich and poor nutrient conditions led us to investigate the nutrient84

dependence of cell volume changes. We studied E. coli in two intermediate nutrient conditions: defined M985

medium with glycerol, supplemented with 0.25% or 0.5% casamino acids (partially digested amino acids). Sur-86

prisingly, both media resulted in similar growth curves but different cell volumes (Fig. 2A). The timing of the87

cell volume peak in both supplemented M9 media was very similar (around 2h after resuspension), but the88

mean peak volume was much larger for 0.5% casamino acid supplementation compared to 0.25%. Cells grown89

in M9 with 0.5% casamino acids had a similar peak cell volume to that seen with LB, while growth in 0.25%90

casamino acid supplementation resulted in a peak volume approximately halfway between poor and rich media91

(≈ 3µm3) (Fig. 2A). Similarly, when calculating the surface-to-volume ratio, we found a much smaller change92

for M9 supplemented with 0.25% casamino acids, although the difference was not as pronounced as for cell93

volume (Fig. S1B). Generally, for LB and M9 supplemented with casamino acids, the surface-to-volume ratio94

decreased during the first 2h of growth and then increased during the transition to stationary phase, opposite to95

cell volume changes, but slower and with a lower magnitude of change (Fig. S1). The surface-to-volume ratio96

in M9 glucose remained relatively constant throughout the growth curve and was higher than in all richer media.97

This is correlated with the cell width in M9 glucose being consistently smaller than in the other media (Fig. S1).98

Overall, we found a strong nutrient dependence of the maximum cell volume and the cell width, whereas the99

timing of the volume peak was similar.100

The ratio between biomass (OD600) and cell numbers (CFU) shows similar peak dynam-101

ics as cell volume102

As we found a highly dynamic cell volume behaviour over the exponential growth phase in most media, we103

realized that this could affect our measurements of population growth. Population growth or increase in biomass104

of bacterial cultures in liquid media is commonly measured through optical density (OD600) [28], assuming that105

OD600 correlates linearly with biomass and that biomass correlates approximately linearly with cell density. How-106

ever, this relationship is highly dependent on the assumption that the biomass contributed by each cell is con-107
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Figure 3: The ratio between cell numbers and biomass shows a similar pattern as cell volume over the growth
curve. (A) Cell numbers as colony-forming units (CFU) (three biological replicates with four technical replicates each)
and (B) biomass as OD600 (three biological replicates) along the growth curve in LB, where lines show the best-fit curve
to measurements. (C) The ratio between biomass (OD600) and cell numbers (CFU) over the growth curve. Confidence
intervals were estimated using inference methods based on Gaussian processes [27].

sistent over time [29]. The drastic changes in cell volume observed within the first hours of growth indicate that108

this assumption does not hold under most media conditions.109

To test the dynamic relationship between cell numbers and biomass, we sampled E. coli cultures grown in LB110

over 4h after resuspension of overnight cultures and determined colony forming units (CFUs) as well as biomass111

(OD600) (Fig. 3A,B). We used three biological replicates plus four technical replicates each for CFU counts,112

taking measurements every 30min (Materials and methods). We fitted curves through these measurements113

and calculated the biomass per cell as OD600/CFU using inference based on Gaussian processes [27]. We114

found a similar peak pattern as for cell volume, although the peak occurs slightly earlier, at 1.5h instead of 2h115

after resuspension (Fig. 3C). The peak pattern agrees with the idea that our estimate of biomass per cell is116

approximately proportional to the average cell volume in the culture at any given time point.117

The peak in the ratio between OD600 and CFU is caused by a discrepancy between cell and population118

growth. Although cell elongation began soon after resuspension as visible in the increase in OD600 after 0.5-1h,119

cells were not yet dividing, meaning that CFU counts only increased after 1.5-2h. Hence, biomass increased120

soon after inoculation, but population growth was delayed by ≈ 1h under these conditions. Conversely, after121

2.5h, CFU numbers still indicate exponential population growth, while biomass growth is already levelling off,122

indicating a decrease in biomass per cell, i.e., cell volume (Fig. 3).123

A heuristic model relates changes in cell size to dynamic resource allocation124

The relationship between population growth (cell division) and biomass growth (cell growth) is dynamic, regu-125

lating cell volume under varying nutrient conditions. To understand these changes in cell division and growth126

over the growth curve, we used a simple discrete-event model. As the model does not take cell shape into127

account, we are going to refer to cell size instead of cell volume here, but for our results, the two terms can128

be seen as equivalent. We describe the change in cell size s(t) by assuming that cells grow exponentially at a129

time-dependent rate µ(t):130

ds(t)
dt

= µ(t)s(t). (1)

We can estimate µ(t) from the increase in biomass in our experiments (Fig. 4A,B): we fitted a logistic curve131

to the OD600 measurements and used it to calculate the growth rate over time (Materials and methods). As132

expected, µ(t) is high after resuspension (t = 0) and then decreases over the growth curve until it approaches133

zero with entry into the stationary phase. For simplicity, we ignore the slow growth phase during the transition134
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Figure 4: A model of cell volume dynamics shows the modulation of division rate and resource allocation over the
growth curve. (A) Biomass (OD600) over time for various nutrient conditions as shown in different colours; points show
measurements (Fig. 2A), solid lines are the fit to a logistic curve. The biomass growth for sustained exponential growth
conditions (pink line) was approximated using the biomass growth in LB. (B) Growth rates obtained from fitted curves. (C)
Comparison of the mean cell volumes shown in Fig. 2A (points and error bars) and the prediction of the mean-field model of
cell volume regulation (solid lines). (D) Dynamics of the division rate k over the growth curve in different nutrient conditions.
(E) Dynamics of the division-growth allocation parameter λ over the growth curve in different nutrient conditions.

into the stationary phase and focus on the main trends along the curve. Strikingly, µ(t) is well described by a135

constant growth rate until ≈ 2h after cell resuspension in all rich-nutrient conditions, which is the time point after136

which volume typically decreased as well (Fig. 4B).137

Cell division can be described by halving the cell size at discrete time points, as determined by the division138

rate. We assume that the division rate depends on cell size, resulting in adder size control if the division rate is139

directly proportional to cell size [30, 31]. Adder size control means that, on average, cells add a constant size140

between divisions, and is the cell size control model generally associated with E. coli [32–34] and other bacterial141

species [35–38]. Hence, we assume that the division rate scales with the cell size as well as the growth rate142

following k (t)µ(t)s(t), where µ(t)s(t) is the rate of change in cell size and k (t) is defined as the time-dependent143

division coefficient. The division event can then be described as a discrete jump:144

s
k (t)µ(t)s(t)−−−−−→ s/2. (2)

Using the mean-field approach (Materials and methods), we can now describe the dynamics of the mean145

cell size ⟨s(t)⟩ (⟨.⟩ indicating the mean at any given time point) through growth and division:146

d⟨s(t)⟩
dt

= µ(t)⟨s(t)⟩︸ ︷︷ ︸
cell growth

− k (t)µ(t)
⟨s(t)⟩2

2︸ ︷︷ ︸
cell division

. (3)

For constant k , cell division and growth are synchronized and the mean cell volume will approach the steady-147

state value: ⟨s⟩ = 2
k . In this case, the mean cell volume is independent of the growth rate as the effect of µ on148

growth and division balances out.149

However, our experiments showed that cell volume, and therefore the division coefficient k , was not constant150

over the growth curve under most nutrient conditions (Fig. 4B,C). We approximated the dynamics of k using151
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a sigmoidal function over time (Eq. (14)) and solved the equation for mean cell size (Eq. (3)) numerically152

by using our measurements for cell size (volume) and cell growth (biomass) dynamics over the growth curve153

(Materials and methods). We found that the division coefficient k starts low, increases when the growth rate154

begins to decrease, and then plateaus at its highest value when the growth rate also plateaus (Fig. 4B, 4D).155

The steepness of k increase differs between nutrient conditions and highlights that a combination of growth rate156

and cell volume determines division (see, for example, M9 supplemented with 0.25% and 0.5% casamino acids157

in Fig. 4B-D).158

How then does the relationship between cell growth and division determine cell volume? Changing nutrient159

conditions require bacterial cells to dynamically navigate the balance between cell growth and division by ad-160

justing their proteome allocation between biomass accumulation and division machinery synthesis [19]. Here,161

we avoid the complexities of modelling proteome allocation change and focus on understanding the qualitative162

changes in division-growth allocation. We can calculate the division-growth allocation coefficient λ as the pro-163

portion of division compared to all size regulation processes (i.e., division and growth) (Materials and methods):164

λ =

division︷ ︸︸ ︷
⟨kµs2⟩/2

⟨µs⟩︸︷︷︸
growth

+ ⟨kµs2⟩/2︸ ︷︷ ︸
division

≈ k⟨s⟩
2 + k⟨s⟩

, (4)

λ describes the proportional allocation of resources to division or growth, with all resources allocated to division165

for λ = 1 and all resources allocated to growth for λ = 0. The allocation is exactly 50:50 for λ = 0.5, which166

we can see for sustained growth in LB as well as for M9 with glucose, where the division coefficient and cell167

size remained constant (Fig. 4E). While λ starts to increase again in the sustained growth experiment after the168

dilutions are stopped, for M9 with glucose, the almost perfect balance of division and growth led to constant169

cell volume over 10h of growth. In all other nutrient conditions, division-growth allocation started from ≈ 20%170

(balanced towards growth) and increased to 60-70% (balanced towards division) when entering stationary phase171

(Fig. 4E), which is qualitatively consistent with studies using more sophisticated proteome allocation models172

[19]. Interestingly, growth rates and division-growth allocation are very similar for M9 supplemented with 0.25%173

or 0.5% casamino acids, but the division coefficient k has to differ to result in the experimentally observed174

differences in cell volume. This means that slight differences in nutrients can change the relationship of growth175

rate and cell volume with the propensity for division.176

Discussion177

Our study reveals general trends of cell volume dynamics and its link to growth rate and nutrient conditions over178

the growth curve. We found that the timing of cell volume dynamics was not directly correlated with maximum179

growth rate: in all nutrient-rich media (LB, M9 supplemented with casamino acids) cell volume peaked ≈ 2h after180

cell resuspension. The magnitude of the cell volume peak correlated however with the nutrient composition,181

with richer media leading to larger maximum cell volumes, which was most clearly visible across different M9182

conditions (Fig. 2). While richer media also led to higher growth rates, growth rate and cell volume seemed to183

be related through different functions with the nutrient composition of the growth medium (Fig. 4B,C).184

In nutrient-rich media, growth rate estimates showed a decrease after 2-3h. Across nutrient conditions, there185

is a coincidence between the instant when this growth started to decrease and the peak in cell volume (Fig. 4).186

This would imply that a decrease in growth rate, likely caused by the onset of nutrient depletion, determines the187

cell volume peak. The rate of volume decrease toward the common cell volume in stationary phase was different188

between nutrient conditions, but not directly correlated with growth rate or nutrient composition. Generally, the189

increase and decrease in cell volume were steepest in LB, where we also saw the fastest growth rates. The190

trends in cell size dynamics were less clear for M9 supplemented with 0.25% or 0.5% casamino acids, where191
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growth rates were very similar along the growth curve, but the maximum cell volume and cell volume dynamics192

were markedly different (Fig. 2A). This surprising independence of cell volume changes and growth rate can be193

understood through our model: growth rate can affect both processes involved in cell volume regulation, growth194

and division, differently, potentially as a function of the nutrient conditions. In our model, size regulation through195

division is quantified by the division coefficient k (Eq. (3)), which can be understood as how nutrients (and196

potentially other physiological factors) are translated into the division rate.197

Cell volume is just one of the dimensions that we can consider for cell size dynamics. Other measures are198

cell length and width, which can be determined from the segmentation masks of the microscopy images [39].199

We found that cell width increased earlier than cell length, with a delay of ≈ 30min (Fig. S1), which is consistent200

with previous studies [15, 40]. Surprisingly, there seemed to be more variation between nutrient conditions201

for cell width changes, although changes over the growth curve were greater in cell length (Fig. S1). The202

difference in cell volume dynamics between cells grown in M9 supplemented with 0.25% and 0.5% casamino203

acids, for example, was mainly because cells were significantly wider in the latter, while lengths were similar204

(Fig. S1). Such changes are particularly interesting, as bacteria can use changes in cell shape, specifically205

changes in surface-to-volume ratio, as a means of antibiotic resistance by reducing the intracellular or membrane206

concentration of an antibiotic [41]. Hence, understanding changes in cell length and width across nutrient207

conditions is important to determine the potential for cell-shape-based antibiotic resistance.208

Poor medium (M9 with glucose) presented a special case, in which cells did not show appreciable changes209

in cell volume or surface-to-volume ratio over the growth curve (Fig. S1B,C). This was mainly due to the constant210

cell width throughout the growth curve, although the cell length increased slightly (Fig. S1B,C). Interestingly, cells211

were thinner and longer than cells with similar volume in other growth conditions (which usually occurs during212

their transition to stationary phase) (Fig. S1B,C). In S. enterica, the increase in cell length in M9 with glucose213

was more pronounced than in E. coli, giving an overall slight increase in cell volume, which only decreased214

again ≈ 7h into the experiment (Fig. S1) at which point the growth rate also started to decrease (Fig. 4B).215

These results suggest that the conserved 2h peak in all other nutrient conditions was coincidental and that the216

peak is related to the change in growth rate, potentially caused by nutrient depletion. However, given the small217

change, lack of a proper peak in volume dynamics and very slow growth rate, the poor medium does not seem218

to allow for conclusive evidence about the regulation of cell volume dynamics. Furthermore, our model showed219

an almost perfect 50:50 balance of resource allocation between growth and division over most of the growth220

curve in M9 with glucose (Fig. 4E), suggesting little change in size regulation.221

While cells in minimal media already started with a 50:50 balance of cell growth and division allocation (λ),222

this allocation usually started from a low value under other nutrient conditions. In these conditions, cells showed223

a growth-biased allocation that rose toward 50:50 allocation within the first 2h. This dynamics is indicative of224

drastic changes in cell volume during the first 2h of the growth curve, but not necessarily of cell division. In fact,225

our results showed that the ratio between cell number (CFU) and biomass (OD600) is non-monotonic (Fig. 3).226

This means that during the first ≈ 1.5h, the increase in biomass appeared to be mainly due to an increase in cell227

volume in individual cells, but not an increase in the number of cells. From these measurements, we estimate228

that the maximum biomass per cell was reached after ≈ 1 doubling time. The peak in cell size occurs half an hour229

later, which would amount to 2-3 cell doublings. The difference in those estimates could be due to inaccuracies230

in OD measurements and difficulties in determining when cells have finished dividing from microscopy images.231

Overall, the ratio between OD and CFU showed a peak similar to that of cell volume, which makes sense since232

this ratio can be associated with the biomass per cell, i.e., is roughly equivalent to cell volume (Fig. 1A, 3C).233

This highly non-linear relationship can lead to significant overestimation of cell numbers based on optical density234

or turbidity, yet these measures are commonly used in microbiology experiments. Non-linearity also makes the235

accuracy of cell number estimates using OD600 highly dependent on the use of the same conditions and the236

timing of the measurements to make them comparable, which could be alleviated by using calibration curves to237

establish the OD600-CFU relationship for each nutrient condition [42,43].238

The main part of our analysis focused on the mean cell size behaviour, but we also observed interesting239

patterns in the random size variability between individual cells (Fig. S2). We observed that the awakening of240
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cells after resuspension led to a broadening of the cell volume distribution that lasted throughout most of the241

peak dynamics (Fig. S3). This variation appeared to come from variation in cell length rather than cell width242

(Fig. S2, S3), indicating heterogeneity in the timing of the first division between cells. Surprisingly, the increase243

in cell volume and length variation did not seem to be a transient phenomenon, as sustained exponential growth244

conditions preserved not only the maximum cell volume but also the broadness of the distribution (Fig. S4).245

Using a stochastic model of cell size regulation, we found that sustained high variation in cell volume during246

sustained exponential growth (Fig. S5) can be explained if the noise in size regulation has a weak dependence247

on cell size itself. In general, the increase and decrease in the mean and variation of cell volume appear to be248

related to a change in the nutrient environment.249

Our study opens intriguing avenues for further experiments and modelling. First, the convergence to a250

common cell size during stationary phase raises important questions. Current models based on growth-division251

allocation capture general trends in cell size dynamics but fail to explain the robustness of this convergence252

across growth conditions [19]. Possibly, the common cell size corresponds to a minimal threshold size below253

which cell division is disabled [21, 44]. Since this minimum cell size is related to the initiation of chromosome254

replication, cell size dynamics in fluctuating environments could be examined by labelling the replication origins255

[20]. Second, the potential size dependence of noise is intriguing and a deeper understanding of its origin256

could shed light on the constraints governing cell size regulation. Previous studies indicate that understanding257

stochasticity in cell division mechanisms allows us to distinguish between various model types that predict similar258

mean dynamics [44]. Coupling such modelling frameworks with time-dependent dynamics has proven useful for259

characterizing cell size homeostasis in diverse systems such as cancer cells [45], yeast [46, 47] and different260

bacterial species [25]. Third, modelling the growth curve itself is challenging. While we used a logistic model to261

describe the population dynamics, models such as the Gompertz model provide a more accurate fit in certain262

contexts (e.g., tumour growth) [48]. Gompertz models are particularly relevant when accounting for multiple263

cell phenotypes, such as quiescent and proliferating subpopulations, which vary in proportion along the growth264

curve [49], or subpopulations metabolizing different nutrient sources, arising from diauxic growth [50]. Including265

these subpopulations could enhance the predictive power and biological relevance of our approach. Our work266

also highlights the importance of considering how nutrient shifts affect resource allocation for predicting cell267

volume regulation across changing environments [19], similar to how these shifts influence growth transition268

kinetics [6]. Mechanistic models of nutrient consumption could be coupled with experiments that modulate the269

type and concentration of nutrients (e.g., nitrogen and carbon sources) to gain a more comprehensive picture270

of cell volume mean and noise dynamics [51]. Further, RNAseq at multiple time points (e.g., 1 and 2 hours271

after resuspension) could link gene expression patterns with cell volume changes, offering deeper insights into272

cellular responses to nutrient shifts [52, 53]. These approaches could serve as a starting point for exploring273

size-dependent noise and population heterogeneity, addressing the questions highlighted above.274

In this study, we investigated cell volume dynamics in two rod-shaped bacteria, E. coli and S. enterica, along275

the growth curve, revealing a strong dependence of cell size regulation on nutrient conditions. Our findings reveal276

the remarkable plasticity and adaptability of bacterial cells in regulating their size in response to environmental277

changes by balancing resource allocation between cell growth and division in response to nutrient availability278

and potentially nutrient type. The relationship between cell size and nutrient conditions is highly relevant to279

understanding the behaviour of natural microbial communities, but also clinical phenotypes, such as resistance280

to antibiotics and persister cells [17,41].281

Materials and methods282

Bacterial growth conditions and media283

Experiments were carried out using the E. coli K-12 substrain MG1655 and the S. typhimurium LT2 derivative,284

TH437. Bacterial cells were grown overnight at 37C with shaking and aeration in 15 ml culture tubes filled with285
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2 ml of growth medium. Minimal media consisted of 1X M9 salts, 1mM thiamine hydrochloride, 0.4% glucose,286

0.5% or 0.25% casamino acids, 2mM MgSO4, 0.1mM CaCl2. M9 salts, casamino acids and LB media were287

autoclaved, and other ingredients were sterilized with filter sterilization. Overnight cultures were diluted 1:1000288

v/v into 10ml of the same medium and grown on the shaking incubator with aeration at 37C. Samples were taken289

at 30- or 60-min intervals and imaged under the microscope. At each sampling point, OD600 measurements were290

taken with a spectrophotometer using either 1ml of the undiluted culture or at later time points, by diluting the291

culture in the same medium to an OD600 less than 1 to obtain accurate measurements.292

For cultures that were kept in an early exponential phase in rich media, half of the culture was diluted with293

the same amount of fresh media every 20min and sampled for imaging at every second dilution.294

Single-cell microscopy295

Between 1 and 6 µl of the sample (diluted 2- or 4-fold at later time points to avoid cell clusters) were spotted296

on an agar pad (made of minimal media with 1.5% agarose) and left to dry for a few minutes. The agar pad297

was inverted and placed into a microscopy dish (µ-Dish 35mm, low; Ibidi). The microscope dish was mounted298

on an inverted microscope stage (Eclipse Ti2-E, Nikon) and bright-field images were taken with a Nikon DS-Qi2299

camera using a 100× oil immersion objective (Plan Apo λ, N.A. 1.45, Nikon).300

CFU count plating301

For cell number counts, we diluted overnight cultures of E. coli K-12 substrain MG1655 1:1000 into fresh LB302

media. 3 biological replicates were measured every 30min for 4h to obtain OD600 via a spectrophotometer (see303

above) and CFU by plating. For plating, we used the running droplet method where 10ul of each sample dilution304

(100 − 10−7) are dropped onto a square plate, which is then tilted so that droplets can run down to half of the305

plate. We plated each dilution twice and used all dilutions with countable colony numbers for analysis.306

Segmentation and analysis of microscopy data307

We estimated the cell volume from the bright-field microscopy images by segmenting cells using the pixel-308

classification module of Ilastik (v.1.3.3) [54]. As each nutrient medium influenced the cell shape differently309

along the growth curve, we trained an Ilastik neural network for each condition. The training process involved310

outlining an arbitrary set of cells to define the contours and conducting manual checks to resolve instances311

where cell clusters posed segmentation challenges. We devoted special attention to exponential phase images,312

to differentiate between cells that had not yet undergone division and cells that had undergone division but313

remained physically connected. This is exemplified in Figure 1C and 1F at the 2-hour mark.314

From the estimated contours we measured the projected area Ap, which corresponded to the number of315

pixels inside the contour times the pixel area (≈ 0.005µm2/pixel). We defined the cell length L as the longest316

side of the minimum-bounding rectangle of the contour. The projected area Ap and the cell length L are related317

to the effective cell width w through the projected area of a capsule:318

Ap = w(L − w) + π
(w

2

)2
. (5)

Thus, from Ap and L, w is estimated by solving Eq. (5). The cell surface area A and volume V can then be
estimated from L and w as follows:

A = πLw ;

V = π(L − w)
(w

2

)2
+

3
4
π
(w

2

)3
=
πLw2

4
− πw3

16
. (6)
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After obtaining these dimensions for all segmented cells, we filtered the outliers (usually imaging artefacts)319

considering only cells satisfying the following criteria:320

• Cell width greater than 0.35 µm.321

• Cell length greater than 1.05 µm and less than 10 µm.322

• Cell aspect ratio (L/w) greater than 1 and less than 7.323

• Cell area greater than 0.73 µm2.324

Further, for each time point, we applied a final outlier filtering step. We discarded any cells where the325

deviation in the log-transformed cell volume from the log-transformed population mean cell volume exceeded326

three times the log-transformed population standard deviation of the cell volume. This assumes that the cell size327

distributions follow a log-normal distribution and therefore, this range should include approximately 99.7% of the328

data. Statistics and confidence intervals were estimated using Bayesian methods [55].329

Estimation of OD and CFU time curves330

To estimate the ratio OD/CFU over 4h after resuspension, we ran an inference algorithm [27] separately on331

the replicates of cell number and population biomass respectively. As a result, we obtained the most probable332

trajectory of the mean with its 95% confidence interval (Fig. 3A, B). Given the most probable mean OD x with its333

confidence interval ∆x , and the most probable CFU y with its confidence interval ∆y , the most probable ratio z334

and its confidence interval ∆z were estimated using the formulas:335

z =
x
y

∆z ≈ (∆x)

∣∣∣∣∂z
∂x

∣∣∣∣ + (∆y )

∣∣∣∣∂z
∂y

∣∣∣∣ =

∣∣∣∣∆x
y

∣∣∣∣ +

∣∣∣∣xy ∆y
y

∣∣∣∣, (7)

Standard methods for propagation of uncertainty were used for this estimation.336

Mean-Field cell size dynamics337

A more detailed approach to the theoretical model was published recently [30]. Briefly, assuming that cells338

grow following the dynamics in Eq. (1) and halve their size at each division, the expected value of any arbitrary339

function of cell size f (s) follows the dynamics:340

d⟨f (s)⟩
dt

=

〈
µs

df (s)
ds

+ kµs
(
f (s/2) − f (s)

)〉
. (8)

To estimate the n-th moment of cell size, we replaced f (s) = sn and obtained the differential equation governing341

the dynamics of ⟨sn⟩:342

d⟨sn⟩
dt

=

〈
µs

d(sn)
ds

+ kµs
((s

2

)n
− sn

)〉
= nµ⟨sn⟩ − kµ

(
1 − 1

2n

)
⟨sn+1⟩. (9)

The main issue with equation (9) is that the dynamics of ⟨sn⟩ depend on ⟨sn+1⟩. This problem is known as343

unclosed moments dynamics [56] and has been explored recently [57]. The mean-field approximation neglects344

the random fluctuations of s and its correlation with other variables. Therefore, we approximate the second-345

order moment as ⟨s2⟩ ≈ ⟨s⟩2 and ignore the equations for higher-order moments to obtain the equation (3) in346

the main text.347
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Fitting procedure for the division coefficient348

To simplify our approach, we first fitted the OD curves to a logistic curve of time. This simplification assumes349

that the growth rate is proportional to the nutrients and that the rate of nutrient depletion is proportional to the350

biomass. In summary, we assumed that the biomass B follows:351

dB
dt

= µmaxB

(
1 − B

Bmax

)
, (10)

where µmax and Bmax are the maximum growth rate and the carrying capacity of the growth medium, respectively.352

We adjusted the OD dynamics to the solution of (10):353

B(t ; ts, Bmax ,µmax ) =
Bmax

1 + e−µmax (t−ts)
, (11)

where the free parameter ts, depending on the initial conditions of B can be interpreted as the time for entering354

stationary phase. The parameters ts, Bmax and µmax were fitted to data by minimizing the error function:355 ∑
i

(ln(Bi ) − ln[B(ti ; ts, Bmax ,µmax )])2, (12)

in which B(ti ; ts, Bmax ,µmax ) is calculated from the equation (11) at t = ti for each i-th point. Note that the356

error function is the Euclidean distance between the logarithm of the data and the logarithm of the model with357

ts, Bmax ,µmax as fitting parameters. After fitting, from the equation for biomass over time (11) we could then358

obtain the growth rate over time:359

µ(t) =
1
B

dB
dt

=
µmax

1 + eµmax (t−ts)
. (13)

The division dynamics were assumed for simplicity to be described by the division coefficient that follows the360

dynamics:361

k (t) = k0 +
kmax − k0

1 + e−λ(t−t∗)
, (14)

with four free parameters: the basal coefficient k0, the maximum coefficient kmax , the rate of change λ and the362

time of reallocation t∗ is the value of time where k (t) reaches the halfway point between k0 and kmax . Proposing363

a set of parameters k0, kmax , λ and t∗, we can numerically integrate the mean cell size ⟨s⟩ from the differential364

equation (3) with initial condition ⟨s⟩|t=0 = s1. The mean cell size at time t = 0 was taken as the mean cell365

size from overnight cultures. The optimized parameters for k (t) were selected after a comparison between the366

observed mean sizes {⟨s⟩1, · · · ⟨s⟩N} and the predictions {⟨s(ti )⟩, · · · ⟨s(ti )⟩N}, where ⟨s(t)⟩ is the numerical367

solution of Eq. (3). This optimization minimized the error function:368

∑
i

(
⟨s⟩i − ⟨s(ti ; k0, kmax ,λ, t∗)⟩

⟨s⟩i

)2

. (15)

Note that this error function corresponds to the square of the difference in mean cell size between theory and369

experiment divided by the observed mean cell size.370
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