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• Using compact nine-points, we have proposed a sixth order scheme for 2D Helmholtz equation. 
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a b s t r a c t 

We discuss sixth order accurate 9-point compact 2- and 3-phase block alternating group explicit 

(block-AGE) iteration methods for computing 2D Helmholtz equation. We use Dirichlet bound- 

ary conditions and no fictitious points are involved outside the solution region for computation. 

The proposed 2- and 3-phase block-AGE methods require only two and three sweeps for com- 

putation and the error analysis of the suggested approximation is analyzed. We have compared 

the 2- and 3-phase block-AGE iteration methods with the corresponding block successive over 

relaxation (block-SOR) method in three experiments, in regard to number of iterations required 

for convergence and cpu time, where the importance of the role performed by optimal relaxation 

parameters of the proposed block-AGE iteration methods become evident in stipulating the con- 

vergence and precision of the calculated results. In all cases we use the tridiagonal solver and 

obtain the optimal relaxation parameters through computation. 
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Method details 

Background 

We consider the 2D Helmholtz equation with Dirichlet boundary conditions 

𝜕2 z 
𝜕x2 

+ 𝜕2 z 
𝜕y2 

+ 𝑘𝑧 = 𝑓 ( 𝑥, 𝑦 ) , ( 𝑥, 𝑦 ) ∈ Ω2 , (1) 

𝑧( 𝑥, 𝑦 ) = 𝑔( 𝑥, 𝑦 ) , ( x , y ) ∈ 𝜕Ω2 , (2) 

where Ω2 = {(𝑥, 𝑦 ) |0 < 𝑥, 𝑦 < 1 } and 𝜕Ω2 is its boundary. If 𝑘 = 𝜆2 > 0, the Eq. (1) is said to be oscillatory Helmholtz equation and 𝜆 is

the wave number. For k = 0, the Eq. (1) is said to be Poisson equation, and if k < 0, the Eq. (1) is said to be monotone Helmholtz

equation. The unknown quantity z(x,y) generally represents a pressure field in the frequency domain and f ( x,y ) as a source function.

We assume that z ( x,y ), f ( x,y ) and g ( x,y ) are sufficiently smooth functions. The Helmholtz equation is pivotal in describing various

significant physical phenomena, encompassing the determination of potentials in time-harmonic acoustic and electromagnetic fields, 

the analysis of acoustic wave scattering, the reduction of noise in silencing systems, the modeling of water wave propagation, the

study of membrane vibrations, and the assessment of radar scattering [1–6] . Numerous research endeavors have been directed towards

achieving a more efficient and precise numerical solution for the Helmholtz and Poisson equations [7–24] . 

Some connected research effort done in the past on block iterative methods for elliptic boundary value problems (EBVPs) by

various researchers are as follows: Evans [25 , 26] originally proposed group explicit iterative methods for solving large linear systems

due to the discretization of EBVPs. In 1987, Evans and Yousif [27] first proposed the block alternating group explicit (BLAGE) Method

for the elliptic difference equation. Evans and Mohanty [28] presented block iterative methods for 2D biharmonic equations. Mohanty 

and Evans [29] proposed fourth order accurate BLAGE iterative method for the solution of 2D EBVPs in polar coordinates. Later,

Evans and Mohanty [30] , employed SMAGE algorithms on a non-uniform mesh for the solution of nonlinear two-point boundary

value problems with singularity. Mohanty [31 , 32] , presented 3-step BLAGE iterative method for 2D EBVPs. A family of AGE iteration

algorithms using compact sixth-order approximations for solving two-point nonlinear BVPs were discussed in [33–36] . 

As per our knowledge, no multi-phase block alternative group explicit (block-AGE) iterative method with the aid of 9-point

compact sixth order approximation for the solution of 2D Helmholtz elliptic PDE has been discussed in the literature so far. In this

article, we propose 9- point compact uniform mesh formulations of order of accuracy six for the solution of 2D Helmholtz equation

and application of 3-phase and 2-phase block-AGE iteration technique which carry substantial amount of importance in many applied

mathematical problems. Our method is cost effective and relatively fast as function evaluations at the grid points of compact cell saves

the time. Our article is ordered as: We propose and formulate the sixth-order approximation for 2D Helmholtz equation. The 3-phase

block-AGE iterative technique is presented followed by the corresponding error analysis. Then the 2-phase block-AGE algorithm is 

accorded. The numerical results in terms of number of iterations have been validated and concluding remarks are presented. 

Compact formulation of method for 2D Helmholtz equation 

Consider the Helmholtz equation in x, y coordinate system 

𝑧𝑥𝑥 + 𝑧𝑦𝑦 + 𝜆2 𝑧 = 𝑓 ( 𝑥, 𝑦 ) , ( 𝑥, 𝑦 ) ∈ Ω2 , (3) 

Let us split the solution domain Ω2 by mesh points (𝑥𝑖 , 𝑦𝑗 ) , where 0 = 𝑥0 < 𝑥1 < … < 𝑥𝑁+1 = 1 ; 0 = 𝑦0 < 𝑦1 < … < 𝑦𝑁+1 = 1 , with

uniformly located mesh ℎ = 𝑥𝑖 − 𝑥𝑖 −1 = 𝑦𝑗 − 𝑦𝑗−1 > 0; 𝑖, 𝑗 = 1(1) 𝑁 + 1; i, j, N being positive integers. 

Let 𝑧𝑖,𝑗 and 𝑍𝑖,𝑗 represent, the numerical and exact solutions of 𝑧 (𝑥, 𝑦 ) at the mesh point (𝑥𝑖 , 𝑦𝑗 ) , respectively, and 𝑓𝑖,𝑗 = f (𝑥𝑖 , 𝑦𝑗 ) ,

𝑓
𝑖 ± 1 

2 ,𝑗 
= f (𝑥𝑖 ±

ℎ 

2 , 𝑦𝑗 ) , 𝑓𝑖,𝑗± 1 
2 
= f (𝑥𝑖 , 𝑦𝑗 ±

ℎ 

2 ) . We denote 𝑅 = 𝜆2 ℎ2 

2 . Then at each mesh point a 9-point compact sixth order approximation

(see [24] ) for the Helmholtz Eq. (3) is given by [
6 𝛿2 

𝑥 
+ 6 𝛿2 

𝑦 
+ 𝛿2 

𝑥 
𝛿2 
𝑦 

]
𝑧𝑖,𝑗 = 

ℎ2 

15 
[
−𝜆2 

(
𝑧𝑖 +1 ,𝑗+1 + 𝑧𝑖 +1 ,𝑗−1 + 𝑧𝑖 −1 ,𝑗+1 + 𝑧𝑖 −1 ,𝑗−1 

)
+ 𝜆2 

2 
(
𝑧𝑖 +1 ,𝑗 + 𝑧𝑖 −1 ,𝑗 + 𝑧𝑖,𝑗+1 + 𝑧𝑖,𝑗−1 + 16𝑧𝑖,𝑗 

)
− 24𝜆2 

( 

�̄�
𝑖 + 1 

2 ,𝑗 
+ �̄�

𝑖 − 1 
2 ,𝑗 

+ �̄�
𝑖, 𝑗+ 1 

2 
+ �̄�

𝑖, 𝑗− 1 
2 

) 

+𝑓𝑖 +1 ,𝑗+1 + 𝑓𝑖 +1 ,𝑗−1 + 𝑓𝑖 −1 ,𝑗+1 + 𝑓𝑖 −1 ,𝑗−1 

− 1 
2 
(
𝑓𝑖 +1 ,𝑗 + 𝑓𝑖 −1 ,𝑗 + 𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1 + 16𝑓𝑖,𝑗 

)
+24

( 

f
𝑖 + 1 

2 ,𝑗 
+ f

𝑖 − 1 
2 ,𝑗 

+ f
𝑖, 𝑗+ 1 

2 
+ f

𝑖, 𝑗− 1 
2 

) ] 
, (4) 

where, 𝛿𝑥 z𝑖,𝑗 = z
𝑖 + 1 

2 ,𝑗 
− z

𝑖 − 1 
2 ,𝑗 

, 𝜇𝑥 z𝑖,𝑗 =
1 
2 (z𝑖 + 1 

2 ,𝑗 
+ z

𝑖 − 1 
2 ,𝑗 

) , and 𝛿𝑦 z𝑖,𝑗 = z
𝑖,𝑗+ 1 

2 
− z

𝑖,𝑗− 1 
2 
, 𝜇𝑦 z𝑖,𝑗 =

1 
2 (z𝑖,𝑗+ 1 

2 
+ z

𝑖,𝑗− 1 
2 
) are central and average 

difference operators with respect to x - and y -directions respectively, and 

z̄𝑥𝑥𝑦𝑖,𝑗 =
1 
3 

[
(𝑧𝑖 +1 ,𝑗+1 − 𝑧𝑖 +1 ,𝑗−1 + 𝑧𝑖 −1 ,𝑗+1 + 𝑧𝑖 −1 ,𝑗−1) − 2

(
𝑧𝑖,𝑗+1 − 𝑧𝑖,𝑗−1 

)]
, (5) 
2ℎ

2
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z̄𝑥𝑦𝑦𝑖,𝑗 =
1 

2ℎ3 
[
(𝑧𝑖 +1 ,𝑗+1 + 𝑧𝑖 +1 ,𝑗−1 − 𝑧𝑖 −1 ,𝑗+1 − 𝑧𝑖 −1 ,𝑗−1) − 2

(
𝑧𝑖 +1 ,𝑗 − 𝑧𝑖 −1 ,𝑗 

)]
, (6) 

z̄𝑥𝑥𝑦𝑦𝑖,𝑗 =
1 
ℎ4 

[
(𝑧𝑖 +1 ,𝑗+1 , + 𝑧𝑖 +1 ,𝑗−1 + 𝑧𝑖 −1 ,𝑗+1 + 𝑧𝑖 −1 ,𝑗−1 ) − 2

(
𝑧𝑖 +1 ,𝑗 + 𝑧𝑖 −1 ,𝑗 + 𝑧𝑖,𝑗+1 + 𝑧𝑖,𝑗−1 

)
+ 4𝑧𝑖,𝑗 

]
, (7) 

�̄�
𝑖 + 1 

2 ,𝑗 
= 

1 
2 
(
𝑧𝑖 +1 ,𝑗 + 𝑧𝑖,𝑗 

)
− 1 

8 
(
𝑧𝑖 +1 ,𝑗 − 2𝑧𝑖,𝑗 + 𝑧𝑖 −1 ,𝑗 

)
− ℎ2 

32 
(
𝑓𝑖 +1 ,𝑗 − 𝑓𝑖 −1 ,𝑗 

)
− ℎ2 

128 
(
𝑓𝑖 +1 ,𝑗 − 2𝑓𝑖,𝑗 + 𝑓𝑖 −1 ,𝑗 

)
+ ℎ3 

16 
�̄�𝑥𝑦𝑦𝑖,𝑗 

+ ℎ4 

128 
�̄�𝑥𝑥𝑦𝑦𝑖,𝑗 

, (8) 

�̄�
𝑖 − 1 

2 ,𝑗 
= 

1 
2 
(
𝑧𝑖 −1 ,𝑗 + 𝑧𝑖,𝑗 

)
− 1 

8 
(
𝑧𝑖 +1 ,𝑗 − 2𝑧𝑖,𝑗 + 𝑧𝑖 −1 ,𝑗 

)
+ ℎ2 

32 
(
𝑓𝑖 +1 ,𝑗 − 𝑓𝑖 −1 ,𝑗 

)
− ℎ2 

128 
(
𝑓𝑖 +1 ,𝑗 − 2𝑓𝑖,𝑗 + 𝑓𝑖 −1 ,𝑗 

)
− ℎ3 

16 
�̄�𝑥𝑦𝑦𝑖,𝑗 

+ ℎ4 

128 
�̄�𝑥𝑥𝑦𝑦𝑖,𝑗 

, (9) 

�̄�
𝑖,𝑗+ 1 

2 
= 

1 
2 
(
𝑧𝑖,𝑗+1 + 𝑧𝑖,𝑗 

)
− 1 

8 
(
𝑧𝑖,𝑗+1 − 2𝑧𝑖,𝑗 + 𝑧𝑖,𝑗−1 

)
− ℎ2 

32 
(
𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗−1 

)
− ℎ2 

128 
(
𝑓𝑖,𝑗+1 − 2𝑓𝑖,𝑗 + 𝑓𝑖,𝑗−1 

)
+ ℎ3 

16 
�̄�𝑥𝑥𝑦𝑖,𝑗 

+ ℎ4 

128 
�̄�𝑥𝑥𝑦𝑦𝑖,𝑗 

, (10) 

�̄�
𝑖,𝑗− 1 

2 
= 

1 
2 
(
𝑧𝑖,𝑗−1 + 𝑧𝑖,𝑗 

)
− 1 

8 
(
𝑧𝑖,𝑗+1 − 2𝑧𝑖,𝑗 + 𝑧𝑖,𝑗−1 

)
+ ℎ2 

32 
(
𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗−1 

)
− ℎ2 

128 
(
𝑓𝑖,𝑗+1 − 2𝑓𝑖,𝑗 + 𝑓𝑖,𝑗−1 

)
− ℎ3 

16 
�̄�𝑥𝑥𝑦𝑖,𝑗 

+ ℎ4 

128 
�̄�𝑥𝑥𝑦𝑦𝑖,𝑗 

. (11) 

Simplifying (4) with the aid of (5)–(11), we get [
6 𝛿2 

𝑥 
+ 6 𝛿2 

𝑦 
+ 𝛿2 

𝑥 
𝛿2 
𝑦 

]
𝑧𝑖,𝑗 +

7 𝑅 

30 
𝛿2 
𝑥 
𝛿2 
𝑦 
𝑧𝑖,𝑗 +

( 

𝑅 + 𝑅2 

10 

) (
𝛿2 
𝑥 
+ 𝛿2 

𝑦 

)
𝑧𝑖,𝑗 + 12 𝑅𝑧𝑖,𝑗 =

∑
𝑓, (12) 

where ∑
𝑓 = 

ℎ2 

15 

[
𝑓𝑖 +1 ,𝑗+1 + 𝑓𝑖 +1 ,𝑗−1 + 𝑓𝑖 −1 ,𝑗+1 + 𝑓𝑖 −1 ,𝑗−1 −

1 
2 
(
𝑓𝑖 +1 ,𝑗 + 𝑓𝑖 −1 ,𝑗 + 𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1 + 16𝑓𝑖,𝑗 

)
+ 24

( 

f
𝑖 + 1 

2 ,𝑗 
+ f

𝑖 − 1 
2 ,𝑗 

+ f
𝑖, 𝑗+ 1 

2 
+ f

𝑖, 𝑗− 1 
2 

) 

+ 3 𝑅 

4 
(
𝑓𝑖 +1 ,𝑗 + 𝑓𝑖 −1 ,𝑗 + 𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1 − 4𝑓𝑖,𝑗 

)] 
. (13) 

We may re-write (12) explicitly as (
1 + 7 𝑅 

30 

)
(𝑧𝑖 +1 ,𝑗+1 , + 𝑧𝑖 +1 ,𝑗−1 + 𝑧𝑖 −1 ,𝑗+1 + 𝑧𝑖 −1 ,𝑗−1 ) +

( 

4 + 8 𝑅 

15 
+ 𝑅2 

10 

) (
𝑧𝑖 +1 ,𝑗 + 𝑧𝑖 −1 ,𝑗 + 𝑧𝑖,𝑗+1 + 𝑧𝑖,𝑗−1 

)
+
( 

−20 + 134 𝑅 

15 
− 4𝑅2 

10 

) 

𝑧𝑖,𝑗 =
∑

𝑓 ; 𝑖, 𝑗 = 1 , 2 , … , 𝑁. (14) 

Note that the method (14) is a 9-point compact sixth order accurate scheme for the solution of the Helmholtz Eq. (3) and free from

the derivatives of f ( x,y ). Hence right side of (14) can be computed directly. 

Three-phase block-AGE iteration method 

Merging boundary values in Eq. (14) yields the equation in matrix form 

𝐴𝑧 = 𝑅𝐻 (15) 

Here 

𝐴 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑫 𝑩 𝟎 
𝑩 𝑫 𝑩 

⋱ ⋱ ⋱ 

𝑩 𝑫 𝑩 

𝟎 𝑩 𝑫 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
𝑁2 ×𝑁2 

with 

𝑩 =

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝐵0 𝐵1 𝟎 
𝐵2 𝐵0 𝐵1 

⋱ ⋱ ⋱ 

𝐵2 𝐵0 𝐵1 
𝟎 𝐵2 𝐵0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
and 𝑫 =

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝐴0 𝐴1 𝟎 
𝐴2 𝐴0 𝐴1 

⋱ ⋱ ⋱ 

𝐴2 𝐴0 𝐴1 
𝟎 𝐴2 𝐴0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

𝑁×𝑁 𝑁×𝑁 

3
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are three-diagonal matrices of order N , where 

𝐵2 = 𝐵1 = 1 + 7 𝑅 
30 , 𝐵0 = 4 + 8 𝑅 

15 +
𝑅2 

10 , 𝐴2 = 𝐴1 = 4 + 8 𝑅 
15 +

𝑅2 

10 , 𝐴0 = −20 + 134 𝑅 
15 − 4𝑅2 

10 and 

𝒛 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝒛 1 
𝒛 2 
⋮ 
⋮ 
𝒛 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
𝑁2 ×1 

with 𝒛 𝒊 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑧1 ,𝑖 
𝑧2 ,𝑖 
⋮ 
⋮ 

𝑧𝑁,𝑖 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
𝑁×1 

, 𝑖 = 1( 1) 𝑁 

is the vector with numerical solutions 𝑧𝑖,𝑗 , 

𝑅𝐻 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑹 𝑯 1 
𝑹 𝑯 2 
⋮ 
⋮ 

𝑹 𝑯 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
𝑁2 ×1 

𝑤𝑖𝑡ℎ 𝑅𝐻𝑖 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑅𝐻1 ,𝑖 
𝑅𝐻2 ,𝑖 
⋮ 
⋮ 

𝑅𝐻𝑁,𝑖 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
𝑁×1 

, 𝑖 = 1( 1) 𝑁 

is the vector which contains the exact boundary values and of 𝑓𝑖,𝑗 , 𝑓𝑖 ± 1 
2 ,𝑗 

, 𝑓
𝑖,𝑗± 1 

2 
. 

We use the technique given in [25] . Let 

𝐴 = 𝑀1 +𝑀2 (16) 

where 

𝑴 1 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 
2 𝑫 𝟎 

1 
2 𝑫 𝑩 

𝑩 

1 
2 𝑫 

⋱ 

1 
2 𝑫 𝑩 

𝟎 𝑩 

1 
2 𝑫 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
,𝑴 2 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 
2 𝑫 𝑩 𝟎 
𝑩 

1 
2 𝑫 

⋱ 

1 
2 𝑫 𝑩 

𝑩 

1 
2 𝑫 

𝟎 1 
2 𝑫 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
if N is odd, and 

𝑴 1 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 
2 𝑫 𝟎 
𝑩 

1 
2 𝑫 

⋱ 

⋱ 

1 
2 𝑫 𝑩 

𝟎 𝑩 

1 
2 𝑫 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
,𝑴 2 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 
2 𝑫 𝟎 

1 
2 𝑫 𝑩 

𝑩 

1 
2 𝑫 

⋱ 

1 
2 𝑫 𝑩 

𝑩 

1 
2 𝑫 

𝟎 1 
2 𝑫 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
if N is even, where M1 and M2 satisfy the conditions det( M1 + 𝜌I ) ≠ 0 and det( M2 + 𝜌I ) ≠ 0 for any 𝜌> 0. 

Substituting (16) into (15), we may re-write the matrix equation (
𝑀1 +𝑀2 

)
𝑧 = 𝑅𝐻 (17) 

Then the 3-phase block-AGE method is given by 

𝒘 

( 𝑘) =
(
𝑴 2 − 𝜌𝑰 

)
𝒛 ( 𝑘) , 𝑘 = 0 , 1 , 2 , … , (18.1) 

(
𝑴 1 + 𝜌𝑰 

)
𝒛 

(
𝑘 + 1 

2 

)
= 𝑹 𝑯 −𝒘 

( 𝑘) , 𝑘 = 0 , 1 , 2 , … , (18.2) 

(
𝑴 2 + 𝜌𝑰 

)
𝒛 ( 𝑘 +1 ) = 2 𝜌𝒛 

(
𝑘 + 1 

2 

)
+𝒘 

( 𝑘) , 𝑘 = 0 , 1 , 2 , … , (18.3) 

where 

𝒘 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝒘 1 
𝒘 2 
⋮ 
⋮ 

𝒘 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ N2 ×1 

with 𝒘 𝑖 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑤1 ,𝑖 
𝑤2 ,𝑖 
⋮ 
⋮ 

𝑤𝑁,𝑖 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ N×1 
, i = 1 , 2 , … , N , 

𝑧
(𝑘 + 1 

2 ) is an intermediate vector at kth -iteration, and 𝜌> 0 is the acceleration parameters of the 3-phase block-AGE method. 

Now we discuss the algorithm for 3-phase block-AGE, when N is even. 
4
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We denote: 

𝑫 1 =
1 
2 
𝑫 + 𝜌𝑰 =

[1 
2 
𝐴2 ,

1 
2 
𝐴0 + 𝜌,

1 
2 
𝐴1 

]
, 

𝑫 2 =
1 
2 
𝑫 − 𝜌𝑰 =

[1 
2 
𝐴2 ,

1 
2 
𝐴0 − 𝜌,

1 
2 
𝐴1 

]
. 

Then the 3-phase block-AGE iteration algorithm (18.1)–(18.3) takes the matrix form 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝒘 1 
𝒘 2 
⋮ 
⋮ 
⋮ 

𝒘 𝑁−1 
𝒘 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

( 𝑘) 

=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑫 2 𝑩 𝟎 
𝑩 𝑫 2 

⋱ 

⋱ 

𝑫 2 𝑩 

𝟎 𝑩 𝑫 2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝒛 1 
𝒛 2 
⋮ 
⋮ 
⋮ 

𝒛 𝑁−1 
𝒛 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

( 𝑘) 

, 𝑘 = 0 , 1 , 2 , … , (19.1) 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑫 1 0 
𝑫 1 𝑩 

𝑩 𝑫 1 
⋱ 

𝑫 1 𝑩 

𝑩 𝑫 1 
0 𝑫 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝒛 1 
𝒛 2 
𝒛 3 
⋮ 
⋮ 
𝒛 𝑁−2 
𝒛 𝑁−1 
𝒛 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(
𝑘 + 1 

2 

)

=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑹 𝑯 1 −𝒘 1 
𝑹 𝑯 2 −𝒘 2 
𝑹 𝑯 3 −𝒘 3 

⋮ 
⋮ 

𝑹 𝑯 𝑁−2 −𝒘 𝑁−2 
𝑹 𝑯 𝑁−1 −𝒘 𝑁−1 
𝑹 𝑯 𝑁 

−𝒘 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

( 𝑘) 

, 𝑘 = 0 , 1 , 2 , … , (19.2) 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑫 1 𝑩 𝟎 
𝑩 𝑫 1 

𝑫 1 𝑩 

𝑩 𝑫 1 
⋱ 

𝑫 1 𝑩 

𝟎 𝑩 𝑫 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝒛 1 
𝒛 2 
𝒛 3 
⋮ 
⋮ 

𝒛 𝑁−2 
𝒛 𝑁−1 
𝒛 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

( 𝑘 +1) 

=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝒘 1 
𝒘 2 
⋮ 
⋮ 

𝒘 𝑁−1 
𝒘 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

( 𝑘) 

+ 2 𝜌

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝒛 1 
𝒛 2 
𝒛 3 
⋮ 
⋮ 

𝒛 𝑁−2 
𝒛 𝑁−1 
𝒛 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(
𝑘 + 1 

2 

)

, 𝑘 = 0 , 1 , 2 , … . (19.3) 

By carrying out the necessary calculation, (19.1)-(19.3) can be written in explicit form and the following 3-phase block-AGE 

algorithm: 

Phase- 1: For m = 1(2) N -1, l = 1(1) N , we have 

𝒘 

( 𝑘) 
𝑚 

= 𝑫 2 𝒛 
( 𝑘) 
𝑚 

+ 𝑩 𝒛 
( 𝑘) 
𝑚 +1 , 𝑘 = 0 , 1 , 2 , … . (20.1) 

𝒘 

( 𝑘) 
𝑚 +1 = 𝑩 𝒛 ( 𝑘) 

𝑚 
+𝑫 2 𝒛 

( 𝑘) 
𝑚 +1 , 𝑘 = 0 , 1 , 2 , … . (20.2) 

with 𝑧
( 𝑘 ) 
0 ,𝑚 = 𝑧

( 𝑘 ) 
𝑁+1 ,𝑚 = 0 . 

P hase-II : For m = 1 and l = 1(1) N , we set 

𝑫 1 𝒛 

(
𝑘 + 1 

2 

)
1 = 𝑹 𝑯 1 −𝒘 

( 𝑘) 
1 ≡ 𝒀 

( 𝑘) 
0 . (21) 

The linear system (21) is three-diagonal, hence 𝒛 
(𝑘 + 1 

2 ) 
1 can be computed using a tri-diagonal solver. 

For m = 2(2) N -2 and l = 1(1) N , we set 

𝑫 1 𝒛 

(
𝑘 + 1 

2 

)
𝑚 + 𝑩 𝒛 

(
𝑘 + 1 

2 

)
𝑚 +1 = 𝑹 𝑯 𝑚 −𝒘 

( 𝑘) 
𝑚 

≡ 𝒀 
( 𝑘) 
1 , (22.1) 

𝑩 𝒛 

(
𝑘 + 1 

2 

)
𝑚 +𝑫 1 𝒛 

(
𝑘 + 1 

2 

)
𝑚 +1 = 𝑹 𝑯 𝑚 +1 −𝒘 

( 𝑘) 
𝑚 +1 ≡ 𝒀 

( 𝑘) 
2 . (22.2) 

Re -writing (22.1)-(22.2) 

(𝑩 

−1 𝑫 1 )𝒛 

(
𝑘 + 1 

2 

)
𝑚 + 𝒛 

(
𝑘 + 1 

2 

)
𝑚 +1 = 𝑩 

−1 𝒀 ( 𝑘) 1 , (23.1) 

𝒛 

(
𝑘 + 1 

2 

)
𝑚 + (𝑩 

−1 𝑫 1 )𝒛 

(
𝑘 + 1 

2 

)
𝑚 +1 = 𝑩 

−1 𝒀 ( 𝑘) 2 . (23.2) 
5
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Multiplying (23.1) by (𝑩 

−1 𝑫 1 ) and then subtracting from (23.2), we have 

(𝑫 1 − 𝑩 )𝑩 

−1 (𝑫 1 + 𝑩 )𝒛 

(
𝑘 + 1 

2 

)
𝑚 = 𝑫 1 𝑩 

−1 𝒀 ( 𝑘) 1 − 𝒀 
( 𝑘) 
2 . (24) 

In order to solve (24), let 

𝑩 

−1 𝒀 ( 𝑘 ) 1 = 𝒀 
( 𝑘 ) 
3 , this implies, 𝑩 𝒀 

( 𝑘 ) 
3 = 𝒀 

( 𝑘 ) 
1 , so that 𝒀 

( 𝑘 ) 
3 can be evaluated with the aid of a tri-diagonal solver. 

The Eq. (24) takes the form 

(𝑫 1 − 𝑩 )𝑩 

−1 (𝑫 1 + 𝑩 )𝒛 

(
𝑘 + 1 

2 

)
𝑚 = 𝑫 1 𝒀 

( 𝑘) 
3 − 𝒀 

( 𝑘) 
2 ≡ 𝒀 

( 𝑘) 
4 . (25) 

Let 

(𝑫 1 − 𝑩 )𝒀 ( 𝑘) 5 = 𝒀 
( 𝑘) 
4 . (26) 

The left-hand side of (26) is a tri-diagonal matrix, thus (26) can be solved for 𝒀 
( 𝑘 ) 
5 using a tri-diagonal solver, where 

𝑩 

−1 (𝑫 1 + 𝑩 )𝒛 

(
𝑘 + 1 

2 

)
𝑚 = 𝒀 

( 𝑘) 
5 , 

or, 

(𝑫 1 + 𝑩 )𝒛 

(
𝑘 + 1 

2 

)
𝑚 = 𝑩 𝒀 

( 𝑘) 
5 ≡ 𝒀 

( 𝑘) 
6 , (27) 

which is a tri-diagonal linear system and can be solved for 𝒛 
(𝑘 + 1 

2 ) 
𝑚 . 

From (22.1), we have 

𝑩 𝒛 

(
𝑘 + 1 

2 

)
𝑚 +1 = 𝒀 1 

( 𝑘) − 𝑫 1 𝒛 

(
𝑘 + 1 

2 

)
𝑚 ≡ 𝒀 

( 𝑘) 
7 , (28) 

which can be solved for the intermediate vector 𝒛 
(𝑘 + 1 

2 ) 
𝑚 +1 . 

Finally, for m = N and l = 1(1) N , we have 

𝑫 1 𝒛 

(
𝑘 + 1 

2 

)
𝑁 

= 𝑹 𝑯 N −𝒘 

( 𝑘) 
𝑁 

≡ 𝒀 
( 𝑘) 
8 . (29) 

Above system is a three-diagonal linear system, can be solved for 𝒛 
(𝑘 + 1 

2 ) 
𝑁 

. 

Phase-III: For m = 1(2) N- 1 and l = 1(1) N , we have 

𝑫 1 𝒛 
( 𝑘 +1 ) 
𝑚 

+ 𝑩 𝒛 
( 𝑘 +1 ) 
𝑚 +1 = 𝒘 

( 𝑘) 
𝑚 

+ 2 𝜌𝒛 

(
𝑘 + 1 

2 

)
𝑚 ≡ 𝒀 

( 𝑘) 
9 , (30.1) 

𝑩 𝒛 ( 𝑘 +1 ) 
𝑚 

+𝑫 1 𝒛 
( 𝑘 +1 ) 
𝑚 +1 = 𝒘 

( 𝑘) 
𝑚 +1 + 2 𝜌𝒛 

(
𝑘 + 1 

2 

)
𝑚 +1 ≡ 𝒀 

( 𝑘) 
10 , (30.2) 

Eqs. (30.1) , ( 30.2 ) can be re-written as 

(𝑩 

−1 𝑫 1 )𝒛 ( 𝑘 +1 ) 𝑚 
+ 𝒛 

( 𝑘 +1 ) 
𝑚 +1 = 𝑩 

−1 𝒀 ( 𝑘) 9 , (31.1) 

𝒛 ( 𝑘 +1 ) 
𝑚 

+ (𝑩 

−1 𝑫 1 )𝒛 
( 𝑘 +1 ) 
𝑚 +1 = 𝑩 

−1 𝒀 ( 𝑘) 10 . (31.2) 

Multiplying (31.1) by (𝑩 

−1 𝑫 1 ) , subtracting from (31.2) and rearranging, we get 

(𝑫 1 − 𝑩 )𝑩 

−1 (𝑫 1 + 𝑩 )𝒛 ( 𝑘 +1 ) 
𝑚 

= 𝑫 1 𝑩 

−1 𝒀 ( 𝑘) 9 − 𝒀 
( 𝑘) 
10 . (32) 

In order to solve (32), let 

𝑩 

−1 𝒀 ( 𝑘 ) 9 = 𝒀 
( 𝑘 ) 
11 , this implies, 𝑩 𝒀 

( 𝑘 ) 
11 = 𝒀 

( 𝑘 ) 
9 , so that 𝒀 

( 𝑘 ) 
11 can be evaluated with the aid of a tri-diagonal solver. 

Then Eq. (32) simplified to 

(𝑫 1 − 𝑩 )𝑩 

−1 (𝑫 1 + 𝑩 )𝒛 ( 𝑘 +1 ) 
𝑚 

= 𝑫 1 𝒀 
( 𝑘) 
11 − 𝒀 

( 𝑘) 
10 ≡ 𝒀 

( 𝑘) 
12 . (33) 

Let 

(𝑫 1 − 𝑩 )𝒀 ( 𝑘) 13 = 𝒀 
( 𝑘) 
12 , (34) 

which can be solved for 𝒀 
( 𝑘 ) 
13 using a tri-diagonal solver, where 

𝑩 

−1 (𝑫 1 + 𝑩 )𝒛 ( 𝑘 +1 ) 
𝑚 

= 𝒀 
( 𝑘) 
13 , 

or, 

(𝑫 1 + 𝑩 )𝒛 ( 𝑘 +1 ) 
𝑚 

= 𝑩 𝒀 
( 𝑘) 
13 ≡ 𝒀 

( 𝑘) 
14 , (35) 

which is a linear tri-diagonal system and can be computed for 𝒛 
(𝑘 +1 ) 

. 
𝑚 

6
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Then from (30.1), we have 

𝑩 𝒛 
( 𝑘 +1 ) 
𝑚 +1 = 𝒀 

( 𝑘) 
9 −𝑫 1 𝒛 

( 𝑘 +1 ) 
𝑚 

≡ 𝒀 
( 𝑘) 
15 , (36) 

which can be solved for 𝒛 
(𝑘 +1 ) 
𝑚 +1 using a tri-diagonal solver. 

In a similar, we can write 3-phase block-AGE algorithm, when N is odd. 

Error analysis 

Now we discuss the convergence of the 3-step block-AGE iteration algorithm (18.1)–(18.3). 

Combining the Eqs. (18.1) –( 18.3 ), we get 

𝒛 ( 𝑘 +1 ) = 𝑴 𝒛 ( 𝑘) +𝑯 (37) 

where 

𝑴 =
(
𝑴 2 + 𝜌𝑰 

)−1 (
𝑴 1 − 𝜌𝑰 

)(
𝑴 1 + 𝜌𝑰 

)−1 (
𝑴 2 − 𝜌𝑰 

)
(38) 

is called the 3-phase block-AGE iteration matrix and 

𝑯 =
(
𝑴 2 + 𝜌𝑰 

)−1 [
𝑰 −

(
𝑴 1 − 𝜌𝑰 

)(
𝑴 1 + 𝜌𝑰 

)−1 ]
𝑹 𝑯 . 

The exact solution value Z satisfies (
𝑴 1 + 𝜌𝑰 

)
𝒁 = 𝑹 𝑯 −

(
𝑴 2 − 𝜌𝑰 

)
𝒁 , (39.1) 

(
𝑴 2 + 𝜌𝑰 

)
𝒁 = 2 𝜌𝒁 +

(
𝑴 2 − 𝜌𝑰 

)
𝒁 . (39.2) 

Let 𝜺 ( 𝑘 ) = 𝒛 ( 𝑘 ) −𝒁 be the error vector at k th iteration. Subtracting (39.1) from (18.2) and (39.2) from (18.3), we get 

(
𝑴 1 + 𝜌𝑰 

)
𝜺 

(
𝑘 + 1 

2 

)
= −

(
𝑴 2 − 𝜌𝑰 

)
𝜺 ( 𝑘) , 𝑘 = 0 , 1 , 2 , … , (40.1) 

(
𝑴 2 + 𝜌𝑰 

)
𝜺 ( 𝑘 +1 ) = 2 𝜌𝜺 

(
𝑘 + 1 

2 

)
+
(
𝑴 2 − 𝜌𝑰 

)
𝜺 ( 𝑘) , 𝑘 = 0 , 1 , 2 , … , (40.2) 

and with the aid of (40.1), from (40.2), the error equation is given by 

𝜺 ( 𝑘 +1) = 𝑴 𝜺 ( 𝐤) , 𝑘 = 0 , 1 , 2 , … . (41) 

For convergence it is required to prove that the spectral radius S ( M ) < 1, for 𝜌> 0. 

Let 

𝑴 

∗ =
(
𝑴 2 + 𝜌𝑰 

)
𝑴 

(
𝑴 2 + 𝜌𝑰 

)−1 = [
𝑰 − 2 𝜌

(
𝑴 1 + 𝜌𝑰 

)−1 ](
𝑴 2 − 𝜌𝑰 

)(
𝑴 2 + 𝜌𝑰 

)−1 
, (42) 

then M∗ is similar to M , and hence S ( M ) = S ( M∗ ). 

Now |||𝐌∗ |||𝟐 ≤ ||||||𝑰 − 2 𝜌
(
𝑴 1 + 𝜌𝑰 

)−1 ||||||2 . ||||||(𝑴 2 − 𝜌𝑰 
)(
𝑴 2 + 𝜌𝑰 

)−1 ||||||2 . (43) 

If M1 has eigen values 𝜂𝑖𝑗 , i, j = 1(1) N, then 

||||𝑰 − 2ρ
(
𝑴 1 + ρ𝑰 

)− 𝟏 ||||2 = max 
|||||1 −

2 𝜌
𝜂ij + 𝜌

||||| = max 
|||||
𝜂ij − 𝜌

𝜂ij + 𝜌

||||| < 1 , (44) 

where Re ( 𝜂𝑖𝑗 ) > 0; i, j = 1(1) N . 

In a similar manner, 

||||||(𝑴 2 − 𝜌𝑰 
)(
𝑴 2 + 𝜌𝑰 

)−1 ||||||2 < 1 . (45) 

Thus from (43), we obtain 

𝑆( 𝑴 ) = 𝑆( 𝑴 ∗) ≤ |||𝐌∗ |||𝟐 < 1 . (46) 

Hence the convergence follows. 
7
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Two-phase block-AGE iteration method 

Referring to the matrix Eq. (17) , we may write 2-phase block-AGE iteration method as (
𝑴 1 + 𝜌𝑰 

)
𝒛 

(
𝑘 + 1 

2 

)
= 𝑹 𝑯 −

(
𝑴 2 − 𝜌𝑰 

)
𝒛 ( 𝑘) , 𝑘 = 0 , 1 , 2 , … , (47.1) 

(
𝑴 2 + 𝜌𝑰 

)
𝒛 ( 𝑘 +1 ) = 𝑹 𝑯 −

(
𝑴 1 − 𝜌𝑰 

)
𝒛 

(
𝑘 + 1 

2 

)
, 𝑘 = 0 , 1 , 2 , … , (47.2) 

where 𝜌> 0 is the acceleration parameters associated with the 2-phase block-AGE method and 𝒛 (𝑘 +
1 
2 ) is an intermediate vector. 

Combining (47.1)-(47.2), we acquire (
𝑴 2 + 𝜌𝑰 

)
𝒛 ( 𝑘 +1) = 𝑹 𝑯 −

(
𝑴 1 − 𝜌𝑰 

)(
𝑴 1 + 𝜌𝑰 

)−1 [
𝑹 𝑯 −

(
𝑴 2 − 𝜌𝑰 

)
𝒛 ( 𝑘) 

]
. (48) 

Simplifying further, we establish the general iteration method 

𝒛 ( 𝑘 +1 ) = 𝑷 𝒛 ( 𝑘) +𝑸 (49) 

where 

𝑷 =
(
𝑴 2 + 𝜌𝑰 

)−1 (
𝑴 1 − 𝜌𝑰 

)(
𝑴 1 + 𝜌𝑰 

)−1 (
𝑴 2 − 𝜌𝑰 

)
(50) 

is the two-phase block-AGE iteration matrix and 

𝑸 =
(
𝑴 2 + 𝜌𝑰 

)−1 [
𝑰 −

(
𝑴 1 − 𝜌𝑰 

)(
𝑴 1 + 𝜌𝑰 

)−1 ]
𝑹 𝑯 . (51) 

Let the error vector at kth iterate is defined by 𝒆 𝒓 𝒓 ( 𝑘 ) = 𝒛 ( 𝑘 ) − 𝒛 . 

As discussed in previous section, the corresponding error equation is found to be 

𝒆 𝒓 𝒓 ( 𝑘 +1 ) = 𝑷 . 𝒆 𝒓 𝒓 ( 𝑘) 𝑘 = 0 , 1 , 2 , … . (52) 

In order to validate the convergence, it is obligatory to reveal that the spectral radius S( P ) < 1, for 𝜌> 0. Let 

𝑷 ∗ =
(
𝑴 2 + 𝜌𝑰 

)
𝑷 
(
𝑴 2 + 𝜌𝑰 

)−1 = (
𝑴 1 − 𝜌𝑰 

)(
𝑴 1 + 𝜌𝑰 

)−1 (
𝑴 2 − 𝜌𝑰 

)(
𝑴 2 + 𝜌𝑰 

)−1 
, (53) 

then P∗ is similar to P , and hence S ( P ) = S ( P∗ ). 

With the aid of spectral norm from (53), we set 

|||𝐏∗ |||𝟐 ≤ ||||||(𝑴 1 − 𝜌𝑰 
)(
𝑴 1 + 𝜌𝑰 

)−1 ||||||2 .||||||(𝑴 2 − 𝜌𝑰 
)(
𝑴 2 + 𝜌𝑰 

)−1 ||||||2 . (54) 

It has been verified that Re ( 𝜉𝑖𝑗 ) > 0, where 𝜉𝑖𝑗 ; i, j = 1(1) N are the eigenvalues of M1 and 

||||||(𝑴 1 − 𝜌𝑰 
)(
𝑴 1 + 𝜌𝑰 

)−1 ||||||2 < 1 . (55) 

Equally, 

||||||(𝑴 2 − 𝜌𝑰 
)(
𝑴 2 + 𝜌𝑰 

)−1 ||||||2 < 1 . (56) 

From Eq. (54) , it is convenient to write 

𝑆( 𝑷 ) = 𝑆( 𝑷 ∗) ≤ |||𝐏∗ |||𝟐 < 1 . (57) 

Hence the method (47.1)–(47.2) convergences. 

Now we discuss the 2-phase block-AGE, when N is odd. 

As usual, let 

𝑫 1 =
1 
2 
𝑫 + 𝜌𝑰 =

[1 
2 
𝐴2 ,

1 
2 
𝐴0 + 𝜌,

1 
2 
𝐴1 

]
, 

𝑫 2 =
1 
2 
𝑫 − 𝜌𝑰 =

[1 
2 
𝐴2 ,

1 
2 
𝐴0 − 𝜌,

1 
2 
𝐴1 

]
. 

Then the two-phase block-AGE iteration algorithm (47.1), (47.2) takes the matrix form 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑫 1 0 
𝑫 1 𝑩 

𝑩 𝑫 1 
⋱ 

𝑫 1 𝑩 

0 𝑩 𝑫 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝒛 1 
𝒛 2 
𝒛 3 
⋮ 
⋮ 

𝒛 𝑁−1 
𝒛 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(
𝑘 + 1 

2 

)

=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑅𝑯 1 −𝑫 2 𝒛 1 − 𝐵𝒛 2 
𝑅𝑯 2 − 𝐵𝒛 1 −𝑫 2 𝒛 2 
𝑅𝑯 3 −𝑫 2 𝒛 3 − 𝐵𝒛 4 

⋮ 
𝑅𝑯 𝑁−1 − 𝐵𝒛 𝑁−2 −𝑫 2 𝒛 𝑁−1 

𝑅𝑯 𝑁 

−𝑫 2 𝒛 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

( 𝑘) 

, 𝑘 = 0 , 1 , 2 , 3 , … (58.1) 
8
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⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑫 1 𝑩 0 
𝑩 𝑫 1 

⋱ 

𝑫 1 𝑩 

𝑩 𝑫 1 
0 𝑫 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝒛 1 
𝒛 2 
𝒛 3 
⋮ 
⋮ 

𝒛 𝑁−1 
𝒛 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

( 𝑘 +1) 

=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑅𝑯 1 −𝑫 2 𝒛 1 
𝑅𝑯 2 −𝑫 2 𝒛 2 − 𝐵𝒛 3 

⋮ 
𝑅𝑯 𝑁−2 − 𝐵𝒛 𝑁−3 −𝑫 2 𝒛 𝑁−2 
𝑅𝑯 𝑁−1 −𝑫 2 𝒛 𝑁−1 − 𝐵𝒛 𝑁 

𝑅𝑯 𝑁 

− 𝑩 𝒛 𝑁−1 −𝑫 2 𝒛 𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(
𝑘 + 1 

2 

)

, 𝑘 = 0 , 1 , 2 , … (58.2) 

Simplifying (58.1)-(58.2), we get the following 2-phase block-AGE algorithms. 

Phase- 1 algorithm : 

With m = 1 and l = 1(1) N , we set 

𝑫 1 𝒛 

(
𝑘 + 1 

2 

)
1 = 𝑹 𝑯 1 −𝑫 2 𝒛 

( 𝑘) 
1 − 𝑩 𝒛 

( 𝑘) 
2 ≡ 𝑿 

( 𝑘) 
0 , (59.1) 

The linear system (59) is tri-diagonal, hence very easy to solve for 𝒛 
(𝑘 + 1 

2 ) 
1 using a tri-diagonal solver (Gaussian-elimination method). 

For m = 2(2) N -1 and l = 1(1) N , we have 

𝑫 1 𝒛 

(
𝑘 + 1 

2 

)
𝑚 + 𝑩 𝒛 

(
𝑘 + 1 

2 

)
𝑚 +1 = 𝑹 𝑯 𝑚 − 𝑩 𝒛 

( 𝑘) 
𝑚 −1 −𝑫 2 𝒛 

( 𝑘) 
𝑚 

≡ 𝑿 

( 𝑘) 
1 , (60.1) 

𝑩 𝒛 

(
𝑘 + 1 

2 

)
𝑚 +𝑫 1 𝒛 

(
𝑘 + 1 

2 

)
𝑚 +1 = 𝑹 𝑯 𝑚 +1 −𝑫 2 𝒛 

( 𝑘) 
𝑚 +1 − 𝑩 𝒛 

( 𝑘) 
𝑚 +2 ≡ 𝑿 

( 𝑘) 
2 , (60.2) 

with 𝒛 
( 𝑘 ) 
𝑁+1 = 0 . 

We can re-write (60.1)-(60.2) as 

𝒛 

(
𝑘 + 1 

2 

)
𝑚 +

(
𝑫 1 

−1 𝑩 

)
𝒛 

(
𝑘 + 1 

2 

)
𝑚 +1 = 𝑫 1 

−1 𝑿 

( 𝑘) 
1 , (61.1) 

(
𝑫 1 

−1 𝑩 

)
𝒛 

(
𝑘 + 1 

2 

)
𝑚 + 𝒛 

(
𝑘 + 1 

2 

)
𝑚 +1 = 𝑫 1 

−1 𝑿 

( 𝑘) 
2 . (61.2) 

Multiplying (61.2) by (𝑫 1 
−1 𝑩 ) and subtracting from (61.1) and simplifying, we get 

(
𝑩 −𝑫 1 

)
𝑫 1 

−1 (𝑩 +𝑫 1 
)
𝒛 

(
𝑘 + 1 

2 

)
𝑚 = 𝑩 𝑫 1 

−1 𝑿 

( 𝑘) 
2 −𝑿 

( 𝑘) 
1 . (62) 

To solve (62), let 

𝑫 1 
−1 𝑿 

( 𝑘) 
2 = 𝑿 

( 𝑘) 
3 . (63) 

This implies 

𝑫 1 𝑿 

( 𝑘) 
3 = 𝑿 

( 𝑘) 
2 , (64) 

which can be computed with the aid of a tri-diagonal solver. 

Therefore (62) shortens to 

(
𝑩 −𝑫 1 

)
𝑫 1 

−1 (𝑩 +𝑫 1 
)
𝒛 

(
𝑘 + 1 

2 

)
𝑚 = 𝑩 𝑿 

( 𝑘) 
3 −𝑿 

( 𝑘) 
1 ≡ 𝑿 

( 𝑘) 
4 . (65) 

Let 

𝑫 1 
−1 (𝑩 +𝑫 1 

)
𝒛 

(
𝑘 + 1 

2 

)
𝑚 = 𝑿 

( 𝑘) 
5 . (66) 

Then (65) moderates to a linear tri-diagonal system (
𝑩 −𝑫 1 

)
𝑿 

( 𝑘) 
5 = 𝑿 

( 𝑘) 
4 , (67) 

which can be easily solved for 𝑿 

( 𝑘 ) 
5 . 

Thus from (66), we obtain 

(
𝑩 +𝑫 1 

)
𝒛 

(
𝑘 + 1 

2 

)
𝑚 = 𝑫 1 𝑿 

( 𝑘) 
5 ≡ 𝑿 

( 𝑘) 
6 , (68) 

which is again a linear tri-diagonal system and can be computed for 𝒛 
(𝑘 + 1 

2 ) . 
𝑚 

9
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Lastly, from (60.2), we set the linear tri-diagonal structure 

𝑫 1 𝒛 

(
𝑘 + 1 

2 

)
𝑚 +1 = 𝑿 

( 𝑘) 
2 − 𝑩 𝒛 

(
𝑘 + 1 

2 

)
𝑚 ≡ 𝑿 

( 𝑘) 
7 , (69) 

which can be solved for 𝒛 
(𝑘 + 1 

2 ) 
𝑚 +1 . 

Phase- 2 algorithm : 

With m = 1(2) N -2 and l = 1(1) N , we set 

𝑫 1 𝒛 
( 𝑘 +1) 
𝑚 

+ 𝑩 𝒛 
( 𝑘 +1) 
𝑚 +1 = 𝑹 𝑯 𝑚 − 𝑩 𝒛 

(
𝑘 + 1 

2 

)
𝑚 −1 −𝑫 2 𝒛 

(
𝑘 + 1 

2 

)
𝑚 ≡ 𝑿 

( 𝑘) 
8 , (70.1) 

𝑩 𝒛 ( 𝑘 +1) 
𝑚 

+𝑫 1 𝒛 
( 𝑘 +1) 
𝑚 +1 = 𝑹 𝑯 𝑚 +1 −𝑫 2 𝒛 

(
𝑘 + 1 

2 

)
𝑚 +1 − 𝑩 𝒛 

(
𝑘 + 1 

2 

)
𝑚 +2 ≡ 𝑿 

( 𝑘) 
9 , (70.2) 

with 𝒛 
(𝑘 + 1 

2 ) 
0 = 0 . 

We may re-write (70.1)-(70.2) as: 

𝒛 ( 𝑘 +1) 
𝑚 

+
(
𝑫 1 

−1 𝑩 

)
𝒛 
( 𝑘 +1) 
𝑚 +1 = 𝑫 1 

−1 𝑿 

( 𝑘) 
8 , (71.1) 

(
𝑫 1 

−1 𝑩 

)
𝒛 ( 𝑘 +1) 
𝑚 

+ 𝒛 
( 𝑘 +1) 
𝑚 +1 = 𝑫 1 

−1 𝑿 

( 𝑘) 
9 . (71.2) 

Multiplying (71.2) by (𝑫 1 
−1 𝑩 ) and subtracting from (71.1) and simplifying, we get (

𝑩 −𝑫 1 
)
𝑫 1 

−1 (𝑩 +𝑫 1 
)
𝒛 ( 𝑘 +1) 
𝑚 

= 𝐵𝐷1 
−1 𝑿 

( 𝑘) 
9 − 𝑿 

( 𝑘) 
8 . (72) 

To determine 𝒛 
(𝑘 +1 ) 
𝑚 , we first solve 

𝑫 1 𝑿 

( 𝑘) 
10 = 𝑿 

( 𝑘) 
9 , (73) 

which is a linear tri-diagonal structure can be computed for 

𝑿 

( 𝑘) 
10 = 𝑫 1 

−1 𝑿 

( 𝑘) 
9 . (74) 

Then (72) reduces to (
𝑩 −𝑫 1 

)
𝑫 1 

−1 (𝑩 +𝑫 1 
)
𝒛 ( 𝑘 +1) 
𝑚 

= 𝑩 𝑿 

( 𝑘) 
10 −𝑿 

( 𝑘) 
8 ≡ 𝑿 

( 𝑘) 
11 . (75) 

Let 

𝑫 1 
−1 (𝑩 +𝑫 1 

)
𝒛 ( 𝑘 +1) 
𝑚 

= 𝑿 

( 𝑘) 
12 . (76) 

Then (75) moderates to a tri-diagonal matrix form (
𝑩 −𝑫 1 

)
𝑿 

( 𝑘) 
12 = 𝑿 

( 𝑘) 
11 , (77) 

which can be solved for 𝑿 

( 𝑘 ) 
12 . 

From (76), we have (
𝑩 +𝑫 1 

)
𝒛 ( 𝑘 +1) 
𝑚 

= 𝑫 1 𝑿 

( 𝑘) 
12 ≡ 𝑿 

( 𝑘) 
13 , (78) 

which is a linear tri-diagonal structure and can be computed for 𝒛 
(𝑘 +1 ) 
𝑚 . 

Therefore, from (70.2), we have the system 

𝑫 1 𝒛 
( 𝑘 +1) 
𝑚 +1 = 𝑿 

( 𝑘) 
9 − 𝑩 𝒛 ( 𝑘 +1) 

𝑚 
≡ 𝑿 

( 𝑘) 
14 , (79) 

which is again a linear tri-diagonal system and can be computed for 𝒛 
(𝑘 +1 ) 
𝑚 +1 . 

Lastly, for m = N and l = 1(1) N , we set 

𝑫 1 𝒛 
( 𝑘 +1) 
𝑁 

= 𝑹 𝑯 𝑁 

− 𝑩 𝒛 

(
𝑘 + 1 

2 

)
𝑁−1 −𝑫 2 𝒛 

(
𝑘 + 1 

2 

)
𝑁 

≡ 𝑿 

( 𝑘) 
15 , (80) 

which is also a linear tri-diagonal form, can be computed for 𝒛 
(𝑘 +1 ) 
𝑁 

. 

In an alike approach, we can write the procedure for N is even. 
10
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Table 1 

Test Example 1. 

h Block-SOR Method 2-phase block-AGE Method 3-phase block-AGE Method MAEs 

𝜌𝑜𝑝𝑡 Itera-tions CPU Time 𝜌𝑜𝑝𝑡 Itera- tions CPU Time 𝜌𝑜𝑝𝑡 Itera-tions CPU Time 

1/10 1.446 32 0.0028 0.464 28 0.0024 0.639 26 0.0024 4.5557e-08 

1/20 1.677 64 0.0165 0.341 46 0.0155 0.416 42 0.0144 6.7248e-10 

1/30 1.773 96 0.0258 0.245 65 0.0223 0.272 58 0.0205 5.7991e-11 

1/40 1.824 127 0.0514 0.162 98 0.0486 0.208 87 0.0402 1.0228e-11 

1/60 1.886 189 0.1158 0.116 126 0.1067 0.128 105 0.0911 9.0327e-13 

1/80 1.934 255 0.1988 0.090 196 0.1784 0.103 157 0.1566 1.5864e-13 

Table 2 

Test Example 2. 

h Block-SOR Method 2-phase block-AGE Method 3-phase block-AGE Method MAEs 

𝜌𝑜𝑝𝑡 Itera-tions CPU Time 𝜌𝑜𝑝𝑡 Itera- tions CPU Time 𝜌𝑜𝑝𝑡 Itera-tions CPU Time 

1/10 1.428 30 0.0026 0.449 24 0.0023 0.611 23 0.0023 4.7924e-07 

1/20 1.658 59 0.0153 0.320 42 0.0138 0.408 34 0.0121 7.0629e-09 

1/30 1.756 84 0.0237 0.238 57 0.0208 0.266 44 0.0182 6.0887e-10 

1/40 1.818 117 0.0488 0.151 86 0.0375 0.208 65 0.0257 1.0743e-10 

1/60 1.880 169 0.1113 0.109 114 0.0972 0.121 93 0.0863 9.3424e-12 

1/80 1.918 233 0.1807 0.088 148 0.1616 0.101 115 0.1343 1.6539e-12 

Fig. 1. Test. Example 1: Log-Log Error Plot. 

11
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Table 3 

Test Example 3. 

h Block-SOR Method 2-phase block-AGE Method 3-phase block-AGE Method MAEs 

𝜌𝑜𝑝𝑡 Itera-tions CPU Time 𝜌𝑜𝑝𝑡 Itera- tions CPU Time 𝜌𝑜𝑝𝑡 Itera-tions CPU Time 

1/10 1.412 28 0.0024 0.486 22 0.0022 0.642 20 0.0021 1.2839 e-07 

1/20 1.654 55 0.0144 0.362 36 0.0138 0.425 32 0.0124 1.8959e-09 

1/30 1.755 76 0.0218 0.267 45 0.0204 0.276 40 0.0196 1.6349e-10 

1/40 1.812 109 0.0410 0.188 65 0.0394 0.211 57 0.0323 2.8838e-11 

1/60 1.876 155 0.1082 0.127 91 0.0984 0.136 82 0.0812 2.4733e-12 

1/80 1.921 221 0.1728 0.094 112 0.1518 0.104 101 0.1222 4.4317e-13 

Fig. 2. Test. Example 2: Log-Log Error Plot. 
Validation of the proposed iteration methods 

The Eq. (15) can be written as (
𝑨 𝑀 

−𝑨 𝐿 −𝑨 𝑈 

)
𝒛 = 𝑹 𝑯 , (81) 

where A = 𝑨 𝑀 

−𝑨 𝐿 −𝑨 𝑈 represents a tri-block-diagonal matrix with 𝑨 𝑀 

, 𝑨 𝐿 and 𝑨 𝑈 as main-, lower- and upper- tri-diagonal 

matrices of order N . 

The block-SOR iteration method [37 , 38] for Eq. (81) may be written as: 

𝑨 𝑀 

𝒛 ( 𝑘 +1) = 𝜌
[
𝑨 𝐿 𝒛 

( 𝑘 +1) +𝑨 𝑈 𝒛 
( 𝑘) +𝑹 𝑯 

]
+ ( 1 − 𝜌) 𝑨 𝑀 

𝒛 ( 𝑘) , (82) 
12
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Fig. 3. Test. Example 3: Log-Log Error Plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 𝜌 ∈ (0 , 2 ) represents as a relaxation parameter. 

We solve the following benchmark problems using the proposed multi-phase block-AGE iterative methods and compared the 

results with the corresponding block-SoR method [37 , 38] . The right-side homogeneous functions and boundary conditions are set

up by the closed form solution as an experiment. In all cases, zero vectors are chosen as initial guess and CPU times are reported for

all computations. Theoretically, it is difficult to obtain the optimal relaxation parameters ( 𝜌𝑜𝑝𝑡 ) for the proposed block-AGE iteration

methods. However, we have obtained values of 𝜌𝑜𝑝𝑡 through experiment. Tri-diagonal solver is used in all cases. The computation of

proposed methods is possible in the absence of fictitious points. Fictitious points arise due to the discretization of derivative boundary

conditions and use of high accuracy non-compact schemes. Since we are using sixth-order compact scheme and the solutions are known

exactly on the boundary, the fictitious points do not arise for the computation. The iterations were terminated when the absolute

error acceptance ≤ 10− 15 stood accomplished. MATLAB codes were used for executing the computational part. 

Test Example 1: The Eq. (3) is solved in the region 0 < x,y < 𝜋. The closed form of the solution is given by z(x , y ) = sin (x)sin (λ y ) .
The maximum absolute errors (MAEs), CPU time and 𝜌𝑜𝑝𝑡 are reported in Table 1 for λ = 0.5. The log-log error plot is portrayed in

Fig. 1 . 

Test Example 2: The Eq. (3) is solved in the region 0 < x,y < 1 with the exact solution z(x , y ) = sin (𝜋x )sin (𝜋y ) . The MAEs, CPU

time and 𝜌𝑜𝑝𝑡 are reported in Table 2 for λ = 0.5. The log-log error graph is plotted in Fig. 2 . 

Test Example 3: The Eq. (3) is solved for λ = 0 in the region 0 < x,y < 1 with the exact solution z(x , y ) = exp (2 𝑥 ) 𝑠𝑖𝑛 (𝜋𝑦 ) . The

MAEs, CPU time and 𝜌𝑜𝑝𝑡 are reported in Table 3 . The log-log error graph is presented in Fig. 3 . 

Conclusions and final remarks 

We have employed compact 9-grid points sixth order approximation for the solution of 2D Helmholtz and Poisson equations. The

resulting block liner system that arises due to discretization is solved using multi-phase block-AGE iteration algorithms. In numerical
13
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test, the MAEs, CPU time and 𝜌𝑜𝑝𝑡 are discussed in terms of the number of iterations required for convergence. The proposed multi-

phase block-AGE algorithms require less number of iterations and CPU time for convergence in comparison with block-SoR method for

the known values of 𝜌𝑜𝑝𝑡 . In 2-phase method the common term is not evaluated separately, whereas in 3-phase method the common

term is evaluated first and then used in subsequent computations, thus take less CPU time in comparison with 2-phase method.

Though the cost for multi-phase block-AGE methods is more than the block-SoR method, the block-AGE methods have an in-built

parallelism; hence more computational time can be saved on parallel designs. Error tabulation, confirms, the projected technique has 

sixth order convergence, assuredly. The proposed methods have some limitations: (i) not applicable to nonlinear EBVPs, and (ii) not

applicable to EBVPs with Neumann boundary conditions. However, it is expected that the proposed block-AGE iteration technique 

can be successfully implemented on other linear cases. 
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