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Gluconeogenic enzymes are induced when Saccharomyces cere-
visiae are grown in media containing low glucose. However, 
when glucose is added to glucose-starved cells, these enzymes 
are inactivated and degraded. These enzymes include fruc-
tose-1,6-bisphosphatase (FBPase), isocitrate lyase (Icl1p), 
phosphoenolpyruvate carboxykinase (Pck1p) and malate dehy-
drogenase (MDH2). Inactivation and degradation of gluconeo-
genic enzymes during glucose re-feeding prevents energy futile 
cycles that are harmful to cells. FBPase is degraded either in 
the vacuole or in the proteasome depending on the length of 
glucose starvation. For the vacuole-dependent pathway, several 
intermediate compartments are utilized. Vid (vacuole import 
and degradation) vesicles are small vesicles, whereas Vid/endo-
somes contain clusters of Vid vesicles. Recent evidence indi-
cates that FBPase is secreted into the periplasm during glucose 
starvation. Following glucose re-feeding, FBPase is internalized 
into Vid/endosomes in the cytoplasm. FBPase internalization is 
dependent on the ARC18 (Arp2/3 complex subunit) and SLA1 
(Synthetic Lethal with ABP1) genes involved in actin polym-
erization/endocytosis. FBPase internalization also requires the 
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VPS34 gene encoding PI3K. Using these unconventional path-
ways, secreted FBPase is retrieved into the cytoplasm and subse-
quently degraded in the vacuole.

Autophagy and Human Diseases

Autophagy is a process by which proteins or organelles are 
degraded in the lysosome/vacuole. Multiple autophagic pathways 
have been identified.1-4 The best example is the non-selective mac-
roautophagic pathway, which is induced when cells are starved of 
nutrients.1,2,5 This pathway recycles amino acids for reuse and is 
important for survival during starvation. In addition, autophagy 
is critical for a number of biological processes such as extension of 
life span, developmental regulation and defense against the inva-
sion of pathogens.2,6-10 Altered autophagy is associated with many 
pathological conditions including aging, cancer, neuromuscu-
lar degeneration and neurodegeneration.8,11-13 In animal mod-
els of neurodegeneration, rapamycin which induces autophagy 
reduced large protein aggregates and improved the performance 
of affected animals.14,15 Therefore, induced autophagy has the 
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Icl1p was retarded in cells lacking the VID24 gene,40 indicating 
that the Vid pathway mediates the degradation of these proteins 
in the vacuole. The fact that multiple gluconeogenic enzymes 
are degraded in the vacuole via the Vid pathway highlights the 
importance of this pathway. Furthermore, the Vid pathway is 
a selective degradation pathway. Cargo proteins are degraded 
when they are no longer needed in new environments. This is 
different from the starvation-induced autophagic pathway that 
degrades proteins non-selectively. GID (glucose induced degra-
dation) genes were isolated as being required for the degrada-
tion of FBPase in the proteasome.36 Interestingly, many of these 
GID genes are also involved in vacuole-dependent degradation of 
FBPase in response to glucose addition.32

For the Vid pathway, FBPase is associated with intermediate 
compartments prior to being delivered to the vacuole. Vid vesicles 
are small vesicles and have smooth surfaces.46 These vesicles were 
detected in glucose-starved cells, suggesting that they are formed 
prior to the addition of glucose. Vid24p is a peripheral protein 
that resides on Vid vesicles.44,47 COPI coatomer proteins are also 
present on Vid vesicles and are required to recruit Vid24p to 
these vesicles.44 COPI coatomer proteins are involved in multiple 
trafficking pathways in mammalian cells and in yeast. For exam-
ple, COPI proteins are required for retrograde transport from 
the Golgi to the ER. Furthermore, these proteins are localized 
to endosomes and play important roles in endosomal sorting.48-52 
In the absence of the UBC1 (ubiquitin conjugating enzyme 1) 
gene, levels of Vid24p were reduced in the Vid vesicle enriched 
fraction, suggesting that the UBC1 gene is involved in the forma-
tion of Vid vesicles.33 The import of FBPase into Vid vesicles has 
been reconstituted in vitro. The sequestration of FBPase requires 
the heat shock protein Ssa2p, cyclophilin A and Vid22p.38,42,43 
Recent evidence indicates that Vid30p is also distributed to Vid 
vesicles and forms a large protein complex with Vid24p and 
Sec28p.53 Moreover, the type I phosphatase Reg1p-Glc1p54 and 
the vacuole ATPase55 play important roles in the Vid pathway.

FBPase is Localized to Endosomes Following 
Glucose Addition

Vid vesicles exist in at least two forms. Individual Vid vesicles are 
30–50 nm in diameter.46 Vid vesicles can also aggregate to form 
Vid/endosomes that contain the endosomal protein Pep12p, the 
Vid-vesicle protein Vid24p and the cargo protein FBPase.39 Vid/
endosomes have been purified and examined at the ultra-struc-
tural level.39 FBPase and Vid24p were in small compartments 
inside Vid/endosomes. Vid24p was also present at multiple loca-
tions on the surface of Vid/endosomes.39 It is difficult to assess 
whether or not a layer of common membranes surrounds Vid/
endosomes, as such membranes may not be preserved during 
fixation and processing for negative staining and TEM. The 
VPH1 gene is required for the Vid pathway at a late step. As such, 
FBPase accumulated in late endosomes in cells lacking this gene. 
In the Δvph1 mutant, FBPase-GFP was inside endosomes that 
were surrounded by a thin layer of FM4-64, suggesting that com-
mon membranes are present in these structures.39 FM 4-64 (FM) 
is a red fluorescence dye that is internalized and subsequently 

potential to treat patients with aggregates-prone diseases such as 
Parkinson disease, Huntington’s disease, or Alzheimer disease.

Catabolite Inactivation

A novel autophagic pathway that degrades gluconeogenic enzymes 
during glucose re-feeding has been studied in Saccharomyces 
cerevisiae. Gluconeogenic enzymes fructose-1,6-bisphosphatase 
(FBPase), isocitrate lyase (Icl1p), phosphoenolpyruvate car-
boxykinase (Pck1p) and malate dehydrogenase (MDH2) are 
induced when cells are grown in media containing low glu-
cose.16-18 However, following a transfer of glucose-starved cells 
to media containing high glucose, these enzymes are inactivated 
and degraded.17-24 This inactivation was called “catabolite inacti-
vation” by Dr. H. Holzer more than 20 years ago.18 However, the 
mechanisms responsible for catabolite inactivation have not been 
completely elucidated. In addition to gluconeogenic enzymes, 
catabolite inactivation has also been described for mitochondrial 
enzymes such as the F1 subunit of the ATPase,25 Ach1p involved 
in acetate metabolism,26 the galactose,27,28 the maltose29,30 and the 
high-affinity glucose transporters.18 Thus, catabolite inactiva-
tion applies to multiple enzymes involving different metabolic 
pathways.

The Site of Degradation

Fructose-1,6-bisphosphatase is the key gluconeogenic enzyme 
and has been used extensively to study the mechanisms for glu-
cose-induced inactivation and degradation.20,21,31-36 This protein 
has been reported to be degraded either in the vacuole20,21,37-45 
or in the proteasome.31,36 Interestingly, the site of degradation of 
FBPase varies depending on the length of glucose starvation.32 
FBPase is degraded in the proteasome when glucose is added to 
cells that are starved for 1 d. In contrast, FBPase is degraded in 
the vacuole when glucose is added to cells that are starved for 
3 d. Malate dehydrogenase (MDH2) is another gluconeogenic 
enzyme that is degraded in the proteasome upon addition of glu-
cose to 1 d-starved cells. This protein is degraded in the vacuole 
following a transfer of 3 d-starved cells to glucose.32 Likewise, two 
other gluconeogenic enzymes Pck1p and Icl1p are targeted and 
then degraded in the vacuole when prolonged-starved cells are 
replenished with glucose.40 Trafficking of gluconeogenic enzymes 
to the vacuole in response to glucose has been demonstrated 
using indirect immunofluorescence microscopy, immuno-trans-
mission electron microscopy (immuno-TEM) and fluorescence 
microscopy with GFP targeted cargo proteins.20,21,32,40 Targeting 
of FBPase to the vacuole has also been reconstituted in vitro using 
semi-permeabilized cells.34

The Vacuole Import and Degradation Pathway

A number of VID (vacuole import and degradation) genes have 
been identified as being required for the degradation of FBPase 
in the vacuole.45 Homologs of these VID genes are also found 
in mice and human, suggesting that VID genes are evolution-
arily conserved. The degradation of FBPase, MDH2, Pck1p and 
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the VID30 gene, Vid24p and FBPase did not co-localize with 
actin patches, suggesting that VID30 is required for the associa-
tion of Vid vesicles with these patches.

Vid30p contains a lissencephaly type 1-like homology 
domain (LisH). Mutations in the LIS1 gene cause Miller-Dieker 
lissencephaly disorder and early death. Vid30p also contains a 
C-terminal to the LisH domain (CTLH) involved in microtubule 
dynamics.61-63 These domains are important for Vid30p interac-
tion with Vid24p and Sec28p. In the absence of these domains, 
FBPase accumulated in punctate structures. In contrast, in the 
complete absence of VID30, FBPase showed diffused distribu-
tion. Because FBPase displayed different distribution patterns, 
the LisH and CTLH domains are likely to be involved in a late 
step in the FBPase degradation pathway.53

FBPase is Secreted in Glucose-Starved Cells  
and Internalized in Glucose Re-fed Cells

The finding that FBPase was distributed to the FM-containing 
endosomes in glucose re-fed cells raised the possibility that 
FBPase itself is secreted into the periplasm prior to glucose addi-
tion. To investigate this, FBPase distribution was examined at 
the ultra-structural level.64 When wild-type cells were grown in 
media containing high glucose, FBPase levels were low. In cells 
that were starved for 3 d, FBPase was induced and a high percent-
age of FBPase was in the periplasm. Thus, FBPase is secreted into 
the periplasm during prolonged starvation. Following the addi-
tion of glucose to 3 d-starved cells for 15 min, FBPase appeared 
in Vid/endosomes in the cytoplasm. In cells that were starved for 
3 d and then re-fed with glucose for 120 min, total amounts of 
FBPase decreased, indicating that most of the FBPase is degraded 
by this time point.

The appearance of FBPase in the extracellular fraction was 
further demonstrated using a protocol that extracts extracellu-
lar proteins from whole cells. In these studies, wild-type cells 
were starved, re-fed with glucose and extracellular proteins were 
extracted. Proteins were then separated into the extracellular and 
intracellular fractions and the distribution of proteins in these 
fractions was determined. This protocol was used to detect the 
secretion of mammalian galectin-1 expressed in Saccharomyces 
cerevisiae.65 Similar protocols have been employed to study cell-
wall associated proteins in C. albicans.66

This protocol was utilized to demonstrate that molecules 
involved in the Vid pathway were distributed mostly in the intra-
cellular fraction.64 Lst8p and Tor1p are subunits of the Tor1p 
complex and were mainly in the intracellular fraction. Likewise, 
the majority of the Sec28p, Vid24p, Vid30p and Vps34p were in 
the intracellular fraction. By contrast, FBPase was in both intra-
cellular and extracellular fractions. Interestingly, the appearance 
of FBPase in the extracellular fraction depends on the availabil-
ity of glucose in the media. When wild-type cells were grown 
in media containing high glucose, FBPase was not expressed 
and was not detected in the extracellular fraction. When cells 
were grown in media containing low glucose for 1 d, FBPase 
was induced. However, this protein was not detectable in the 
extracellular fraction. In 2 d-starved cells, low levels of FBPase 

targeted to endosomes and then to the vacuole.56 As such, this dye 
has been used to label compartments in the endocytic pathway. 
In addition to FBPase, Vid vesicle-proteins Vid24p and Sec28p 
also co-localize with FM-containing endosomes upon a transfer 
of glucose-starved cells to glucose.44

When the distribution of FBPase was examined at the ultra-
structural level, FBPase was in areas near the plasma mem-
brane following glucose re-feeding for 15 min.39 In yeast, actin 
polymerization is needed for scission of endocytic vesicles and 
generation of force to propel endocytic vesicels.57-60 Interestingly, 
FBPase and MDH2 associated with actin patches transiently and 
they dissociated later.39 Vid-vesicle proteins such as Vid24p and 
Sec28p also associated with actin patches initially. However, less 
co-localization was observed at later time points.39 The utiliza-
tion of the endocytic pathway enables cells to remove molecules 
from the extracellular and intracellular spaces simultaneously. 
This may provide an efficient way for cells to clear unwanted 
proteins and to adapt quickly to the new environments.

Anterograde and Retrograde Trafficking  
to and from the Vacuole

Co-localization of cargo proteins and Vid vesicle proteins such 
as Vid24p, Sec28p and Vid30p with endosomes suggests that 
these proteins are delivered to endosomes and to the vacuole via 
the anterograde trafficking pathway. However, cargo proteins 
are degraded in the vacuole, whereas Vid vesicle proteins are not 
degraded in the vacuole. Thus, a retrograde transport pathway 
should be used to retrieve Vid vesicle proteins from the vacuole. 
Without retrograde transport, these molecules would be trapped 
in the vacuole.

To study retrograde transport, the vacuole was pre-labeled 
with FM4-64 for 16 h in glucose-starved wild-type cells that 
expressed GFP tagged proteins. Cells were then re-fed with glu-
cose and examined for the distribution of GFP proteins in retro-
grade transport vesicles that budded from the vacuole. In these 
studies, Sec28p was detected in vesicles that formed from the 
vacuolar membrane.40,44 Co-localization of Sec28p in retrograde 
vesicles requires the UBC1 and the RET2 genes (encodes the δ 
subunit of COPI coatomers).71 The Tor1 complex (TORC1) plays 
an essential role in the Vid pathway. Interestingly, the TORC1 
subunits Tor1p and Tco89p were also found in retrograde trans-
port vesicles.40 In addition to having a role in retrieving proteins 
from the vacuole, retrograde transport is also critical to maintain 
the size of the vacuole. Without retrograde transport, the vacu-
ole membrane would expand. As such, retrograde transport is as 
important as anterograde transport.

VID30 Plays a Critical Role in the Association of Vid 
vesicles with Actin Patches

VID30 was originally identified via a transposon library screen-
ing for mutants defective in the Vid pathway.53 Vid30p is consti-
tutively expressed and localized to Vid vesicles.53 This protein is 
associated with actin patches during glucose starvation and less 
association was observed at later time points. In the absence of 
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The VPS34 gene has critical roles in the Vid pathway.64 
Vps34p associates with actin patches constitutively. The asso-
ciation requires the ARC18 and SLA1 genes. In cells lacking the 
VPS34 gene, FBPase and Vid24p constitutively co-localized with 
actin patches. Hence, the association of Vid vesicles with actin 
patches persists in the absence of the VPS34 gene.

VPS34 has an important role in the reduction of extracellular 
FBPase in response to glucose re-feeding. In 3 d-starved Δvps34 
mutant, substantial amounts of FBPase were in the periplasm as 
shown by immuno-TEM. However, following the addition of 
glucose, most of the FBPase remained in the periplasm. These 
results were further confirmed using the extraction procedure. 
In 3 d-starved Δvps34 mutant, a high percentage of FBPase was 
in the extracellular fraction. Following a transfer of the Δvps34 
mutant to media containing high glucose, significant amounts of 
FBPase remained in the extracellular fraction.64 Taken together, 
these results indicate that VPS34 is involved in the decline of 
extracellular FBPase in response to glucose. VPS34, however, is 
not required for the appearance of FBPase in the periplasm dur-
ing starvation.

The N736 Residue and the C-terminal 11 Amino 
Acids of Vps34p are Critical for the Reduction of 
Extracellular FBPase Following Glucose Addition

The N736 residue of Vps34p is critical for PI3K activity and 
plays important roles in many vacuole pathways including the 
Vid pathway.68,71-73 FBPase degradation was retarded in cells har-
boring the N736K mutation.64 In addition, the N736K mutant 
protein did not co-localize with actin patches. Moreover, the 
N736 mutant delayed the clearance of extracellular FBPase in 
response to glucose re-feeding.64

The C-terminal 11 amino acids of Vps34p (amino acids 
864–875) is implicated in the association of Vps34p on the mem-
brane.74,75 FBPase degradation was inhibited in cells in which the 
C-terminal 11 amino acids were deleted.64 Moreover, the ΔC11 
mutant protein and actin patches did not co-localize. In addi-
tion, the absence of the C-terminal 11 amino acids retarded the 
clearance of extracellular FBPase in response to glucose. These 
results indicate that the N736 residue and the C-terminal 11 
amino acids are critical for Vps34p association with actin patches 
and the reduction of extracellular FBPase following glucose 
re-feeding.

The Vid Pathway Model

Based on the current knowledge about the Vid pathway, the fol-
lowing model has been proposed (Fig. 1). When cells are grown 
in low glucose for 3 d, FBPase is secreted into the periplasm. 
The secretion of FBPase into the extracellular fraction/periplasm 
increases as cells are starved longer. Interestingly, levels of the gly-
colytic enzyme GAPDH in the extracellular fraction also depend 
on the growth conditions. Because FBPase and GAPDH do not 
contain the signal sequences for the ER-Golgi pathway, these 
proteins are secreted via the non-classical pathway.

appeared in the extracellular fraction and FBPase levels in the 
extracellular fraction increased further in cells that were starved 
for 3 d.

The glycolytic enzyme glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) is on the cell surface of Saccharomyces 
cerevisiae grown in medium containing high glucose.67 As such, 
substantial amounts of GAPDH were in the extracellular frac-
tion in cells grown in high glucose media. However, levels of 
extracellular GAPDH decreased in cells grown in low glu-
cose media for 1 and 2 d. Amounts of extracellular GAPDH 
increased following growth in low glucose medium for 3 d. 
Thus, the distribution of FBPase and GAPDH in the extracel-
lular fraction changes depending on the availability of glucose 
in the media.

Vps34p is Critical for the Internalization of 
Extracellular FBPase in Response to Glucose 

Addition

Phospholipids and sterols play critical roles in many protein 
trafficking pathways. The VPS34 gene encodes a class III phos-
phatidylinositol (PtdIns) 3-kinase (PI3K) which phosphory-
lates phosphatidylinositol at the 3' hydroxyl position to produce 
PtdIns 3-phosphate (PI3P).68-70 The yeast Vps34p is involved in 
multiple protein trafficking events including endocytosis, sorting 
of vacuolar proteins, vacuole segregation, multi-vesicular body 
formation, the cytoplasm to the vacuole pathway and starvation 
induced macroautophagy.68-70

Figure 1. A model for the Vid pathway. When wild-type cells are starved 
of glucose for a prolonged period of time, significant amounts of FBPase 
are secreted into the periplasm. Following glucose re-feeding, FBPase is 
internalized into Vid/endosomes. The internalization of FBPase requires 
the SLA1, ARC18 and VPS34 genes. Under the same conditions, most of 
the Vid24p, Sec28p, Vid30p and Vps34p are in the intracellular fraction. 
Vid24p, Sec28p and Vid30p associate with actin patches initially and 
dissociate later, whereas Vps34p associates with actin patches constitu-
tively. Following internalization, FBPase is targeted to the vacuole and 
then degraded in the lumen.
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proteins that are unique to the cells that secreted them. Purified 
exosomes from mammalian cells are 40–100 nm in diameter and 
have densities of about 1.1–1.2 g/ml.78-80 Moreover, exosomes iso-
lated from mouse MC/9 cells entered human HMC-1 cells and 
changed protein profiles of the HMC-1 cells,81 suggesting that 
exosomes can enter recipient cells from a different species.

There are important questions that remain to be addressed. 
For example, is FBPase secreted in vesicles? If so, is it internalized 
in vesicles? Are Vid vesicles similar to exosomes? Can Vid vesi-
cles enter other cells? If so, do they fuse directly with the plasma 
membrane or enter through protein- or vesicle-conducting chan-
nels? Are Vid/endosomes similar to the multi-vesicular bodies 
implicated in endocytosis in mammalian cells? Why are proteins 
secreted in vesicles? Since both membrane proteins and lumi-
nal proteins can be packaged in vesicles, the number of proteins 
secreted into the extracellular space may increase substantially. 
Furthermore, vesicles may protect proteins from sudden changes 
in the environments. For instance, when cells are challenged with 
toxic materials, surface proteins may be damaged, but luminal 
proteins may be spared. Given that exosomes contain mRNA 
and microRNA, they may be involved in the transfer of genetic 
materials to recipient cells. As such, they have the potential for 
gene therapy. Therefore, secreted proteins may have multiple 
roles, to protect cells from toxic materials, to adjust metabolic 
needs in response to changing environments, to participate in 
cell-to-cell communication and to transfer genetic materials to 
recipient cells.

Bacteria, viruses, fungi and parasites secrete a large number 
of signal-less proteins during infection. Cancer cells also secrete 
many signal-less proteins during growth and invasion. Defects 
in endocytosis have also been linked to various neurological 
disorders.82 For instance, Vps34p is involved in endocytosis in 
mammalian cells83 and the deletion of VPS34 in sensory neurons 
causes neurodegeneration by disrupting the endosomal path-
way.82 Thus, understanding the molecular mechanisms respon-
sible for the unconventional secretory and internalizing pathways 
should have far-reaching impacts on many biological processes 
such as metabolic regulation, protein trafficking, pathogen infec-
tion and cancer growth and invasion.
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Following a transfer of prolonged-starved cells to high glucose 
for 15 min, secreted FBPase is internalized rapidly into Vid/endo-
somes. FBPase internalization enables cells to retrieve most of the 
extracellular FBPase into the cytoplasm, allowing this protein to 
be targeted to the vacuole for degradation. FBPase internaliza-
tion is dependent on the VPS34 gene encoding PI3K.64 Vps34p 
association with actin patches is linked to the decline of extracel-
lular FBPase. When the C-terminal 11 amino acids were deleted 
or when the N736 residue was mutated, Vps34p association 
with actin patches was impaired and the clearance of extracel-
lular FBPase was retarded. Interestingly, most of the extracellu-
lar FBPase was cleared in the first 30 min of glucose addition, 
suggesting that this is a rapid process. FBPase is unlikely to be 
internalized via the receptor-mediated endocytic pathway due to 
its lack of a signal sequence. Under the same conditions, mol-
ecules involved in the Vid pathway such as Vid24p, Sec28p, 
Vid30p and Vps34p are retained in the intracellular fraction. 
In the future, it will be important to elucidate the mechanisms 
responsible for the secretion and internalization of FBPase via the 
non-classical pathways.

Prospectives

Why is FBPase secreted in glucose-starved cells and internalized 
in glucose re-fed cells? One possibility is that FBPase is secreted 
when the need for this enzyme inside the cells is decreased. 
FBPase may be in greater demand in the intracellular fraction for 
1 d-starved cells. However, the need for FBPase in the intracel-
lular fraction may decrease in 3 d-starved cells. As such, more 
FBPase is secreted from cells that are starved for 3 d. It has been 
reported that extracellular GAPDH is enzymatically active.76,77 
If metabolic enzymes are secreted as active enzymes, they can 
perform the same biological functions readily after they are inter-
nalized. Secreted proteins may also have additional roles unre-
lated to their well-known functions inside the cells. For example, 
GAPDH and enolase participate in host-pathogen interaction 
during infection by C. albicans.66,67

In yeast, FBPase is associated with Vid vesicles and clusters 
of Vid vesicles. Vid vesicles are 30–50 nm in diameter and have 
densities of about 1.2 g/ml. Small vesicles called exosomes are 
secreted from a variety of mammalian cells.78-80 Exosomes carry 
a common set of proteins found in most cell types as well as 
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