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ABSTRACT: Aβ4−42 is the major subspecies of Aβ peptides characterized by avid Cu(II) binding via the ATCUN/NTS motif. It is
thought to be produced in vivo proteolytically by neprilysin, but in vitro experiments in the presence of Cu(II) ions indicated
preferable formation of C-terminally truncated ATCUN/NTS species including CuIIAβ4−16, Cu

IIAβ4−9, and also Cu
IIAβ12−16, all with

nearly femtomolar affinities at neutral pH. Such small complexes may serve as shuttles for copper clearance from extracellular brain
spaces, on condition they could survive intracellular conditions upon crossing biological barriers. In order to ascertain such
possibility, we studied the reactions of CuIIAβ4−16, Cu

IIAβ4−9, Cu
IIAβ12−16, and CuIIAβ1−16 with reduced glutathione (GSH) under

aerobic and anaerobic conditions using absorption spectroscopy and mass spectrometry. We found CuIIAβ4−16 and CuIIAβ4−9 to be
strongly resistant to reduction and concomitant formation of Cu(I)−GSH complexes, with reaction times ∼10 h, while CuIIAβ12−16
was reduced within minutes and CuIIAβ1−16 within seconds of incubation. Upon GSH exhaustion by molecular oxygen, the CuIIAβ
complexes were reformed with no concomitant oxidative damage to peptides. These finding reinforce the concept of Aβ4−x peptides
as physiological trafficking partners of brain copper.

A β peptides are products of extracellular hydrolysis of
amyloid precursor protein (APP) present in neuronal

synaptic membranes.1−3 Overproduction or excessive aggrega-
tion of Aβ has been long implicated as an upstream cause of
neuronal death in Alzheimer’s disease (AD).4,5 This concept
gained recent reinforcement when direct deleterious action of
Aβ dimers on neuronal glutamate receptors was demon-
strated.6 Aβ peptides are a heterogeneous peptide family,
generated by a number of primary (acting on APP) and
secondary (acting on Aβ) proteases. The most studied
members of the Aβ family are Aβ1−40 and Aβ1−42, but current
analytical studies demonstrated a high abundance of the N-
truncated Aβ4−42 peptide in both healthy and AD human
brains.7,8

Aβ1−x peptides (x denotes naturally occurring 42 and 40
species, as well as model peptides 28 and 16) bind a CuII ion
avidly with Kd about 100 pM. The resulting complexes can be
easily activated by ascorbate to catalyze the production of
reactive oxygen species (ROS).9−12 Supported by reports on
deranged copper metabolism in AD brains and colocalization
of copper and aggregated Aβ peptides in amyloid plaques,
these properties gave rise to a concept of CuII−Aβ1−x
complexes as neurotoxic species in AD.5,13,14

Remarkably, Aβ4−42 and its C-terminally truncated analogs
are CuII chelators much more avid (3000 times at pH 7.4 for
Aβ4−16 vs Aβ1−16) and specific than Aβ1−x peptides.15 This
results from a specific character of their N-terminal sequence,
Phe-Arg-His, belonging to the ATCUN/NTS family.16

Furthermore, unlike CuII−Aβ1−x complexes, CuII−Aβ4−x did
not generate ROS and could not be reduced electrochemically
to CuI species.15 These findings suggest that Aβ4−42 might
actually serve as synaptic copper scavenger, helping restore the

resting state of glutamatergic synapse, after the physiological
Cu2+ release during neurotransmission.17,18

Digestion of Aβ peptides is considered as one of the major
routes of their detoxification. They are thought to be cleaved
down to oligopeptides that can cross the blood−brain
barrier.19,20 An Aβ-specific peptidase has not been found.
Instead, a number of brain proteases with other known
functions have been implicated in this process, including
neprilysin (NEP), angiotensinogen converting enzyme (ACE),
and insulin degrading enzyme (IDE).21 NEP action on Aβ1−x
has also been indicated as the main source of Aβ4−x in the
brain.22,23 A recent study of Aβ1−16 and Aβ1−40 cleavage by
NEP in the presence and absence of CuII ions did not quite
reproduce such activity, however. Instead a significant extent of
peptide fragmentation was observed. The fast digestion of the
Gly9−Tyr10 bond yielded the CuII-complexed short peptide
Aβ4−9. Additionally, a complex of Aβ12−16 was generated
abundantly when Aβ1−16 was used as a substrate and was also
present as a minor species for Aβ1−40.

24 Aβ4−9 and Aβ12−16 are
even stronger CuII chelators than Aβ4−16, with Kd of 6.6 fM and
9.5 fM vs 30 fM at pH 7.4.25 This finding gave rise to an idea
that such complexes might serve as shuttles for removing
excess copper from the brain.
Crossing the blood−brain barrier (BBB) is a complicated

and not fully elucidated process, involving passage through the
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layer of epithelial cells forming the blood vessel walls.26

Therefore, the transferred molecule could be exposed for a
certain amount of time to intracellular conditions, including
millimolar (0.5−10 mM) concentrations of reduced gluta-
thione (GSH).27 GSH is the main reducing agent for CuII

species entering the cell interior and is also implicated in the
intracellular CuI transport.28−30 It is also present extracellularly
in the brain, serving as neuromodulator.31 GSH facilitated the
otherwise very sluggish reductive copper transfer from Aβ4−16
to metallothionein-3 (MT-3), indicating that it could reduce
the Aβ4−x-bound Cu(II) to Cu(I) despite the electrochemical
resistance of the parent complex to such reaction.32

We therefore decided to follow the reaction of Aβ4−x
peptides with GSH in more detail, using Aβ4−16 as a suitable
soluble, nonaggregating substitute of Aβ4−42. We also tested
Aβ4−9 and Aβ12−16. Our experiments were performed under
aerobic (21% O2) and anaerobic (<1% O2) conditions in order
to gain insight into the relation of the studied reaction to
oxidative stress conditions. The differential kinetic resistance of
the studied complexes to reduction supports their possible
roles in CuII transport in the brain.
In initial experiments, 0.315 mM Cu2+ ions were reacted for

24 h with 1.75 mM GSH in 20 mM ammonium acetate at 25
°C under aerobic conditions, with and without 0.35 mM
Aβ4−16 (0.9/5/1 and 0.9/5 molar ratios, Figure 1A and
Supporting Information Figure S1, respectively). In control
experiments 1.75 mM glutathione disulfide (GSSG) was used
instead of GSH (Figure S2), and Cu2+ ions were omitted from
the reaction of GSH with Aβ4−16 (Figure S3). These
experiments allowed us to identify and assign the spectral
changes occurring in the course of reactions of CuII(Aβ4−16)
with GSH. New bands in the near-UV range between 315 and
265 nm (Figure S4) appeared gradually in the presence of

Aβ4−16, at the expense of the Cu(II) band of the 4N complex at
525 nm. In the absence of the peptide, the same bands
emerged rapidly. They could be assigned to the Cu(I) complex
of GSH, reported previously by others.33,34

This CuII reduction phase lasted for about 9 h and
reproducibly reached about 65% CuII conversion at 25 °C,
as calculated from the intensity of the CuII(Aβ4−16) d−d band
at 525 nm (Table 1). It was followed by the shorter
reoxidation phase, which led to a practically full restoration
of CuII(Aβ4−16). In the absence of Aβ4−16, the CuIIGSSG
complex absorbing at 625 nm was the final reaction product
(Figure S1). It was not formed in the presence of CuII(Aβ4−16),
because of the log K difference at pH 7.4 in favor of the latter,
10.37 vs 13.53.15,35 The reaction rates increased with
temperature (Figure S5). The ESI-MS analysis of reaction
products indicated the absence of covalent oxidative
modification of Aβ4−16 (Figures S6 and S7). The only change
in its mass spectrum was due to partial detachment of bound
CuII ion resulting from its capture by GSH. The mass deficit of
2 Da, seen only in the copper-containing species, indicated the
native ATCUN/NTS complex with two deprotonated, CuII-
bound amide nitrogens.15 A transient spectral feature at 390−
405 nm accompanied the CuI reoxidation phase. The same
feature was present during the reoxidation phase of CuII/GSH
reaction in the absence of Aβ4−16 (Figure S8); hence it involves
neither Aβ4−16 nor its Cu

II complex. A similar band was seen
previously in a study of CuI complexes in MT-3 and
interpreted to originate from CuI−CuI interactions in the
Cu4-thiolate cluster.36 Indeed, CuI preferentially forms a
Cu4GSH6 cluster at the molar excess of GSH.33 However,
the selective appearance of this low-energy band during
oxidative decomposition of Cu4GSH6 by molecular oxygen

Figure 1. UV−vis spectra of the reaction of 0.315 mM Cu(II) ions with 1.75 mM GSH in the presence of 0.35 mM Aβ4−16 in 20 mM ammonium
acetate buffer, pH 7.4, carried out for 25−30 h at 25 °C under aerobic (A) and anaerobic (B) conditions. UV−vis spectrum of Cu(II)Aβ4−16
showed by dashed line. The spectra were recorded in 10 min intervals. Insets show selected kinetic traces at 525 nm.

Table 1. Initial Reaction Velocities, V0, and Conversion Degrees of CuII Reduction to CuI/GSH in the Presence of Aβ4−16
Peptidea

aerobic anaerobic

18 °C 25 °C 37 °C 25 °C

V0 5.0 ± 0.2 10 ± 1 21 ± 3 9 ± 4
conversion degree 0.58 ± 0.03 0.65 ± 0.04 0.64 ± 0.05 0.92 ± 0.03

aDetermined from the initial decay of the d−d band at 525 nm. Velocities are given in nM/s; all data are shown ± SD.
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suggests a contribution from partially oxidized species such as
disulfide or CuII. This issue will be investigated separately.
The next series of reduction experiments was performed

under the effectively anaerobic conditions, and indeed only the
reduction phase of the reaction was observed during the 24 h
incubation, leading to full CuII reduction (Figure 1B). Upon
extending the incubation to 50 h, however, the reoxidation
phase was observed after about 36 h of the incubation (Figure
S9). This effect was due to ambient oxygen penetration of the
samples residing in the spectrophotometer. The comparison of
kinetic traces indicated the similarity of the early phase of the
reduction process between the aerobic and anaerobic
conditions (Figure S10). These traces exhibited the
mathematical form of first order kinetics for all conditions,
only differing by the degree of CuII reduction: ca. 65% under
aerobic and nearly 100% under anaerobic conditions.
However, as the actual reaction order was not determined,
we compared the kinetics of individual reactions using initial
velocities. The rate of Cu(II) reduction did not depend on the
presence of ambient oxygen (Tables 1 and 2).

Figure 2 presents examples of experiments performed
aerobically with Cu(II) complexes of Aβ4−9 and Aβ12−16
peptides. The CuAβ4−9 reduction was similarly slow, but that
of CuAβ12−16 was about 200 times faster than that of CuAβ4−16
(Table 2). The reoxidation phase occurred, however, similarly

in all three cases (Figures 1 and 2). The reduction of CuAβ1−16
under the same conditions was too fast for quantitation (Figure
S11).
The kinetic, but not thermodynamic, resistance of

CuIIAβ4−16 to reduction to CuI species by thiols has been
indicated in previous experiments.32,37 Its kinetic character is
reinforced by fast reduction of CuIIAβ12−16, which has higher
thermodynamic stability than CuIIAβ4−16.

15,25 A clue for the
mechanistic basis of this behavior is provided by the
accelerating role of glutamic acid in both reductive copper
transfer to MT-3 and nonreductive transfer to EDTA, along
the affinity gradient.38 This finding was interpreted in terms of
assistance of copper transfer from the ATCUN/NTS motif via
a putative partially coordinated intermediate species prone to
form a ternary complex with a small transfer catalyst ligand. A
similar mechanism was recently proposed in a study of Cu(II)
reduction by GSH alone.39 In the case of CuIIAβ12−16, the fast
CuII reduction is most likely facilitated by the His residue in
position two of the peptide chain, able to provide an
alternatively coordinated, minor 3N species.40,41 Such
complexes are known to exchange CuII ions rapidly.42 They
can also stabilize transient CuI species.38 CuIIAβ1−16 is known
to facilitate CuII reduction to CuI by a number of mechanisms
and is prone to ternary complex formation.43,44

Summarizing, the results presented above indicate that
CuIIAβ4−16 and especially CuIIAβ4−9 are sufficiently kinetically
resistant to reduction by physiological concentrations of GSH
to survive in the cell cytosol for hours without eliciting
oxidative damage, while CuIIAβ12−16 and CuIIAβ1−16 do not
have this ability. Therefore, CuIIAβ4−x complexes are good
candidates to shuffle CuII across the blood−brain barrier and
in and out of the brain cells.
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Table 2. Initial Reaction Velocities, V0, and Conversion
Degrees of CuII Reduction to CuI/GSH Performed at 25 °C
in the Presence of Aβ4−9 and Aβ12−16 Peptides

a

aerobic anaerobic

Aβ4−9
V0 7 ± 2 10 ± 2
conversion degree 0.54 ± 0.05 0.91 ± 0.04

Aβ12−16
V0 2200 ± 500 1600 ± 400
conversion degree 0.97 ± 0.02 0.98 ± 0.02

aDetermined from the initial decay of the d−d band (527 and 524
nm, respectively). Velocities are given in nM/s; all data are shown ±
SD.

Figure 2. UV−vis spectra of the reaction of 0.315 mM Cu(II) ions with 1.75 mM GSH in the presence of 0.35 mM Aβ4−9 (A) and Aβ12−16 (B) in
20 mM ammonium acetate buffer, pH 7.4, carried out for 22−24 h at 25 °C under aerobic conditions. The spectra were recorded in 10 min
intervals. Insets show selected kinetic traces at 527 nm (A) and 524 nm (B).
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(44) Atriań-Blasco, E.; Gonzalez, P.; Santoro, A.; Alies, B.; Faller, P.;
Hureau, C. Cu and Zn Coordination to Amyloid Peptides: From

Fascinating Chemistry to Debated Pathological Relevance. Coord.
Chem. Rev. 2018, 371, 38−55.

Inorganic Chemistry pubs.acs.org/IC Communication

https://dx.doi.org/10.1021/acs.inorgchem.0c00427
Inorg. Chem. 2020, 59, 4186−4190

4190

https://dx.doi.org/10.2174/187152709787601867
https://dx.doi.org/10.2174/187152709787601867
https://dx.doi.org/10.2174/187152709787601867
https://dx.doi.org/10.1016/j.arr.2005.02.005
https://dx.doi.org/10.1016/j.arr.2005.02.005
https://dx.doi.org/10.1016/S0891-5849(99)00177-X
https://dx.doi.org/10.3390/antiox5030025
https://dx.doi.org/10.3390/antiox5030025
https://dx.doi.org/10.1152/ajpcell.00417.2012
https://dx.doi.org/10.1152/ajpcell.00417.2012
https://dx.doi.org/10.1152/ajpcell.00417.2012
https://dx.doi.org/10.1016/j.bbagen.2012.11.018
https://dx.doi.org/10.1016/j.bbagen.2012.11.018
https://dx.doi.org/10.1039/C7CC06802F
https://dx.doi.org/10.1039/C7CC06802F
https://dx.doi.org/10.1074/jbc.M117.817452
https://dx.doi.org/10.1074/jbc.M117.817452
https://dx.doi.org/10.1016/j.bmc.2008.05.026
https://dx.doi.org/10.1016/j.bmc.2008.05.026
https://dx.doi.org/10.1016/S0020-1693(00)91891-7
https://dx.doi.org/10.1016/S0020-1693(00)91891-7
https://dx.doi.org/10.1016/S0020-1693(00)91891-7
https://dx.doi.org/10.1074/jbc.M701357200
https://dx.doi.org/10.1074/jbc.M701357200
https://dx.doi.org/10.1074/jbc.M701357200
https://dx.doi.org/10.1002/anie.201511968
https://dx.doi.org/10.1002/anie.201511968
https://dx.doi.org/10.1002/anie.201511968
https://dx.doi.org/10.1039/C8CC06221H
https://dx.doi.org/10.1039/C8CC06221H
https://dx.doi.org/10.1039/C8CC06221H
https://dx.doi.org/10.1002/chem.201603366
https://dx.doi.org/10.1002/chem.201603366
https://dx.doi.org/10.1021/acs.inorgchem.7b01996
https://dx.doi.org/10.1021/acs.inorgchem.7b01996
https://dx.doi.org/10.1021/acs.inorgchem.7b01996
https://dx.doi.org/10.1039/C9CC03174J
https://dx.doi.org/10.1039/C9CC03174J
https://dx.doi.org/10.1002/chem.201100751
https://dx.doi.org/10.1002/chem.201100751
https://dx.doi.org/10.1002/chem.201100751
https://dx.doi.org/10.1021/acs.analchem.8b00740
https://dx.doi.org/10.1021/acs.analchem.8b00740
https://dx.doi.org/10.1021/acs.analchem.8b00740
https://dx.doi.org/10.1021/acs.analchem.8b00740
https://dx.doi.org/10.1016/j.ccr.2018.04.007
https://dx.doi.org/10.1016/j.ccr.2018.04.007
pubs.acs.org/IC?ref=pdf
https://dx.doi.org/10.1021/acs.inorgchem.0c00427?ref=pdf

