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Senile osteoporosis is characterized by increased bone loss and fat accumulation in
marrow. Curculigoside (CCG) is the major bioactive component of Curculigo orchioides,
which has been used as anti-osteoporosis therapy for elder patients since antiquity. We
aimed to investigate the underlying mechanisms by which CCG regulated the bone-fat
balance in marrow of aging mice. In our study, CCG treatment was identified to interfere
with the stem cell lineage commitment both in vivo and in vitro. In vivo, CCG promoted the
transcriptional co-activator with PDZ-bindingmotif (TAZ) expression to reverse age-related
bone loss and marrow adiposity. In vitro, proper concentration of CCG upregulated TAZ
expression to increase osteogenesis and decrease adipogenesis of bone marrow
mesenchymal stem cells (BMSCs). This regulating effect was discounted by TAZ
knockdown or the use of MEK-ERK pathway inhibitor, UO126. Above all, our study
confirmed the rescuing effects of CCG on the differential shift from adipogenesis to
osteogenesis of BMSCs in aging mice and provided a scientific basis for the clinical use of
CCG in senile osteoporosis.
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INTRODUCTION

Osteoporosis is increasingly recognized as a major health concern that affects approximately 50% of
women and 20% of men over 50 years old (Sambrook and Cooper, 2006). This age-related systemic
impairment of bone loss is characterized by decreased osteogenesis and increased adiposity in bone
marrow, resulting inmore propensity of fragility fracture (Hu et al., 2018; Sanghani-Kerai et al., 2018;
Zanker and Duque, 2019). Bone marrow mesenchymal stem cells (BMSCs) could differentiate to
osteoblasts or adipocytes. They held a competition relationship during BMSCs’ differentiation
(Ambrosi et al., 2017; Muruganandan et al., 2017). The process of stem cell fate determination is
constantly changing, and consists of self-renewal and terminal differentiation (Hansen et al., 1999;
Dalton, 2015; Urbach and Witte, 2019). Various exogenous and endogenous factors could alter the
differentiation switch from adipogenesis to osteogenesis of BMSCs context-dependently
(Teitelbaum, 2010; Huang et al., 2018; Wang et al., 2019a). However, the underlying mechanism
has not been clearly addressed.

Curculigo orchioides, a small herbal plant belonging to the family Amaryllidacea, has been used as an
anti-osteoporosis herb in many Asian countries (Wang et al., 2012; Wu et al., 2012; Tan et al., 2019). The
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extracts of this plant contain a wide variety of flavonoids,
phytosterols, and phenolic compounds, with curculigoside (CCG)
identified as the main active substance (Wang et al., 2017). In vivo
study, CCG was reported to distribute widely in bone marrow and
many other tissues after oral administration (Yuan et al., 2015). Cao
et al. (2008) discovered that oral administration of CCG prevented
bone loss in the tibia of the ovariectomized rats. As was
demonstrated, CCG could up-regulate VEGF expression, reverse
iron-overload via GPX4, relieve oxidative stress via Akt-FoxO1 axis,
and reduce inflammation via NF-κβ signaling transduction to favor
the bone remodeling in vivo and in vitro (Cao et al., 2008; Ma et al.,
2011; Tan et al., 2019; Zhang et al., 2019; Wang et al., 2020). In our
research, we tried to elucidate if and how CCG switch the
differentiation from adipogenesis to osteogenesis of BMSCs in
aging mice.

Senile osteoporotic patients often showed an increased
adipogenesis in their bone marrow with a reduction of
osteoblastogenesis (Rosen et al., 2009). Transcriptional co-
activator with PDZ-binding motif (TAZ) has been demonstrated
as a nuclear transcription factor playing crucial roles in stem cell
differentiation (Kegelman et al., 2018; Wang et al., 2018; Tan and
Dai, 2019). As was proved, TAZ combined to runt-related
transcription factor 2 (RUNX2) to promote osteogenesis, and
interacted with peroxisome proliferator-activated receptorγ
(PPARγ) to suppress adipogenesis (Byun et al., 2013; Matsumoto
et al., 2016; Wang et al., 2019b). Besides, TAZ has neuro-protection,
angiogenesis, and anti-oxidative stress effects, which were important
for bone nutrition and regeneration (Lee et al., 2019; Chen et al.,
2021; Jeanette et al., 2021). Yu et al. (2018) revealed that PGC-1 alpha
targeted TAZ to alter bone-fat balance during skeletal aging.
Previously, our study also pointed a molecular link of MEK-ERK
pathway to the TAZ during BMSCs osteogenesis (Wang et al., 2018;
Wang et al., 2019a). As the MEK-ERK signaling pathway has been
intensively investigated in regulating cells differentiation, it exerts
our interest on the role of MEK-ERK/TAZ axis in the CCG-
mediated differentiation of BMSCs during aging.

Molecular interactions and protein networks of CCG could
predict the functions of its compounds as an anti-osteoporotic
drug in clinical. However, the underlying mechanisms whereby
CCG promotes osteogenesis in bone marrow have not been well
established. In this study, we found that CCG induced the switch
from adipogenesis to osteogenesis of BMSCs in aging mice and
ameliorated the age-related bone loss by influencing the osteoblasts-
adipocytes lineage commitment of BMSCs via MEK/ERK-TAZ
interaction axis. Altogether, these findings provided a scientific
basis for the clinical use of CCG in the geriatric population.

MATERIALS AND METHODS

Mice and In Vivo Treatment
Our experiments were approved by the Local Committee of
Animal Use and Protection of the Third Hospital of Hebei
Medical University. C57BL/6 mice were bred in a room with
the environmental temperature ranging from 20 to 24°C and
proper humidity ranging from 30 to 70%. The mice had either
free access to food or water. The 3-months mice were regarded as

the normal control group. In addition, the three groups of 16-
months mice would be received vehicle, 50 mg/kg/d or
100 mg/kg/d CCG (Shanghai Standard Biotech, Shanghai,
China) by oral administration, respectively, for 2 months.
After the 2 months treatment, we considered the above three
groups as 18-mon, 50 mg-CCG, and 100 mg-CCG group.

Micro-Computed Tomography (μCT)
Analyses
We fixed the harvested femurs in 4% paraformaldehyde (4°C, 24 h).
We used the SkyScan μCT scanner to analyze the bone parameters
with 65 kv voltage and 153 μA current. Each image was obtained
with high resolution of 9.0 μmper pixel. We used NRecon for image
reconstruction (version 1.6), CTAn (version 1.9) for data analysis,
and CTVol (version 2.0) for 3D model visualization. With 3D
analysis, we collected bone parameters of trabecular bone volume
fraction (BV/TV), trabecular bone thickness (Tb.Th), trabecular
bone number (Tb.N), and trabecular bone separation (Tb.Sp) to
represent the femur character in this part.

OsO4 Staining and μCT Analysis
We decalcified the long bone in 0.5 M EDTA for 21 days. We cut
off the proximal of femurs and then discarded it. The rest of the
femur was incubated in aqueous osmium tetroxide (OsO4) (2%,
2 h). Then we rinsed the tissues for 48 h and scanned them by
using μCT (9-μm pixel; 45kV, 177 μA). The number and the
volume of adipocytes (ad. N; ad. V) in bone marrow were
quantified for inter-group analyses in this part.

Hematoxylin and Eosin and Tartrated
Resistant Acid Phosphatase Staining
After 3-weeks decalcification of the femur samples, we embedded
them in paraffin and cut them into 4 μm-thick slices for H&E and
TRAP staining. The adipocyte number relative to bone marrow
area was then collected for inter-group analysis based on the H&E
staining; and the osteoclast (OC) numbers were calculated via
TRAP staining.

Immunofluorescence Assay
Harvested femurs were decalcified by 0.5M EDTA. The tissues were
embedded in gelatin (at a concentration of 8%) with sucrose (at a
concentration of 20%) in the presence of polyvinylpyrrolidone (at a
concentration of 2%). We sliced the tissues into 20 μm-thick
sections. Subsequently, we blocked the samples, treated the
samples with primary antibodies (the antibodoy for TAZ, 1:200,
Abcam; for OCN, 1:200, R&D; for perilipin, 1:400, Sigma), and
incubated them with secondary antibodies.

Cell Isolation and Culture
We euthanized the mice and dissected the bilateral femurs as well
as tibias to collect the marrow cells. Then we planted the cells in
Dulbecco’s modified Eagle’s medium (DMEM) with fetal bovine
serum (FBS, 12%). BMSCs at passage three were incubated with
the antibody of CD34, CD45, CD29, and CD90 (Thermo Fisher
Scientific, United States) in phycoerythrin and sorted by flow
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cytometry by different cell fluorescence for identification. To
identify the effect of CCG on cell cycles, 3 days treated cells were
harvested and fixed with 70% ethanol. After washing in PBS, cells
were stained with propidium iodide (Sigma, United States) (5 mg/
ml) for 30 min in the dark at 4°C. Fluorescence was measured
with the flow cytometer equipped with a 570-nm argon ion laser
(Epics XL, Beckman Coulter Corporation, FL) and the data were
analyzed using the Muticycle AV software.

Cell Differentiation
For one thing, we mixed β-glycerophosphoric acid (10 mM,
Sigma), dexamethasone (10 nM, Sigma), and ascorbic acid
(50 μg/ml, Sigma) with the growth medium to induce
osteogenesis. For another thing, we added dexamethasone
(1 μM, Sigma), insulin (10 mg/ml, Sigma), and methyl
isobutylxanthine (500 mM, Sigma) to the growth medium to
induce adipogenesis.

FIGURE 1 | CCG ameliorated bone loss and marrow adiposity of aging mice. (A–E) Representative μ-CT images of femurs from the animals in different groups to
acquire the quantitative analysis of trabecular bone. (F–H) Representative μ-CT images of OsO4 staining of femurs from the animals in different groups to acquire the
quantitative analysis of the volume of adipocytes. (I, J) Representative images of H&E staining to show the ratio of adipocyte number to the area of bone marrow. Scale
bar: 100 μm (n � 5) *p < 0.05 vs. the 3-mon mice group; #p < 0.05 vs. the 18-mon mice group.
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CCG Administration In Vitro
We sub-cultured the cells that reached approximately 80%
confluence into a new flask and replaced the growth medium
with differential medium in the absence or presence of CCG (10,
100, or 1000 μM). Then, we selected an appropriate concentration
of CCG for the next research part.

Cell Viability Assay
The cells were incubated with MTT (5 mg/ml, Solarbio) to form
crystals. We then added dimethyl sulfoxide (DMSO, Solarbio) to
fully dissolve the crystals in 10 min. At a wavelength of 490 nm,
we measured the absorbance by using the microplate
spectrophotometer (BioTek Instruments, United States) to
acquire the cell viability assay.

Plasmid Transfection
We used the plasmid mixed with small interfering RNA sequences
for gene knockdown research. The designed and synthesized SiTAZ
was used to knock down the TAZ expression (Genechem, China).
We used the Lipofectamine 3000 (Thermo Fisher Scientific) for
transfection. After 24 h, the transfected cells were ready for the
subsequent experiments. Furthermore, wemeasured the transfection
efficiency using flow cytometry (Epics XL, Beckman Coulter
Corporation, United States). The sequences of SiTAZ were:

5′-GATCCCCTGGACCAAGTATATGAACCACTCGAG
TGGTTCATATACTTGGTCCAGTTTTTGGAT-3′;
5′-AGCTATCCAAAAACTGGACCAAGTATATGAACC
ACTCGAGTGGTTCATATACTTGGTCCAGGG-3′.

Alizarin Red Staining
We conducted the AR-S after 14-days treatment of osteogenic
cocktail. We washed the cells and fixed them with 4%
paraformaldehyde. Then we incubated the washed cells with
AR (0.1%, Sigma). Then, the cells were de-stained with 10%
cetylpyridinium chloride (Sigma) for AR quantification. We
detected the OD value at 562 nm wavelength to calculate the
calcium concentrations.

Oil Red O Staining
We conducted the oil red O staining after 14-days treatment of
the adipogenic medium. The cells were then incubated with oil
red O solution (0.5%, Sigma). After fully washed, we acquired the
staining images using the microscope. Then we de-stained the
treated cells with isopropanol in PBS for quantification study. We
detected the OD value at 520 nm wavelength to calculate the lipid
droplets using the microscope (Leica).

Real-Time Reverse
Transcription-Polymerase Chain Reaction
We extracted the total RNA using TRIzol® reagent (Ambition,
United States). A total of 1 μg RNA was reversed-transcribed by
using cDNA synthesis Kit (Thermo Fisher Scientific). Real-time RT-
PCR was performed on a CFX96 Real-Time PCR Detection System
(Bio-Rad, Hercules, CA) using SuperReal PreMix Plus (TIANGEN,
Beijing, China). All primers were synthesized by Invitrogen

(Carlsbad, CA). The relative expression of mRNAs was calculated
according to the ratio of the copy numbers of the target genes (TAZ,
RUNX2, OCN, PPARγ, perilipin) to the housekeeping gene
GAPDH in each sample. The relative gene expression values
were evaluated by the 2-△△Ct method [24]. Forward and
reverse primers are listed in Supplementary Table S1.

Western Blotting Analysis
We isolated the proteins from the treated cells seeded in 60-mm
plastic dishes. We separated the target proteins using 12% sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE;
Costar) and transferred them into a polyvinylidene fluoride
(PVDF; Costar) membrane. Membranes were blocked with 5%
milk and incubated with primary antibodies against TAZ (1:200;
Abcam), RUNX2 (1:200; Cell Signaling), OCN (1:200; Takara
Bio), PPARγ (1:100; Cell Signaling), perilipin (1:400; Abcam),
p-ERK (1:100; Cell Signaling), ERK (1:100; Cell SignalingA), or
GAPDH (1:200, Bioworld, United States). Then we induced the
conjugated secondary antibody (IRDye800®, 1:2000, Rockland,
United States) and scanned the samples using the Odyssey
Infrared Imaging System (Li-COR Biosciences, Beijing, China).
ImageJ (version 1.46) was used to determine the integrated
intensity of the detected band (Tan and Dai, 2019).

Statistics
Quantitative results were expressed as mean ± standard deviation
(SD). In vivo, there were five mice in each group; in vitro, all
experiments were replicated at least three times. Independent
samples t-test for the comparison of two groups, one-way analysis
of variance (ANOVA) followed by Student Newman Keuls (S-N-
K) post hoc analysis for the parametric data among multiple
groups, which were performed by using SPSS (v.21.0). Values
were considered statistically significant at p < 0.05.

RESULTS

CCG Ameliorated Bone Loss and Reduced
Marrow Adiposity of Aging Mice
We used μCT to analyze the trabecular bone structure as well as
the marrow adipose tissue volume. The BV/TV, Tb.Th, and Tb.N
of the femur bone significantly decreased in the 18-mon mice
relative to the 3-monmice, and the Tb. Sp in marrow significantly
increased in the 18-mon mice compared with the 3-mon mice
(Figures 1A–E). Simultaneously, fat was significantly
accumulated with aging, which was demonstrated by more
lipid droplets stained with osmium tetroxide (OsO4) in the
marrow (Figures 1F–H). After oral administration with
50 mg/kg/d or 100 mg/kg/d CCG for 2 months, the age-related
bone loss and fat accumulation by aging were markedly reduced.
First, the μCT results showed an increased bone formation
compared with the 18-mon group (Figures 1A–E). Second, a
significantly lower amount of fat droplets appeared in 50 mg/kg/d
or 100 mg/kg/d CCG administration group (Figures 1F–H).
Similarly, H&E staining calculated a lower number of
adipocytes after oral administration of CCG (Figures 1I,J).
These data suggested that oral administration of CCG
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ameliorated bone loss and marrow adiposity of aging mice.
Furthermore, CCG was demonstrated to inhibit osteoclasts
formation by TRAP staining (Supplementary Figure S1).

CCG Increased TAZ Expression to Regulate
Switch from Adipogenesis to Osteogenesis
in Bone Marrow
TAZ expression was decreased with aging, while 50 mg/kg/d or
100 mg/kg/d dose of CCG offset the age-related down-expression

of TAZ (Figures 2A,B). Consequently, we found a decreased
expression of osteocalcin (OCN) (the marker for osteogenesis)
and an increased expression of perilipin (the marker for
adipogenesis) in aging mice (Figures 2C–E). CCG
administration ameliorated the down-expression of OCN and
decreased the up-expression of perilipin in aging mice (Figures
2C–E). Above all, we speculated that CCG targeted TAZ to
regulate the switch from adipocytes to osteoblasts of BMSCs.
In order to confirm our hypothesis, we conducted experiments
in vitro study.

FIGURE 2 | CCG targeted TAZ to regulate the switch from adipogenesis to osteogenesis of BMSCs in vivo. (A, B) Representative images and quantitative analysis
of TAZ (green) expression in the mice femurs from different groups. (C–E) Immunofluorescent staining of OCN (green) and perilipin (red) in the mice femurs and the
relevant quantitative analysis. Scale bar: 50 μm (n � 5) *p < 0.05 vs. the 3-mon mice group; #p < 0.05 vs. the 18-mon mice group.
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CCG Targeted TAZ to Facilitate Osteogenic
Differentiation of BMSCs In Vitro
The hematopoietic surface markers CD34, CD45, CD29, and
CD90 were detected to identify the BMSCs (Supplementary
Figure S2). Then, we performed MTT assays and found that
the cell viabilities were decreased after 1000 μM CCG treatment
but increased after administration with 100 μM of CCG. Of
interest, 10 μM CCG did not influence the cell viability
(Figure 3A). To verify whether the administration of 100 μM
CCG influenced the proliferation of BMSCs, we calculated the
percentage of the cells in the G1 phase with the flow cytometer
after 3 days’ treatment. As a result, we found that the percentage
of the cells in the G1 phase did not change after the CCG
treatment (Supplementary Figure S3).

In order to confirm whether CCG had anti-aging effects, we
identified the expression of p21 and p16 using real-time RT PCR
analyses. We found that the CCG treatment induced the down-
expression of p21 and p16 (Supplementary Figure S4). Further,
CCG was proved to facilitate the most osteogenesis at the
concentration of 100 μM. On one hand, 100 μM of CCG
accelerated the calcium deposition evidenced by AR-S
experiment (Figures 3B,C). On the other hand, the highest
mRNA levels of RUNX2 and OCN expressed in 100 μM CCG
group (Figures 3D,E). Thus, 100 μM CCG was administrated on
cells in the subsequent experiments. Inevitably, 100 μM of CCG
markedly increased the expression of TAZ, RUNX2, and OCN on
Day 3, 7, and 14 (Figures 3F–I). Meanwhile, the adipogenic
markers were down-regulated during osteogenesis by CCG
treatment (Supplementary Figure S5A). Then, the TAZ
expression was knocked down by transfecting with plasmids
containing SiTAZ sequences (Figures 3J–L). SiTAZ
significantly offset the CCG induced up-expression of the
markers for osteogenesis, RUNX2, and OCN (Figures 3M–Q).
Moreover, the AR-S results suggested SiTAZ delayed the
recruitment of osteogenic nodules by CCG (Figures 3R, S).
Above all, CCG might facilitate osteogenesis by targeting TAZ
with a peak at the concentration of 100 μM for BMSCs
differentiation.

CCG Targeted TAZ to Reduce Adipogenic
Differentiation of BMSCs In Vitro
As well, we performed MTT assays and found that the cell
viabilities were decreased after 1000 μM CCG administration
but increased after administration with 100 μM of CCG during
adipogenic differentiation of BMSCs, and 10 μM CCG did not
influence the cell viability (Figure 4A). The Oil Red O staining
results demonsrated that 100 μM of CCG decreased the lipid
droplets during adipogenesis on Day 14 (Figures 4B,C).
Consistently, the lowest mRNA levels of PPARγ and
perilipin but the highest TAZ expression appeared in
100 μM CCG group during adipogenesis (Figures 4D,E).
Meanwhile, the osteogenic markers were up-regulated
during the administration of CCG treatment
(Supplementary Figure S5B). Thus, 100 μM CCG was also
administrated on cells in the subsequent experiments during

adipogenesis. Inevitably, the expression of PPARγ and
perilipin was markedly decreased and the TAZ protein
levels were significantly increased by 100 μM CCG
administration during adipogenesis (Figures 4F–I). Then
the TAZ expression was knocked down by transfecting with
plasmids containing SiTAZ sequences (Figures 4J–L). Both at
the mRNA and protein levels, TAZ knockdown markedly
lessened the CCG induced down-expression of PPARγ and
perilipin (Figures 4M–Q). Accordingly, the Oil Red O staining
also points a link between CCG treatment and TAZ signaling
transduction during adipogenesis of BMSCs (Figures 4R, S).
Taken together, we hypothesized that CCG targeted TAZ to
reduce marrow adiposity in vitro.

CCG Activated p-ERK Signal to Modulate
TAZ Expression and BMSCs Lineage
Commitment
To elucidate the signaling transduntion, we conducted
inhibitor study using pathway inhibitors. We found that
the up-expression of TAZ induced by CCG administration
was significantly diminished by UO126, rather than LY294002
(Figures 5A–C). Furthermore, the p-ERK/ERK ratio could be
augmented by CCG, suggesting CCG could stimulate the
MEK-ERK signaling transduction during osteogenesis
(Figures 5D–F). Additionally, the AR-S results reflected
that UO126 attenuated the formation of osteogenic nodules
accelerated by CCG (Figures 5G,H). Similar results were
confirmed during adipogenesis to that during osteogenesis
(Figure 6). We concluded that the MEK-ERK signaling
pathway was involved in the CCG-TAZ axis to facilitate
osteogenesis at the expense of adiposity in bone marrow
for anti-aging related osteoporosis.

DISCUSSION

Osteoporosis is recognized as a common concern in the aging
population worldwide (Curtis et al., 2015). Osteogenesis
reduction and fat accumulation triggered an imbalance of
bone remodeling (Infante and Rodríguez, 2018). With aging
progressing, senile osteoporosis becomes a growing public
problem. The importance of developing new anti-
osteoporosis therapies targeted at osteoblasts not only to
increase bone formation and induce bone growth, but also
to prevent age-related fat accumulation (Li et al., 2015).
Increasing evidences bestow Chinese herbs vital roles in the
therapy of osteoporosis and bone fracture, with Curculigo
orchioides identified as widely used in senile osteoporosis
(Wang et al., 2012; Wu et al., 2012; Tan et al., 2019). The
potential biological functions and molecular mechanisms of
the effects of CCG, the major bioactive component of
Curculigo orchioides, on the switch from adipocytes into
osteoblasts in aging mice has never been reported.

In our present study, the μCT analyses revealed that oral
administration of CCG ameliorated the bone loss and marrow
adiposity in the bone of aging mice. Previously, researchers
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FIGURE 3 | CCG targeted TAZ to facilitate osteogenic differentiation of BMSCs in vitro. (A) MTT assays presented cell viabilities after CCG administration during
osteogenesis of BMSCs. (B, C) Representative images of AR-S results in different mice groups. Scale bar: 100 μm. (D, E) Relative mRNA levels of TAZ, RUNX2, and
OCN with or without CCG treatment. (F–I) TAZ, RUNX2, and OCN expression in protein levels with or without CCG treatment. *p < 0.05 vs. the control group. (J–L)
SiTAZ plasmid significantly knocked down the mRNA and protein levels of TAZ during the osteogenesis of BMSCs. (M–Q) SiTAZ discounted the CCG induced up-
regulation of RUNX2 and OCN. (R, S) Representative images of AR-S showed the differences of calcium deposits in different groups. Bar graphs showed the means ±
SD from three independent experiments. Scale bar: 100 μm (n � 3) *p < 0.05 vs. the Vehicle group; #p < 0.05 vs. the Vehicle + CCG group.
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FIGURE 4 | CCG targeted TAZ to reduce adipogenic differentiation of BMSCs in vitro. (A) MTT assays presented cell viabilities after CCG administration during
adipogenesis of BMSCs. (B, C) Representative images of Oil Red O staining reflected the lipid droplets. Scale bar: 100 μm. (D, E) Relative mRNA levels of TAZ, PPARγ,
and perilipin to GAPDH were presented in Day 3 and Day 7 in the absence or presence of CCG during adipogenesis. (F–I) Relative protein levels of TAZ, PPARγ, and
perilipin to GAPDH were presented in Day 3, in Day 7, and in Day 14 after the treatment. *p < 0.05 vs. the control group. (J–L) Relative mRNA and protein levels to
GAPDH of TAZ were significantly knocked down by the SiTAZ plasmid during adipogenesis. (M–Q) SiTAZ discounted the CCG induced up-expression of TAZ and
down-expression of PPARγ and perilipin at Day 3 after the treatment. (R, S)Representative images of Oil Red O staining showed the lipid droplets in different groups. Bar
graphs showed the means ± SD from three independent experiments. Scale bar: 100 μm (n � 3) *p < 0.05 vs. the Vehicle group; #p < 0.05 vs. the Vehicle + CCG group.
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reported that CCG prevented bone loss in ovariectomized rats
(Shen et al., 2013). Consistently, other researchers have
demonstrated that CCG stimulated the secretion of bone
morphogenetic protein 2 (BMP-2) to promote osteogenesis
(Ma et al., 2011). As was reported, CCG also prevented
oxidative damage and inhibited osteoclastogenesis in rat
bone marrow cells (Wang et al., 2012). As well, our study
provided new insight into the molecular mechanisms how
CCG regulates the age-related adipocytes-osteoblasts lineage
commitment through MEK/ERK-TAZ axis. Thus, CCG might
be a good candidate for further development as an anti-
osteoporotic remedy in an aging population.

Latent bone-lining osteoblast-adipocyte precursors,
including BMSCs, are activated in response to various
stimuli including exogenous and endogenous changes
causing pre-osteoblasts to increase surface expression of
osteogenic markers at the expense of reduced adipogenic

markers (Paspaliaris and Kolios, 2019). In addition, the
microenvironment significantly affects bone mass by the
regulation of vital factors (Du et al., 2019). For instance,
TAZ exerted pivotal effects on stem cell fate determination
(Panciera et al., 2017; Salem and Hansen, 2019; Zheng and
Pan, 2019). In our previous study, we confirmed TAZ as an
important transcriptional modulator during
osteoblastogenesis, which was evoked by insulin-like
growth factor 1 (IGF-1) (Xue et al., 2013). In the present
study, we confirmed that the TAZ signaling was involved in
the regulation of the differential shift from adipogenesis to
osteogenesis by CCG. In vivo, the down-expression of TAZ in
aging mice was ameliorated by the oral administration of CCG
with up-expression of osteogenic genes and down-expression
of adipogenic genes. In vitro, TAZ knockdown could offset
CCG-regulated expression of osteogenic genes and adipogenic
genes. Hereby, our results suggested that CCG influenced the

FIGURE 5 | Osteogenic differentiation and TAZ expression were increased by CCG treatment by increasing the p-ERK/ERK ratio. (A–C) Relative mRNA and
protein levels to GAPDH of TAZ at Day 3 in different groups. (D–F) Relative mRNA and protein levels of p-ERK at Day 3 in different groups. (G, H) Representative images
of AR-S showed the calcium deposits were influenced by CCG treatment. Scale bar: 100 μm *p < 0.05 vs. the control group (cells cultured in osteogenic medium during
osteogenesis); #p < 0.05 vs. the CCG administration group.
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age-related switch of cells lineage commitment of BMSCs via
TAZ signal pathway.

As recognized commonly, mitogen activated protein
kinases (MAPKs)-mediated signaling pathways pronounced
markedly in cell differentiation and proliferation (Elango
et al., 2019; Kim et al., 2019). Differential molecular in
signaling pathways goes through the plasma membrane
from extracellular to intracellular environment, then
regulates the osteogenesis and adipogenesis (Husain and
Jeffries, 2017; Wu et al., 2017; Bukowska et al., 2018). In
the early 1990s, as one of the members of the MAPK family,
the MEK-ERK pathway was first recognized (Xu et al., 2016).
The activation of p-ERK had been shown to be essential for
RUNX2 up-regulation and transcriptional activity previously
(Li et al., 2017). As was proved, TAZ directly combined to
RUNX2 to promote osteogenesis (Wang et al., 2019b).
Previously, our study also pointed a molecular link of

MEK-ERK pathway to the TAZ during BMSCs osteogenesis
(Xue et al., 2013; Wang et al., 2019a; Tan and Dai, 2019). Here,
we found that CCG up-regulated TAZ signaling via the MEK-
ERK pathway, which might be identified as the underlying
regulation network. The MEK-ERK pathway was activated
upon CCG-mediated osteogenic differentiation of BMSCs,
while the MEK-ERK inhibitors, UO126 reduced the CCG-
mediated calcium deposits during cell differentiation. These
findings suggested that MRK-ERK activation was the
upstream signal by which CCG-induced TAZ up-expression
and then regulated the cell differentiation.

CONCLUSION

Our present study confirmed that CCG ameliorated age-
related bone loss by upregulating TAZ expression to induce

FIGURE 6 | Decreased adipogenic differentiation accompanied by increased TAZ expression was also mediated by p-ERK/ERK signaling after CCG treatment.
(A–C) Relative mRNA and protein levels of TAZ to GAPDH at Day 3 after the treatment during adipogenesis. (D–F) Relative mRNA and protein levels of p-ERK at Day 3
after the treatment during adipogenesis. (G, H) Representative images of Oil Red O staining showed the lipid droplets were lessened by CCG. Scale bar: 100 μm (n � 3)
*p < 0.05 vs. the control group (cells cultured in adipogenic medium during adipogenesis); #p < 0.05 vs. the CCG treatment group.
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the switch from adipogenesis to osteogenesis of BMSCs in
aging mice through MEK/ERK-TAZ axis. In vivo, oral
administration of CCG significantly increased the bone
mass and decreased the adipocyte numbers in the bone
marrow of aging mice. In vitro, a proper concentration of
CCG regulated TAZ expression through the MEK-ERK
pathway to facilitated osteogenesis at the expense of
reduced adipogenesis of BMSCs (Figure 7).

All these results revealed that CCG targeted TAZ to
ameliorate bone loss in aging mice, which provided the
evidence for the clinical use in age-related osteoporosis. In
summary, our study pointed the new link of CCG to TAZ
signaling and provided a novel therapeutic target for senile
osteoporosis.
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