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ABSTRACT

In silico prediction is a well-established approach to derive a general shape of an RNA molecule based on its sequence or
secondary structure. This paper reports an analysis of the stereochemical quality of the RNA three-dimensionalmodels pre-
dicted using dedicated computer programs. The stereochemistry of 1052 RNA 3D structures, including 1030 models pre-
dicted by fully automated and human-guided approaches within 22 RNA-Puzzles challenges and reference structures, is
analyzed. The evaluation is based on standards of RNA stereochemistry that the Protein Data Bank requires from depos-
ited experimental structures. Deviations from standard bond lengths and angles, planarity, or chirality are quantified. A
reduction in the number of such deviations should help in the improvement of RNA 3D structure modeling approaches.
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INTRODUCTION

Knowledge of the RNA atomic structure is crucial to ad-
dress biological problems, therefore computational tools
for the prediction of RNA three-dimensional models from
the sequence have been developed to help or bypass
some hurdles of laboratory procedures (Lukasiak et al.
2015; Miao and Westhof 2017; Gumna et al. 2020; Li
et al. 2020; Magnus et al. 2020).

The first decade of the 21st century resulted in several
computer programs and protocols, which paved the way
for automated modeling of RNA 3D structures: S2S
(Jossinet and Westhof 2005), FARFAR (Das and Baker
2007), iFoldRNA (Ding et al. 2008), MC-Fold/MC-Sym
(Parisien and Major 2008), and NAST (Jonikas et al. 2009).
Someof themdeveloped into highly specializedprograms,
which are used for either fully automatic or human-guided
prediction. In the following years, this collection grew to in-
clude other tools such as ModeRNA (Rother et al. 2011),
RNAComposer (Popenda et al. 2012), 3dRNA (Zhao et al.

2012), Vfold (Xu et al. 2014), and SimRNA (Boniecki et al.
2016).

To stimulate the improvement of quality in RNA predic-
tion, RNA-Puzzles was organized 10 yr ago (Cruz et al.
2012). RNA-Puzzles is a community-wide assessment of
RNA 3D structure prediction that aims to understand the
bottlenecks in current RNA 3D structure prediction to pro-
mote the improvement of prediction methods. Before
the publication of an experimentally determined RNA
structure, the sequence is disseminated among the com-
munity and prediction results are submitted within 3–4
wk. Assessment against the experimental structure is per-
formed after the release of the structure. There are two cat-
egories of challenges, depending on the protocols used to
obtain the models: They can originate from fully automat-
ed web services or human experts running various predic-
tion programs. The starting point for each challenge is a
novel experimentally determined RNA 3D structure,
the conformation of which is unknown to the predictors.
The web servers have 48 h and human experts 3–4 wk for
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submitting their models. After the deadline, the pre-
dictions are evaluated and the results are published with
the ranking of the submitted models. Presently, 28 crystal-
lographic structures have been part of the contest.
Eighteen of them have been the basis of four scientific
papers published by the RNA-Puzzles community (Cruz
et al. 2012; Miao et al. 2015, 2017, 2020). As of October
2020, 22 challenges have been concluded with assess-
ment results available on the RNA-Puzzles website (http
://www.rnapuzzles.org). It provides accuracy assessments
determined in comparison with the reference structure
and calculation of several global similarity and distance
measures (Magnus et al. 2020): rootmean square deviation
(RMSD) (Kabsch 1978); deformation index (DI) that normal-
izes RMSD with the sequence length (Parisien et al. 2009);
interaction network fidelity (INF), including Watson–Crick,
noncanonical, and stacking interactions (Parisien et al.
2009); and,more recently,mean of circular quantities oper-
ating in torsion angle space (Zok et al. 2014; Wiedemann
et al. 2017). RMSD serves as the main criterion to rank the
predicted models, although it is only capable of assessing
the minimum average distance between two 3D structures
represented as two sets of atomic coordinates. The remain-
ing metrics allow a focus on base pairs and torsion angles.
Additionally, RNA-Puzzles uses the Clashscore—as de-
fined in the MolProbity software package (Williams et al.
2018)—for assessing the accuracy in a noncomparative
procedure by finding overlapping or too close atoms in
the models and used as an overall evaluation of the
stereochemistry.
Nevertheless, current biological problems are setting

new thresholds of what acceptable geometry qualities
should be. Catalytic features, for instance, highlight that
not only the model’s geometry is important, but also its
stereochemistry is an important factor as well. One exam-
ple is the torsion-angle-based dependence between the
active and nonactive conformation of base pairs in some ri-
bozyme active sites (White et al. 2018). Moreover, self-
cleaving ribozymes can provide another example, in which
the correct description of phosphate backbone stereo-
chemistry is critical to correctly assess the reaction path-
ways of these mechanisms (Teplova et al. 2020). Yet
another recent case is drug development that targets
RNA (e.g., against viruses) (Aftab et al. 2020). Therefore,
there is a clear need to advance technology to provide use-
ful and trustable tools capable to address these challenges.
Proper stereochemistry is at the core of biomolecular

structure modeling. The geometries and stereochemistry
of the nucleic acid building blocks are very well known
and with high precision (Clowney et al. 1996; Gelbin
et al. 1996; Schneider et al. 1996). Inaccuracies in molecu-
lar geometry can result from geometry optimizations that
fall into local minima that may lead to a metastable con-
former, different from the native one or another biologi-
cally irrelevant conformation. Inappropriate geometry

may mask incorrect choice in torsion-angle space (for ex-
ample, a base incorrectly in the syn conformer can lead
to geometrical distortions in the sugar–phosphate back-
bone). Biomolecular structures are extremely well fine-
tuned and the whole variety of physicochemical interac-
tions is exploited in the folded native structure. Neglect
of some type of interactions, or an inappropriate calibra-
tion, can lead to wrong conformations that can produce
molecular distortions under insufficiently controlled struc-
tural refinement (Popenda et al. 2021).
Here, we revisit the evaluation of the stereochemistry of

predicted models beyond interatomic noncovalent dis-
tances. We follow a routine recommended to experiment-
ers who deposit their structure data in the Protein Data
Bank (Berman et al. 2000) and the Biological Magnetic
Resonance Data Bank (Ulrich et al. 2008)—both contribut-
ing to thewwPDBpartnership (Berman et al. 2003). wwPDB
stresses the importanceof careful examination of structures
by providing tools that set the standards for 3D structure
submission. In 2017, it introducedOneDep—a unified sys-
tem applying the deposition, biocuration, and validation
pipelines for structural data (Gore et al. 2017; Young
et al. 2017). OneDep is an extensive suite of programs op-
erating on different metrics to assess the accuracy of struc-
tures. It implements stereochemistry analysis through
MAXIT (Feng et al. 1998; Berman et al. 2000).
To evaluate the stereochemistry of RNA tertiary structure

predictions, we analyzed the results of all RNA-Puzzles
challenges with the standardized data available as of
November 2020—that is, puzzles 1–15, 17–21, and 24
(puzzle 14 in two versions, bound 14a and free 14b)—and
22 corresponding reference structures. We downloaded
1030 predicted RNA models from the standardized data
set belonging to RNA-Puzzles resources (located at https://
github.com/RNA-Puzzles; Magnus et al. 2020). Among
those, 797 models were in the human category and 233
models in theweb server category. From these data, we cre-
ated 23 clusters by participants—each containing models
submitted by a single human group or a web server (Table
1). An additional 24th cluster included the reference struc-
tures (Table 2). We processed the structures in all of these
subsets using MAXIT software (Feng et al. 1998; Berman
et al. 2000) and compared results with the MolProbity soft-
ware (Williams et al. 2018). Next, we used Barnaba
(Bottaro et al. 2019) and X3DNA-DSSR (Lu and Olson
2003) to verify base-paring geometries and handedness of
helices, respectively. Finally, we conducted a simple statisti-
cal analysis by computing the average value, standard devi-
ation, andmedian for every subset includingmore than one
model (see Materials and Methods).

RESULTS

For eachmodel,MAXIT returned a report of abnormal ster-
eochemical parameters (falling into six categories: close
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contacts, bond length deviations, bond angle deviations,
deviation from planarity, chirality issues, and phosphate
bond linkages (Supplemental Material includes tables
with the error numbers in every model). Using MAXIT, we
examined them first for the subset of 22 reference struc-
tures (Fig. 1; Supplemental Table S1). Most of them con-
tained some types of geometrical deviations from
standard dictionaries. We found the highest incidence of
errors in the bond angles (183 errors in 17 structures), fol-
lowed by close contacts (54 errors in seven structures)
and bond lengths (32 errors in five structures). Among the
worst cases (PZ07, PZ01, and PZ21), two are for structures
at a resolution worse than 2.5 Å (cf. Supplemental Fig. S1
in the Supplemental Material). The software X3DNA-
DSSR (Lu and Olson 2003) does not reveal any left-
handed helix/dinucleotide step in RNA-Puzzles submis-
sions nor experimentally determined RNA 3D structures
(cf. Supplemental Tables S46–S69 in the Supplemental
Material). In Figure 1, one can also observe that there are
no chirality issues, while deviations from planarity occur
only in two instances (nine errors in total). For polymer link-
age (i.e., deviations in P–O bond lengths), we found seven
structureswith a total of nine reported inaccuracies,making
an average of less than one error per structure, the same as
for errors in planarity.

We have analyzed separately clusters with models pre-
dicted by human experts and web servers. Each of these

23 collections contains the predictions submitted by one
participant within all the considered challenges available
in the standardized data set of RNA-Puzzles resource (cf.
Table 1). Their cardinalities range from 1 to 188. Within
each of these clusters, except for those including only
one model (i.e., H10, H14, and H16), we determined the
total number of errors of each type (Supplemental Tables
S2–S24 in the Supplemental Material), the average num-
ber over all the errors and the standard deviation (Fig. 2)
and confirmed these results using MolProbity software,
version 4.5.1 (Supplemental Figs. S2–S4; Supplemental
Tables S71–S92 in the Supplemental Material; Williams
et al. 2018). We did the same for each of the six types of
stereochemical properties; we further computed the aver-
age value of each error and the standard deviation per
cluster (Fig. 3). One can observe that some of the applied
prediction methods have an advantage over others in
terms of the total number of errors. However, most submis-
sions have stereochemical issues to address. Interestingly,
there is no visible difference between the qualities of hu-
man versus web server predictions as far as the average
number of all the inaccuracies is concerned. In both cate-
gories, we can observe both good and bad scores. The av-
erage number of errors per model in the human category
equals 106, while in the web server category it is 103.

Due to the significant difference between cluster cardi-
nalities, there is no statistical consistency between them,

TABLE 1. Clusters of RNA 3D models predicted within RNA-Puzzles organized by participants

Category Cluster
Name of the group/

server
Number of
challenges

Total number of predicted
models

Puzzle (challenge)
numbers

Human
groups

H1 Adamiak 14 64 4,5,7,8,11–15,17,
19–21,24

H2 Bujnicki 20 131 1–14,17,19–21,24
H3 Chen 20 145 1–19,21
H4 Das 21 188 1–14,17–21,24
H5 Ding 12 124 7–9,11–14,17–19,24
H6 Dokholyan 14 52 1–10,13,17–19
H7 Kollmann 1 10 24
H8 Lee 1 5 18
H9 Major 7 32 1–4,6–7,17
H10 Mikolajczak 1 1 4
H11 Sanbonmatsu 1 4 21
H12 Santalucia 3 3 1,2,4
H13 Weeks 1 3 12
H14 Wildauer 1 1 2
H15 Xiao 6 33 5,11–13,17,20
H16 Yagoubali 1 1 18

Web servers W1 3dRNA 5 30 15,18–19,21,24
W2 FARFAR 6 70 15,18–21,24
W3 iFoldRNA 1 5 24
W4 LeeServer 2 10 18–19
W5 RNAComposer 7 49 15,17–21,24
W6 SimRNA 7 59 15,17–21,24
W7 Vfold 1 10 24
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but there is statistical consistency within each cluster—the
results of a single participant. For instance, the H9 set, for
which the total score is significant in Figure 2, has only 32
items—we should remember that in a small set, one highly
defective object significantly affects the average value and
standard deviation. The most numerous clusters (over 100
models) are H2, H3, H4, and H5. The sets labeled as H1,
H6, W2, and W6 include 50–100 items. The remaining
ones have less than 50 models each.
By clustering and comparing the pre-
dictions submitted, one can observe
that H1 (average total number of er-
rors, ATN=0), H4 (ATN=7.69), and
H8 (ATN=11.60) groups apply meth-
ods performing the best in the catego-
ry of human experts; W2 (ATN=1.30),
W5 (ATN=7.61), and W4 (ATN=
31.20) are most successful among the
web servers—their average number
of all errors per model is less than 50
(Fig. 2). For clusters H2, H3, H5, H6,
H11, H12, H13, and W1, the average
total number of inaccuracies is in the
range of 50–200. However, the signifi-
cant standard deviations indicate a

large spread in stereochemical issues for the prediction
methods used to obtain the models collected in these clus-
ters. In the other clusters, the average total number of errors
falls in the range of 200–350 (if we do not consider single-
model clusters).
A comparison between Figures 1 and 2 shows the gap

between reference structures and predicted models. The
most notable conformational errors in predicted models

TABLE 2. Cluster with the reference structures and their prediction-related data

No. Puzzle ID PDB ID

Number of predicted models Number of participants

Humans Web servers Total Humans Web servers Total

1 PZ01 3MEI 14 0 14 6 0 6

2 PZ02 3P59 13 0 13 7 0 7
3 PZ03 3OWZ 12 0 12 5 0 5

4 PZ04 3V7E 30 0 30 8 0 8

5 PZ05 4P9R 25 0 25 7 0 7
6 PZ06 4GXY 34 0 34 5 0 5

7 PZ07 4R4V 52 0 52 7 0 7

8 PZ08 4L81 42 0 42 6 0 6

9 PZ09 5KPY 34 0 34 5 0 5
10 PZ10 4LCK 26 0 26 4 0 4

11 PZ11 5IEM 53 0 53 6 0 6

12 PZ12 4QLM 51 0 51 7 0 7
13 PZ13 4XW7 55 0 55 7 0 7

14 PZ14a 5DDO 61 0 61 5 0 5

15 PZ14b 5DDO 52 0 52 5 0 4
16 PZ15 5DI4 20 54 74 2 4 6

17 PZ17 5K7C 69 38 107 8 2 10

18 PZ18 5TPY 24 28 52 6 5 11
19 PZ19 5T5A 26 28 54 6 5 11

20 PZ20 5Y85 20 20 40 4 3 7

21 PZ21 5NZ6 34 25 59 5 4 9
22 PZ24 6OL3 50 40 90 5 6 11

FIGURE 1. Stereochemical errors were reported by MAXIT for the reference structures.
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occur in bond lengths and angles. On average, MAXIT has
identified over a hundred of such inaccuracies per the pre-
dicted RNA 3D model and less than 10 per the reference
structure (on average). Chirality (or incorrect sugar substit-
uent) is correct in the experimentally determined RNAs,
while 28% of the predicted models have problems with
it. Quite many deviations from the average planes of aro-
matic rings are observed. Polymer linkage assesses bond
lengths between the adjacent nucleotides by measuring
the P–O bond distances. This parameter has the lowest er-
ror rate in computationally generated structures—errors of
this type occurred in 22% of all analyzed RNAs.

Figure 3 presentsMAXIT results separately for each error
type and allows us to take a closer look into the weakness-

es of the protocols embedded within
various prediction programs. The
plots reveal the highest number of in-
accuracies especially in bond angles
(70,184). Virtually every prediction
method generates errors in covalent
geometries, and the exceptional
models with no such issue are not nec-
essarily the most similar to the refer-
ence structure(s) in terms of overall
RMSD. In the human category, mod-
els collected in H1, H4, and H8 clus-
ters have little or no geometric
issues (although, at the same time,
four H4 models in puzzle 19 have the
largest bond length error with O5′

−C5′ length >100 Å), while predic-
tions in H7, H9, and H15 are among
thosewith the highest number of inac-
curacies. In the web server category,
W2, W4, and W5 perform the best as
far as bond lengths and angles are
concerned, while W3, W6, and W7
are at the end of the ranking. If we
consider deviations from ring planari-
ty (Fig. 3), of which the total number is
17,594, their average per model for
every cluster is below 90 errors.
Models in H6, H9, and H13 have a sig-
nificant number of these issues. The
largest identified deviation from pla-
narity equals 0.791 Å and occurred
in H15 model 1 predicted for puzzle
12. An example error of this type is de-
picted in Supplemental Figure S5.
The average number of chirality er-

rors is below 20 for all clusters. For
some clusters, MAXIT reported zero
or one issue of this type in total: H1,
H8, and H13 within the human cate-
gory, and W2, W3, and W5 within

the web servers. Let us add that for H4—having the lon-
gest track of submissions—the number of errors in this cat-
egory is also negligible. Some approaches (H2, H15, and
W4) scored higher as far as the average number of chirality
inaccuracies is concerned.

In total, 2130 abnormalities classified by MAXIT as chi-
rality errors occurred in 291 predicted models. The most
common form of chiral error is the interchange of the hy-
droxyl group and hydrogen atom on the same carbon
atom at the ribose moiety (Fig. 4). Such an interchange
does not lead to a chiral error; it produces another sugar
type (for example arabinose or xylose instead of ribose).
Such improper sugar construction represents 94.9% of all
chiral errors identified by MAXIT. The remaining 5.1%

FIGURE 2. The number of stereochemical errors identified in all the considered models by
participants. The white dot at the center of every violin plot represents a median. The black
bar corresponds to the interquartile range. The first and the third quartile are represented as
wicks up and down from the interquartile range. The violin shape shows error distribution.
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are planar inaccuracies in the sugar ring, and they occur
when the improper torsion angle at a sp3 carbon atom is
close to zero instead of being around −122 or +122 de-
grees. Such a situation occurs in the furanose ring with dis-
torted or flat sugar rings.
A distribution of chiral errors among nucleotides is

shown in Table 3. We can see a high frequency in guanine
(692 inaccuracies, which make 32.5% of all chiral errors)
and a lower one for uracil (410 inaccuracies, which make
19.2% of all chiral errors). This relationship is visible for
both sugar construction inversions and planar errors.
However, the frequencies are affected by the nucleotide
content in the analyzed RNA structures. Thus, in Table 3,
we also present the total number of adenines, cytosines,
guanines, and uracils in the analyzed data set, and the per-
centage of these nucleotides having erroneous chirality.
Let us add that among all nucleotides with chiral errors,
91% are anti while 9% are syn nucleotides. A similar distri-
bution is observed for each of the individual nucleotide
types. Syn/anti conformation characterizes a relative orien-
tation of base and sugar and is determined based on the
χ-torsion angle (defined by O4′-C1′-N1-C2 for pyrimidines
and O4′-C1′-N9-C4 for purines). Usually, χ falls into
the ranges [+90, +180] or [−180, −90] corresponding to
the anti conformation. Occasionally, we observe its value
in [−90, +90], which refers to the syn conformation.

Some chiral errors (11%) appear when the conformation
of a nucleotide in the predicted model differs from that
in the reference structure. However, in most cases (89%),
these errors cannot result from the conformation change

FIGURE 3. The number of identified stereochemical errors per error type and participant. The box plot of each participant shows the interquartile
range. The black middle line in every box depicts a median. The first and third quartiles are represented as wicks up and down from the inter-
quartile range. Separated dots outside boxes correspond to outliers.

FIGURE 4. Example chiral errors in H3 model from PZ07 (top) and H4
model from PZ06 (bottom). (Top left) C3′ atom in U82 with correct chi-
ral center. (Top right) U15 with incorrect chiral inversion at carbon
atom C3′, actually changing a ribose to a xylose moiety. (Bottom
left) A2 with correct chirality at C4′. (Bottom right) G82 with incorrect
chirality at C4′.
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(Table 4). Regarding the distribution of errors among chiral
atomic centers, we can observe that 43% of inaccuracies
occur at C4′ (cf. Fig. 4), ∼25% at C2′ and C3′ (cf. Fig. 4),
and only 5.9% at C1′ atom (Table 5).

Polymer linkage errors are rare formost predictedmodels
(Supplemental Fig. S6). We have found that MAXIT may re-
port false positives in this category—whenever it comes to
the truncation of the sequence in the model, MAXIT fails
to recognize different chains properly. This kind of artifact
is clear for the reference structures (e.g., PZ12 and PZ21).
However, when it comes to RNA 3D models predicted by
web servers or human experts, we have not found such false
positives since different chains are labeled correctly by the
prediction methods (∼10% of submissions contain double-
chainmodels). Thus, polymer linkage inaccuracies depicted
in Supplemental Figure S6 are true-positive errors, and they
come from incorrect linkage bond length between oxygen
and phosphate group of two neighboring nucleotides in the
polymer chain (Supplemental Fig. S6). Such errors were sus-
pected to occur during the assembly building process of
RNA fragments since generally nucleotides start at 5′-P
and end at O3′; however, our analysis revealed that models
predicted by assembly-based methods did not show errors
of this type.

The analysis of the RNA-Puzzles data set containing 1052
RNAs reveals 2431 polymer linkage errors, including 2422

errors in 230 predicted models and nine errors in seven ref-
erence structures. H2 andH7 clusters have the highest aver-
age number of these errors among human expert
predictions. For theweb servers,MAXIT has found the high-
est number of this type of inaccuracy inW6 andW7. The re-
maining prediction methods do not tend to generate errors
in this category. By default, MAXIT reports such error when-
ever the distance between oxygen atomO3′ and phospho-
rus atom P of the next nucleotide in the polymer chain is
longer than a typical length of a covalent bond between
these atoms (Schneider et al. 1996). Some of these errors
are small deviations, but major ones occur as well. For ex-
ample, in H15 model three predicted within Puzzle 13,
MAXIT identified a bond of length 82.52 Å between A70
and A71—it is the highest inaccuracy of this type identified
within the data set. The distribution of errors by the nucleo-
tide type and syn/anti conformation is presented in Table 6.
One can observe that linkage errors involving adenine
(19%) are least frequent, and those with guanine (32%) oc-
cur most often. However, as a function of the relative con-
tents of the four nucleotides in the analyzed RNA
molecules, cytosine has the most linkage errors and ade-
nine the least.

Then, we analyzed the data set with the Barnaba software
(Bottaro et al. 2019), and we computed the backbone root
mean square deviation (herein called BBRMSD) and base-

TABLE 3. Chiral or planar sp3 atom errors by nucleotide type

Nucleotide
Nucleotide content

in the data set

Number of erroneous nucleotides Percentage of erroneous nucleotides (%)

Total Reversed geometry Planar sugar Total Reversed geometry Planar sugar

A 1,184,711 585 554 31 0.049 0.047 0.002

C 1,198,575 443 419 24 0.037 0.035 0.002
G 1,679,526 692 655 37 0.041 0.039 0.002

U 872,633 410 393 17 0.047 0.045 0.002

Total 4,935,445 2130 2021 109 0.043 0.041 0.002

The percentage of erroneous nucleotides of a given type is calculated about all nucleotides in the set of analyzed models.

TABLE 4. Chiral or planar sp3 atom errors by nucleotide type and conformation (anti or syn) depending on whether it is different or the
same as in the reference structure

Nucleotide

Number of erroneous nucleotides Percentage of erroneous nucleotides (%)

Total Same conformation Changed conformation Total Same conformation Changed conformation

A 585 524 61 27.46 24.60 2.86

C 443 405 38 20.80 19.01 1.79
G 692 623 69 32.49 29.25 3.24

U 410 339 71 19.25 15.92 3.33

Total 2130 1891 239 100 88.78 11.22

The percentage of erroneous nucleotides of a given type and conformation is calculated about all (2130) erroneous nucleotides in the set.
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pairing interactions root mean square deviations (eRMSD)
for nucleobases. BBRMSD can be interpreted as the quality
of the backbone structures expressed in RMSD values.
eRMSD was taken to measure the quality of base pairs in
the structures. Both values were computed using the refer-
ence structure given by the RNA-Puzzles organizers.
eRMSD values <8 Å are considered as low. For values

<5 Å, both the reference structure and target structure
are very similar (Bottaro et al. 2019).
Our results (see Supplemental Fig. S7A) show that across

all the puzzles, there is no sensitive trend in the averagemea-
surement of both BBRSMD and eRMSD. In the average
RMSD values across participants (see Supplemental Fig.
S7B), groups H1 to H4 and H12 performed better than the
automated protocols, with the exception of W7, which
showed the lowest average in both, backbone and base-
pair quality. Somegroups, fromH6 toH9, have lowereRMSD
thanBBRMSDvalues, suggesting thesegroups focus their at-
tention on the base pairs rather than the backbone structure.
Other groups, like H11 andW5, perform better at deducing
the volumetric backbone shape, but they have relatively
worst base-pair performance (Supplemental Fig. S7B).

DISCUSSION

Stereochemical errors in the predicted RNA 3D models
are primarily generated by computer programs used in

both human-guided and web server prediction. In
many cases, these may be the result of relatively small
rounding errors appearing at one of the calculation steps
and propagating in subsequent iterations. Knowing the
general approach used by the prediction method, it is
possible to indicate the most sensitive stages at which
the errors arise.
Computational complexity is the main problem in de

novo simulation of RNA folding. Therefore, different
techniques are used to reduce the time cost of de
novo prediction methods. One of them is to evaluate
the fold using simplified potentials, which do not take
stereochemical parameters into account. The simulation
(e.g., Monte Carlo) converges toward an optimum de-
fined in terms of the overall 3D shape of the molecule
and gives a fold that is stereochemically oversimplified
and far from ideal. The large number of calculations
that are performed during the random sampling of the
solution space also affects the generation of errors, as
the errors that occur in one step are propagated further
and often deteriorate the final solution. Another related
problem concerns coarse-grained simulations. The trans-
formation of a coarse-grained model to a full-atom mod-
el is a highly erroneous procedure.
In template-based approaches (homology modeling,

and fragment assembly methods), a crucial moment is
the choice of the right template/fragment. A model based

TABLE 5. Chiral or planar sp3 atom errors

Atom C1′ β/α C2′ R/arabino C3′ R/xylose C4′ D/L Total

Number of errors 163 521 589 857 2130

Percentage of errors (%) 7.65 24.46 27.65 40.23 100

An inversion at C1′ would replace a β-ribose nucleotide with an α-ribose nucleotide; an inversion at C2′ leads to arabinose instead of a ribose; an inversion
at C3′ leads to a xylose instead of a ribose; and an inversion at C4′ would lead to a real chiral inversion from a D-ribose to a L-ribose.

TABLE 6. Polymer linkage errors by the types and conformation (anti or syn) of nucleotides depending on whether they have the same
or different conformation as in the reference structure

Linkage

Number of erroneous linkages Percentage of erroneous linkages (%)

Total

Conformationa

Total

Conformationa

Same 1 changed 2 changed Same 1 changed 2 changed

A(O3′)−P 461 378 72 11 19.03 15.61 2.97 0.45
C(O3′)−P 692 652 38 2 28.57 26.92 1.58 0.07

G(O3′)−P 783 714 60 9 32.33 29.48 2.48 0.37

U(O3′)−P 486 428 41 17 20.07 17.67 1.69 0.71
Total 2422 2172 211 39 100 89.68 8.71 1.61

a(Conformation “same”) Both residues in the linkage have the same conformations in the predicted model and the reference structure; (1 changed) one of
the predicted residues is in different conformation than in the reference structure; (2 changed) both predicted residues are in different conformation than in
the reference structure.
The percentage of erroneous linkages of a given type and conformation is calculated about all (2422) erroneous linkages in the set.
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on a stereochemically erroneous template or of low-resolu-
tion may incorporate the incorrect stereochemical param-
eters. Stereochemical errors may also arise during
nucleobase exchange, structural blocks insertion, or their
assembly into a larger whole. In the latter case, the choice
of the structural blocks that are rotated and translated is
critical, since maneuvering a larger element is more
erroneous.

Errors that arise during the structure modeling process
can be avoided when applying a function that validates
partial solutions based on their stereochemical parame-
ters. However, it is very time-consuming and—in the
case of de novo methods—completely unprofitable since
it may cause the method not to return the solution in a
reasonable time. Therefore, the best solution to the
problem is to improve stereochemistry postfactum by
minimizing the geometry or the energy after building
the model, but bad local geometries are not easy to re-
lieve when embedded in a large fold. At the same time,
rerefining the templates used with standard dictionaries
may alleviate the propagation of errors, leading to tight
conformers with stereochemical errors difficult to energy
minimize. In some tools, like FARFAR (Das and Baker
2007; Das et al. 2010) and RNAComposer (Popenda
et al. 2012; Purzycka et al. 2014; Antczak et al. 2016),
such a procedure has been implemented and success-
fully fulfills its role.

Erroneous bond lengths, bond angles, and planarity de-
viations are the most frequent errors in RNA 3D structure
prediction, while incorrect sugar constructions or chirality
and polymer linkage errors occur less frequently (∼10 is-
sues per structure on average). False-positive errors, which
are caused by improper identification of structural chains
in multichain RNA structures, are found in the polymer link-
age category of the MAXIT results. Most errors can be
compensated by running energy minimization protocols
—for example, CYANA (Güntert and Buchner 2015),
NAMD (Phillips et al. 2020), XPLOR-NIH (Schwieters
et al. 2003)—for the preliminary models or ensuring a
proper stereochemistry from the early stages of prediction.
One can also process the predicted RNA structures using
tools—for example, RNAfitme (Zok et al. 2015; Antczak
et al. 2018) or QRNAS (Stasiewicz et al. 2019)—having
the potential to refine the nucleic acid structure.

Conclusions

We found that most RNA 3D structure prediction meth-
ods evaluated within RNA-Puzzles—either in human or
web server category—generate models with some incor-
rect stereochemical parameters. Even the best models,
according to the RMSD-based rankings, are not free of
such errors. One could argue that one can generate eas-
ily a very precise model that is inaccurate and that preci-
sion in geometric and stereochemical parameters are of

lesser importance. These geometric and stereochemical
parameters are very well established and need to be im-
plemented to be helpful in the future for modeling struc-
tures with catalytic or fine recognition properties. Thus, a
similarity/distance measure assessing a model against
a reference structure cannot be the only reliable
indicator of the model quality and that all the predictors
should ensure the stereochemical accuracy of their mod-
els before submission. We suggest that a detailed stereo-
chemical analysis should enter regular evaluation
processes for improving the accuracy of RNA-Puzzles
submissions and promoting high-quality RNA 3D struc-
ture prediction.

MATERIALS AND METHODS

In this research, we used MAXIT version 10 downloaded from
RCSB PDB (https://sw-tools.rcsb.org/apps/MAXIT), Barnaba
0.1.7 obtained from https://github.com/srnas/barnaba (Bottaro
et al. 2019), MolProbity 4.5.1 taken from https://github.com/
rlabduke/MolProbity, (Williams et al. 2018), and X3DNA-DSSR,
version 2.4 (Lu and Olson 2003). Structures were divided into
24 subsets: one subset with the reference structures and 23 sub-
sets with predicted models (one for each participant), and the av-
erage values and standard deviations were computed for them.
Three clusters, H10, H14, and H16, including predictions by hu-
man groups, were excluded from the statistical analysis since, in
all the challenges, these groups submitted only one model
each. However, their MAXIT reports are also available in the
Supplemental Material.

MAXIT reports the following stereochemical issues: (1) close
contacts; (2) bond length deviations; (3) bond angle deviations;
(4) deviations from planarity; (5) chirality errors; and (6) polymer
linkage errors (the P–O bond lengths). For 1–3 and 6, the pro-
gram identifies abnormality if the parameter exceeds the ex-
pected value six times the standard σ value. The expected
values and attached σ’s are based on Clowney et al. (1996),
Gelbin et al. (1996), Parkinson et al. (1996), and Schneider
et al. (1996) and are in the Supplemental Material. The current
source of these reference terms is the Cambridge Structural
Database (Urzhumtseva et al. 2009; Tickle 2012; Bruno and
Groom 2014). Atomic clashes are signaled whenever any inter-
molecular atom pair is closer than the sum of their respective
van der Waals radii. In general, a clash is defined when the dis-
tance between two atoms is <2.2 Å (if no H atom is involved) or
1.6 Å (if one H atom is involved) (cf. Supplemental Table D1 in
the Supplemental Material).

Departures from the average best-fit plane center yield the
RMS deviations for all atoms from the plane. It is reported when
>6×0.02 Å or when at least one atom has a deviation >0.02 Å.
MAXIT also determines improper torsion angles in the furanose
ring and reports deviations from puckering in the ring (imposed
by the sp3 carbon atoms).

In the case of chirality assessment, MAXIT lists the residues that
contain unexpected configuration of chiral centers (C1′, C2′, C3′,
and C4′). Improper dihedrals (Gelbin et al. 1996) are a measure of
the chirality/planarity of the structure at a specific atom.
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Polymer linkage between the adjacent nucleotides is measured
based on the distances computed for O3′−P and O5′−P atom
pairs. By default, the O3′−P distance is evaluated. However, if it
exceeds 2.5 Å, MAXIT takes the minimum value out of these
two for consideration.

Figures 4–6were prepared using Symmetry Tool Plug-in 1.3 im-
plemented in VMD software, version 1.94 (Humphrey et al. 1996).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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Francisco Carrascoza and Maciej Antczak are the co-first au-
thors of this paper, “Evaluation of the stereochemical quality
of predicted RNA 3D models in the RNA-Puzzles submissions.”
Francisco received his PhD in molecular modeling from Babes-
Bolyai University in Romania in 2016 and has been an As-
sistant Researcher at Poznan University of Technology since
2015,working in theoretical chemistry on ab initiomolecular dy-
namics and metadynamics, and on the origins of life to investi-
gate the natural formation of nucleobases and amino acids
in the prebiotic world. Maciej is an Assistant Professor at
the Institute of Computing Science, Poznan University of Tech-
nology, as well as the Institute of Bioorganic Chemistry, Polish
Academy of Science, working on algorithms and computational
methods for the analysis and prediction of RNA structures,
combinatorial optimization methods for solving biologically in-
spired problems, high-performance computing, and artificial
intelligence.

What are the major results described in your paper
and how do they impact this branch of the field?

We summarized a stereochemistry-oriented evaluation of in silico
RNA 3D predictions submitted for past modeling rounds of the
RNA-Puzzles international contest. Most state-of-the-art methods
for RNA 3D structure prediction should pay more attention to en-
suring proper stereochemical features. We showed the distribu-
tion of common errors and their total count in time to outline the
importance of the problem. Moreover, we quoted expected value
ranges for bond lengths, torsion angles, etc., and proposed how
these issues could be eliminated. We believe that our results will
contribute to the improvement of RNA 3D structure prediction
methods.

What led you to study RNA or this aspect of RNA science?

FC: Since my experience comes from the ab initio theories and
full-atomistic level, I found that the stereochemical errors are

a challenge for those methods where the close atom–atom inter-
actions are of higher importance than the volumetric quality
of the model. We observed from our results that at full-atom
scale, there is a considerable quantity of errors to mitigate, for
those working on developing tools for RNA 3D structure
prediction.

MA: RNAs are fascinating molecules, especially for computing
scientists. Knowledge about RNA 3D folds is crucial for design-
ing new drugs and therapeutic solutions. RNA 3D structure de-
termination is usually expensive and not always possible. So,
experimentally determined 3D structures of many biologically
relevant RNAs are still unknown. The only way to mitigate this
gap is an application of state-of-the-art methods for RNA 3D
structure prediction. The aim of the RNA-Puzzles initiative is to
stimulate the community to make efforts on continuous improve-
ment of these methods and indirectly the quality and accuracy of
RNA 3D predictions. Moreover, we give experimentalists useful
hints on the successfulness of considered methods in various
applications.

During the course of these experiments, were there any
surprising results or particular difficulties that altered
your thinking and subsequent focus?

FC: The most surprising result for me was the stable trend of the
number of identified errors across all RNA-Puzzles challenges re-
leased in recent years. Therefore, we expect this report to be fruit-
ful for the community.

MA: Surprisingly, in most of RNA-Puzzles submissions, even top-
ranking ones, stereochemical errors have been identified. That is
the reason why basic stereochemical validation could be valu-
able during the submission of RNA 3D predictions.
In the case of difficulties, it is not always possible to execute a bio-
informatical tool cloned directly from the GitHub repository with-
out any manual intervention. Definitely, as bioinformaticians, we
need to work on this.

If you were able to give one piece of advice to your
younger self, what would that be?

FC: Passion for your work will bring success. Don’t worry
about the things you don’t have, just allow your passion to
blossom.

MA: Do not be afraid of asking questions and striving persistently
for answers.

What are your subsequent near- or long-term career plans?

FC: This work allowed me to realize the current struggles of the
RNA community. In the near term, I plan to study in deeper detail
the folding and dynamics of RNAs.

MA: I want to do what I like the most, so I plan to continue
my scientific research in structural bioinformatics of RNAs. Of
course, I am open to international collaboration, which could
result in interesting scientific projects soon.
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What were the strongest aspects of your collaboration
as co-first authors?

FC: The multidisciplinary exchange needed in this work between
bioinformatician and chemist gave us a unique insight into different
ways of approachingRNA structure. Thismultidisciplinary exchange,
when joined, allowed us to address the problem at different levels.

MA: We represent two different scientific domains. So, our col-
laboration relied on the synergy of our complementary knowl-
edge and experience. We discussed a lot but did not come
across any problems that we could not overcome together.
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