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Abstract

Background: As missing values are frequently present in genomic data, practical methods to handle missing data are
necessary for downstream analyses that require complete data sets. State-of-the-art imputation techniques, including
methods based on singular value decomposition and K-nearest neighbors, can be computationally expensive for large data
sets and it is difficult to modify these algorithms to handle certain cases not missing at random. Results: In this work, we
use a deep-learning framework based on the variational auto-encoder (VAE) for genomic missing value imputation and
demonstrate its effectiveness in transcriptome and methylome data analysis. We show that in the vast majority of our
testing scenarios, VAE achieves similar or better performances than the most widely used imputation standards, while
having a computational advantage at evaluation time. When dealing with data missing not at random (e.g., few values are
missing), we develop simple yet effective methodologies to leverage the prior knowledge about missing data. Furthermore,
we investigate the effect of varying latent space regularization strength in VAE on the imputation performances and, in this
context, show why VAE has a better imputation capacity compared to a regular deterministic auto-encoder. Conclusions:
We describe a deep learning imputation framework for transcriptome and methylome data using a VAE and show that it
can be a preferable alternative to traditional methods for data imputation, especially in the setting of large-scale data and
certain missing-not-at-random scenarios.
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Introduction

The massive and diverse data sets in genomics have provided
researchers with a rich resource to study the molecular basis
of diseases. The profiling of gene expression and DNA methy-
lation have enabled the identification of cancer driver genes or
biomarkers [1–6]. Many such studies on cancer genomics require
complete data sets [7]. However, missing values are frequently
present in these data due to various reasons, including low res-
olution, missing probes, and artifacts [8, 9]. Therefore, practical
methods to handle missing data in genomic data sets are needed
for effective downstream analyses.

One way to complete the data matrices is to ignore missing
values by removing the entire feature if any of the samples has
a missing value in that feature, but this is usually not a good
strategy, as the feature may contain useful information for other
samples. The most preferable way to handle missing data is to
impute their values in the pre-processing step. Many approaches
have been proposed for this purpose [10], including replacement
using average values, estimation using the weighted K-nearest
neighbor (KNN) method [11, 12], and estimation using singular
value decomposition (SVD)–based methods [11]. KNN and SVD
are 2 techniques that have been commonly used as benchmarks
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against new developments [13, 14]. KNN imputes the missing
value of a feature in a given sample with the weighted average of
the feature values in a number of similar samples, as calculated
by some distance measure. SVD attempts to estimate data struc-
ture from the entire input, including the samples with miss-
ing values, and fill in the missing values iteratively according to
the global structure. For this reason, SVD is inefficient on large
matrices in practice, since new decompositions have to be esti-
mated for each missing sample, which is a very time-consuming
process. However, SVD serves as an important benchmarking
method to determine how well other, faster methods perform
compare to SVD.

In recent years, a branch of machine learning which emerged
based on big data and deep artificial neural network architec-
tures, usually referred to as deep learning, has advanced rapidly
and shown great potential for applications in bioinformatics
[15]. Deep learning has been applied in areas including genomics
studies [16–18], biomedical imaging [19], and biomedical signal
processing [20]. Auto-encoders (AE) operate on a deep learning–
based model that forms the basis of various frameworks for
missing value imputation, and AEs have shown promising re-
sults for genomic data, imaging data, and industrial data appli-
cations [21–26]. However, a simple AE without regularization is
rarely ranked among the competitors for data imputation [27,
28]. When a simple AE only focuses on creating output close to
the input without any constraints, the model may overfit on the
training data instead of learning the latent structure, such as
dependencies and regularities characteristic of the data distri-
bution [22], which makes it unlikely to impute well when given
new samples. A denoising auto-encoder (DAE) is a type of auto-
encoder that specifically uses noise corruption to the input to
create robust latent features [22]. DAE has been extensively used
in the application of data imputation [23, 27]. The corrupting
noise introduced in the DAE can be in many different forms, such
as masking noise, Gaussian noise, and salt-and-pepper noise
[29].

Variational auto-encoders (VAE) are probabilistic auto-
encoders that have wide applications in image and text gener-
ation [30–32]. VAE learns the distributions of latent space vari-
ables that make the model generate output similar to the in-
put. VAE has primarily been used as a powerful generative tool,
having the ability to produce realistic fake contents in images,
sound signal, or texts that highly resemble the real-life con-
tents that they learn from. The generative power is made possi-
ble by regularizing the latent space [32]. Constraining the latent
space distributions to be close to a standard Gaussian helps to
achieve a smooth latent space where 2 close points in the la-
tent space should lead to similar reconstructions, and any point
sampled from the latent space should give a meaningful recon-
struction [33]. VAE has been applied in genomic contexts, such
as latent space learning of gene expression data [34]. In addition,
recent works have applied VAE on single-cell RNA sequencing
data for clustering, batch correction, and differential expression
analysis [35, 36]. However, VAE has not been extensively studied
for genomic data imputation for bulk RNA expression and DNA
methylation data, while large amounts of retrospective genomic
and epigenomic data are available through databases like the
Gene Expression Omnibus (GEO) [37] and the Short Read Archive
(SRA) [38].

Here, we examine the VAE mechanism and its application
to genomic missing value imputation with bulk transcriptome
and methylome data. We show that for both missing completely
at random (MCAR) and missing not at random (MNAR) cases in
transcriptome data and methylome data, VAE achieves similar

or better performances than the de facto standards, and thus is
a strong alternative to traditional methods for data imputation
[39]. We demonstrate that in a MNAR scenario where the miss-
ing data distribution is not the same as the seen data, a shift cor-
rection method can be implemented to improve VAE’s extrapo-
lation performance. Furthermore, we investigate the effect of la-
tent space regularization on imputation with a generalization of
the variational auto-encoder: β-VAE [40]. In the context of β-VAE
results, we provide insights on why VAE can achieve good impu-
tation performance compared to a regular, deterministic AE.

Materials and Methods
Data sets

We use 2 data sets to perform data imputation: pan-cancer RNA
sequencing data from The Cancer Genome Atlas (TCGA) data
sets [2, 41, 42] and DNA methylation data [43–46]. Both data sets
contain only numeric values. The RNA sequencing data is ex-
pressed in reads per kilobase of transcript, per million mapped
reads, which is a normalized unit of transcript expression. The
DNA methylation data is obtained from bisulfite sequencing,
and it contains the numeric values of the methylation level at
each 5’—C—phosphate—G—3’ (CpG) site. The RNA sequencing
data has a feature dimension of 20,531 genes. There are 15%
of the genes containing more or less NA values, while the re-
maining 85% of the genes are complete. Within the 15% of the
genes who have missing values, on average 8.5% of the val-
ues are missing. The NA values are introduced in the Synapse
pre-processing pipeline, where genes with mostly 0 reads or
with residual batch effects after batch correction were removed
from the adjusted samples and replaced with NAs. In order to
have a ground truth to evaluate the missing value imputation
frameworks, we remove the 15% of genes with NA values in our
pre-processing, which results in a feature dimension of 17,176
genes. We then normalize the data by log transformation and
z-score transformation. We use 667 glioma patient samples, in-
cluding those with glioblastoma (GBM) and low-grade glioma
(LGG), to train and test the missing value imputation frame-
work. In pre-processing the DNA methylation data, we remove
the NA values, and normalize the data by negative log transfor-
mation and z-score transformation. We use the smallest chro-
mosome subset (Chromosome 22) so that the resulting data di-
mension is not prohibitive for benchmarking different compu-
tation methods. The resulting data has 21,220 CpG sites and 206
samples.

Missing data simulations

Each data set is split into 80% for training and 20% for hold-
out testing. The training data set is further split 80/20%, where
20% is the validation data set for hyper-parameter tuning. Af-
ter hyper-parameters are selected, the entire training set is used
for training. The sample split for the RNA sequencing data set
is stratified by the glioma subtypes (LGG versus GBM), and the
split is random for the DNA methylation data since the samples
are homogenous. The training data is a complete data set with-
out missing values. Missing values are introduced to the testing
data in 2 forms: MCAR and MNAR (Table 1) [47].

In the MCAR cases, we randomly mask a number of elements
in each row by replacing the original values with NAs. To test a
range of missing severity, we make the number of masked ele-
ments amount to 5%, 10%, and 30% of the total number of ele-
ments, respectively.
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Table 1: Simulation experiments on RNA sequencing data and DNA methylation data.

Data Missing type Missing scenario

RNA sequencing data MCAR 5% completely random missing
10% completely random missing
30% completely random missing

MNAR 50% random missing in genes with the highest 10%
guanine-cytosine content (GC) content
5% genes are entirely missing
50% random missing in genes with the lowest 10%
expression level

DNA methylation data MCAR 5% completely random missing
10% completely random missing
30% completely random missing

MNAR 5% CpG sites are entirely missing
50% random missing in CpG sites with coverage lower
than 6 reads

Each of the MNAR simulations is motivated by a different
real-world condition specific to either gene expression data or
methylation data. For the gene expression data, we simulate 3
MNAR scenarios, each of which has 5% of the total data values
missing. In the first scenario, the masked values are concen-
trated at certain genes. Such genes are selected based on their
GC content, which is the percentage of nitrogenous bases on a
RNA fragment that are either guanine (G) or cytosine (C). GC con-
tent that is too high or too low influences RNA sequencing cover-
age, and potentially results in missing values from these genes
[48]. We select genes with GC content at the highest 10% and
randomly mask half of these values. In the second simulation
case, certain genes are masked entirely. In some pre-processing
pipelines of RNA sequencing data, genes with residual batch ef-
fects after batch correction are replaced with NAs in the adjusted
samples. Such pre-processing may give rise to the MNAR case
where some genes are entirely missing in some samples. We
randomly select 5% of the genes and mask all values from these
genes in the testing data; as a result, the corrupted data miss
all values for specific genes. The third scenario is based on gene
expression level. When the RNA sequencing depth is relatively
low, it is relatively easy to miss genes that have low expression
levels, because the reads generated from those genes are too few
to be captured during sequencing [49]. Therefore, we consider a
possible scenario where lowly expressed genes are prone to be
missing. In the testing data, we first choose gene expression val-
ues at the lowest 10% quantile, and then randomly mask half of
these values.

For the DNA methylation data, we simulate 2 MNAR scenar-
ios. The first scenario is completely missing certain CpG sites,
which is similar to the second MNAR case in gene expression
data, where we select 5% of the features and mask them entirely
in the testing data. In the second case, we mask CpG sites that
have less coverage than a certain threshold. Some CpG sites may
have very few reads mapped to them, which undermines the
confidence in the measurement of methylation level. Thus, we
choose an arbitrary coverage threshold of 6 reads for the methy-
lation status of a CpG site to be confidently determined. Methy-
lation levels of CpGs with fewer than 6 reads mapped to them
are treated as missing values in the analysis here.

For each simulation scenario described above, we create 10
random trials to measure the average imputation performance.
The uncorrupted testing data is used to compute the imputation
root mean squared error (RMSE).

Variational auto-encoder

An AE is an unsupervised deep neural network that is trained to
reconstruct an input X by learning a function hw, b(X) ≈ X. This
is done by minimizing the loss function between the input X
and the network’s output X′: L (X, X′). The most common loss
function is the RMSE:

L (X, X′) =
√

||X − X′||2 (1)

An auto-encoder consists of an encoder and a decoder. The
encoder transforms the input to a latent representation, often
such that the latent representation is in a much smaller dimen-
sion than the input [50]. The decoder then maps the latent em-
bedding to the reconstruction of X. An auto-encoder is often
used as a dimensional reduction technique to learn useful rep-
resentations of data [51].

While in a regular auto-encoder the latent space is encoded
and then decoded deterministically—that is, there is no proba-
bilistic modeling of the latent space—a VAE learns a probability
distribution in the latent space. VAE is often used as a genera-
tive model by sampling from the learned latent space distribu-
tion and generating new samples that are similar in nature to
the original data [32]. The assumption of VAE is that in the dis-
tribution of data X, P (X) is related to the distribution of the latent
variable z, P (z) by

Pθ (X) = ∫ Pθ (X|z) P (z) dz (2)

Here, Pθ (X), also known as the marginal likelihood, is the
probability of each data point in X under the entire generative
process, parametrized by θ . The model aims to maximize Pθ (X)
by optimizing the parameter θ so as to approximate the true dis-
tribution of data. In practice, Pθ (X|z) will be nearly 0 for most z,
and it is therefore more practical to learn a distribution Qφ (z|X),
which gives rise to a z that is likely to produce X, and then com-
pute P (X) from Ez∼Qφ

P (X|z). Pθ (X) and Ez∼Qφ
P (X|z) can be shown

to have the following relationship [32]:

logPθ (X) − D[Qφ (z|X)||Pθ (z|X)] = Ez∼Qφ
[logPθ (X|z)]

−D[Qφ (z|X)||P (z)] (3)
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The left side of (3) is the quantity we want to maximize,
log Pθ (X), plus an error term, which is the Kullback-Liebler
divergence between the approximated posterior distribution
Qφ (z|X) and the true posterior distribution Pθ (z|X). The Kullback-
Liebler divergence is a measure of how 1 distribution is different
from another, and is always non-negative. Thus, maximizing the
log likelihood log P (X) can be achieved by maximizing the evi-
dence lower bound (ELBO):

EL B O = log Pθ (X) − D[Qφ (z|X)||Pθ (z|X) ] (4)

The right side of (3) is something we can optimize by a gra-
dient descent algorithm. Pθ (X|z) is modeled by the decoder net-
work of the VAE parametrized by θ , and Qφ (z|X) is modeled by
the encoder network parametrized by φ. For continuous value
inputs, Pθ (X|z) and Qφ (z|X) are most commonly assumed to be
Gaussian distributions [33]. P (z) is fixed prior to distribution and
is assumed to be a standard multivariate normal distribution
N (0, I ). The first term,Ez∼Qφ

[logPθ (X|z)], is the expectation of the
log probability of X given the encoder’s output. Maximizing this
term is equivalent to minimizing the reconstruction error of the
AE. The second term, D[Qφ (z|X)||P (z)], is the divergence between
the approximated posterior distribution Qφ (z|X) and the prior
P (z), and minimizing this term can be considered as adding a
regularization term to prevent overfitting.

VAE is trained with the training data that follows a stan-
dard Gaussian distribution after z-score transformation. We im-
pute missing values in the testing data with a trained VAE by
an iterative process. Initially, the missing values are replaced
with random values sampled from a standard Gaussian distri-
bution. Then, the following sequence of steps are repeated until
an empirically determined iteration threshold is reached: com-
pute the latent variable z distribution given input X with the en-
coder; take the mean of latent variable distribution as the input
to the decoder and compute the distribution of reconstructed
data X̂; take the mean of the reconstructed data distribution as
the reconstructed values; replace the missing values with recon-
structed values; and leave non-missing values unchanged. The
testing data should be scaled by the model’s training data mean
and variance before the imputation iterations, and should be in-
verse scaled after imputation.

VAE imputation with shift correction

Regular implementation of VAE has an underlying assumption
that the training data follows the same distribution as testing
data. Below, we will discuss how to modify this assumption to
better impute MNAR scenarios.

Since the VAE learns the data distribution from the training
data, the output of imputation also follows the learned distri-
bution, which is similar to the training data. When the missing
values are drawn from a different distribution than the training
data, the imputation performance will drop due to the distri-
bution shift. In the MNAR simulations where half of the lowest
10% of values are masked, the missing values are considered to
be shifted from the original training data to a smaller mean.

The lowest-value-missing scenario represents a common
type of missing values in biomedical data. When certain exper-
imental conditions (e.g., low RNA sequencing depth) allow us to
make assumptions that the majority of missing values are low-
expression values, we essentially have prior knowledge that the
distribution of missing values is shifted to the end of lower val-
ues. We can therefore use VAE with the shift-correction imple-

mentation. Recall that in (3), the underlying assumption is that
the training data follows a Gaussian distribution X ∼ N (μ, σ ),
where μ and σ are the outputs of the decoder network that repre-
sent the mean and variance, respectively, of the observed train-
ing data, as well as the missing data. When the lowest values are
missing, the learnt distribution has a larger mean than the ac-
tual missing data, causing the reconstructed X̂ to have larger val-
ues. To correct this, we modify the assumption of training data
distribution to follow N (μ + λσ, σ ), where μ and σ are the out-
puts of the decoder network that represent the mean and vari-
ance, respectively, of the missing data, and λ is a hyperparam-
eter. The mean of the observed training data is then shifted to
μ + λσ . VAE with shift correction is recommended for use when
certain experimental conditions warrant the assumption that
missing values are concentrated on the lower end of the data
distribution. However, when such assumptions are unknown or
the pattern of missing data is more likely to be random, the stan-
dard VAE without shift correction is recommended for use.

To test the lowest 10% missing case, we simulate a 10%
lowest-value-missing scenario on the validation data set, and
select the shift correction parameter value that produces the
smallest validation error. In reality, we may not know the ac-
tual ranges and amounts of low values missing in the testing
data, and thus cannot simulate the situation on the validation
data precisely. For a range of the lowest-value-missing scenar-
ios where half of the lowest 5%, 10%, 20%, and 30% values are
missing, we impute with a single λ, which is selected based on
the lowest 10% missing case. We thereby determine whether it
is possible to select λ without precise knowledge of the missing
scenario in the testing data.

β–variational auto-encoder

β-VAE is a generalization of the VAE with a focus to discover in-
terpretable factorized latent factors [40]. A hyperparameter beta
is introduced to the VAE loss to balance the reconstruction loss
term with the regularization loss term. The loss of β-VAE is de-
fined as:

Lβ−VAE = −Ez∼Qφ
[logPθ (X|z)] + βD[Qφ (z|X)||P (z) ] (5)

where β is a hyperparameter.
β-VAE (β > 1) has been shown to perform better than VAE in

certain image generation tasks and has attracted increasing re-
search interest [52]. However, no prior work has investigated the
effect of β on imputation. Since VAE can be considered as a spe-
cial case of β-VAE, we extend our study to β-VAE with a varying β

to further understand the effect of regularization on VAE impu-
tation and to investigate the potential possibility of increasing
its performance.

When β is 1, it is the same as VAE. When β > 1, a stronger
regularization is enforced, and the resulting latent space is
smoother and more disentangled, which is a preferred property
in certain learning tasks because more disentangled latent space
has greater encoding efficiency [40].

In comparison, when β = 0, the regularization term is effec-
tively removed. With the regularization term removed, the loss
function only consists of the reconstruction loss term:

LVAE′ = −Ez∼Qφ
[ogPθ (X|z)] (6)

which resembles the reconstruction loss function of a sim-
ple AE without any regularization. This can usually be ex-
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pressed in the mean squared error between the input X and the
reconstruction X′ [53]:

L (X, X′) = ∥∥X − X′∥∥2
2 (7)

However, the loss of VAE without the regularization term as
shown in (6) has a key difference from the loss of a simple AE
shown in (7). If (6) is viewed from a deterministic perspective, it
is easy to distinguish the difference.

With the assumption that Pθ and Qφare Gaussian distribu-
tions,

Pθ (X|z) ∼ N (X|μθ (z) , diag (σθ (z))) ,

Qφ (z|X) ∼ N (z|μφ (X) , diag (σφ (X)))

the loss in (6) can be computed as the mean squared error be-
tween inputs and their mean reconstructions output by the de-
coder [33]:

LVAE′ = ∥∥X − μθ (z)
∥∥2

2 (8)

Unlike the deterministic reconstruction X′ in (7), z in (8) is
stochastic. However, the stochasticity of z can be relegated to a
random variable that does not depend on φ, so that we can view
(8) from a deterministic perspective. Using the reparameteriza-
tion trick [32], z can be represented by:

z = μφ (X) + σφ (X) � ε, ε ∼ N (0, I ) (9)

where � is the element-wise product. Therefore, the input to the
decoder can be considered as the output of encoder μφ (X) cor-
rupted by a random Gaussian noise ε multiplied by σφ (X). Con-
sequently, the loss in (8) can be considered as the loss of a de-
terministic AE, which has noise injected to the latent space. In
contrast, noise is not present in the deterministic regular AE loss
in (7).

We perform 3 random missing experiments (5%, 10%, and
30% missing) with β-VAE and vary the hyperparameter β be-
tween 0, 1, 4, and 10 to evaluate how β affects imputation ac-
curacies. This will help us understand the VAE mechanism and
how to use it in imputation.

Model parameter and hyper-parameter tuning

Model parameter tuning and hyper-parameter tuning are con-
ducted on the validation data set. The latent dimension is usu-
ally several magnitudes smaller than the input dimension in AE
implementations, but there is no golden rule to determine its
size. We test 3 latent dimension sizes: 50, 200, and 400. Further-
more, we test 2 architectures with 3 or 5 hidden layers. The hid-
den layers adjacent to the bottleneck layer have 10-fold size in-
creases, and each adjacent layer outwards after that has a con-
stant size increase factor. For example, for a 5–hidden layer VAE
with a latent size of 50, the hidden layer dimensions are 3,000,
500, 50, 500, and 3,000, with input and output dimensions of
17,176; for a 3–hidden layer VAE with a latent size of 200, the
hidden layer dimensions are 2,000, 200, and 2,000. We found
that 5 hidden layers show better performance than 3 hidden lay-
ers, and that latent dimensions of 200 and 400 produce similar

performances that are both better than 50. We therefore use
a VAE with 5 hidden layers of dimensions of 6,000, 2,000, 200,
2,000, and 6,000 in our subsequent experiments. Supplementary
Figure S1 shows the performance differences of the 6 different
model architectures described above. The Rectified Linear Unit
(ReLU) function is used as the activation function on the hidden
layers.

We use the Adam optimizer and search for optimal learning
rates on a grid of 1e-5, 5e-5, 1e-4, and 5e-4. A learning rate of
5e-5 is selected after the grid search. We find that model perfor-
mance is not very sensitive to batch size, and use a batch size
of 250 and training epochs of 250. The number of iterations to
perform the iterative imputation is also determined empirically.
The imputed values are found to converge very quickly, and re-
sults remain mostly stable after 2 or 3 iterations. We use 3 as the
iteration threshold.

Evaluation methods

To evaluate the VAE imputation framework, we compare it to
the other most commonly used missing-value estimation meth-
ods: a KNN method and an iterative SVD-based method. We also
construct a baseline using the mean-value imputation method.
KNN selects K number of samples that are most similar to the
target sample with a missing gene based on Euclidean distance,
and which all have values present in that gene. Imputation is
a weighted average of the values of that gene in those K sam-
ples. We chose K = 10 in our evaluations based on a study that
reported that K values in the range of 10–25 gave the best im-
putation results [11]. Next, the SVD method decomposes the
data matrix to a linear combination of eigengenes and corre-
sponding coefficients. Genes are regressed against L most signif-
icant eigengenes, during which process the missing genes are
not used [54]. The obtained coefficients are linearly multiplied
by eigengenes to get a reconstruction with missing genes filled.
This process is repeated until the total change in the matrix
reaches a certain threshold. The reconstruction performance of
SVD depends on the number of eigengenes selected for regres-
sion. We test a range of values and determine that the optimal
performance is reached by full-rank reconstruction. Hence, we
use full-rank SVD in our evaluations. The mean-value imputa-
tion method fills in the missing elements of each feature with
the mean value of that feature across all non-missing samples.

We evaluate the RMSE of the imputed data and uncorrupted
ground truth,

RMSE =
∑nmissing

i=1

√
(xi − x′

i )
2

nmissing

where xi is the ground truth of the masked value, and x′
i is

the reconstructed value for the masked value.
To further evaluate the imputation effect on a biomedical

analysis, we compare the univariate correlation to clinical vari-
ables on the RNA sequencing data imputed by different meth-
ods. We conduct this analysis with the TCGA glioma cohort
containing both LGG and GBM samples, and use 2 clinical vari-
ables: tumor histologic grade and survival time. The tumor grade
and survival information for each brain tumor patient are pub-
licly available [55]. The histologic grade variable in the TCGA
brain tumor data contains 3 levels: Grade II, III, and IV, indi-
cating increasing levels of tumor malignancy. We directly use
the grade value as an ordinal variable of 3 levels, and calculate
the Spearman correlation coefficient between each gene and the
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Figure 1: Imputation RMSE on the gene expression data for (a) MCAR cases of 5%, 10%, and 30%; (b) half of the highest 10% of GC content genes missing a case; (c) 5%
of genes entirely missing a case; and (d) half of the lowest 10% of values missing a case. The numbers above bars show the Wilcoxon test significant scores between
VAE or VAE with shift correction and other methods.

grade variable. The survival time is a continuous variable mea-
sured in months, and the vital status indicates whether the pa-
tient was dead or alive when the study concluded. With this
information, we perform a Cox regression on each gene with
respect to the survival outcome, and compute the univariate
coefficient of each gene. A concordance index is computed be-
tween the coefficient obtained from the imputed data by each
method and the coefficients obtained from the ground truth. A
higher concordance index indicates better resemblance to the
true data.

Results
RMSE of imputation on RNA sequencing data

We inspect the RMSEs in different simulated missing scenarios
by different imputation methods. The significant scores are cal-
culated using the Wilcoxon test with the “ggsignif” package in
R. First, we evaluate the MCAR cases at varying percentages: 5%,
10%, and 30% random elements in the testing data were masked,
and models were compared on the reconstruction RMSE. VAE
achieves better RMSEs than KNN in all tested missing scenarios,
and reaches similar or better performances than SVD in most
scenarios (Fig. 1a).

In the first MNAR simulation case, the masked values are
confined to certain genes that have the highest 10% of GC con-
tent. Genes whose GC content is in the top 10% contain 50% ran-
dom missing values in the testing data. VAE shows better recon-
struction RMSE than KNN, and also achieves a slight advantage
over SVD (Fig. 1b). In the second case, 5% of genes are masked
entirely in the testing data. VAE again shows the lowest mean

RMSE among competing methods (Fig. 1c). Each method may
have different performance on different genes. Supplementary
Table 1 provides insight on the imputation results for individual
genes, showing the RMSEs obtained from each method for each
individual gene from 1 experimental trial.

The final MNAR case is based on the gene expression val-
ues. The extreme values at the lowest 10% quantile are masked
50% randomly in the testing data. As a result, the observed val-
ues in the testing data shift its distribution from the training
data, and result in a decreased performance of imputation. How-
ever, with shift-correction implementation, VAE again achieves
similar or better imputation accuracy than other methods
(Fig. 1d).

The shift correction is robust to a range of low
percentage-missing scenarios

We further investigate the robustness of the shift correction pa-
rameter against a range of missing percentages on the lowest
values. The shift correction parameter is selected based on a
10% lowest-value-missing scenario simulated on the validation
data. We use the same selected parameter to test on a range of
missing scenarios, where half of the lowest 5%, 10%, 20%, and
30% of values are missing. All methods show worse prediction
errors for smaller thresholds of missing values, because smaller
thresholds indicate that the missing values are concentrated to
smaller values, leading to larger shifts in data distribution. We
show that in these tested scenarios the shift-correction VAE con-
sistently achieves better results than KNN and SVD with the
same λ (Fig. 2). Therefore, λ selection does not need to exactly
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Figure 2: RMSE with 95% confidence intervals for simulations where half of the

lowest 5%, 10%, 20%, and 30% of values are missing. VAE shift-correction results
are achieved using a single λ, which is selected based on the lowest 10% of miss-
ing cases.

match the actual missing percentage, which is an advantage in
real-world implementations.

RMSE of imputation on DNA methylation data

For the imputation on DNA methylation data, the KNN, SVD, and
VAE methods show similar performance when compared to the
gene expression data. These 3 methods also show better perfor-
mance than imputing with a column mean. For MCAR and block
missing cases, VAE has similar performance as SVD, followed by
KNN (Fig. 3a, b). For the low-coverage missing case, VAE achieves
a better RMSE than SVD and KNN (Fig. 3c).

Correlation with clinical phenotypes

We investigate how closely the imputed data resembles the true
data in terms of univariate correlation with respect to clini-
cal variables. A higher concordance index between the correla-
tion coefficients obtained from the imputed data and the coef-
ficients obtained from the ground truth likely indicates the im-
putation method is better at preserving the original data’s uni-
variate properties.

The ground truth of univariate Spearman correlations to his-
tologic grade ranges from -1 to 1, with 46% of the genes having
an absolute correlation value of 0.3 or greater. The majority of
ground truth Cox regression coefficients with respect to survival
outcomes is in the range of -5 and 5, with 72% of the genes hav-
ing an absolute coefficient value of 0.3 or greater.

Table 2 contains the concordance indices from 3 imputation
methods, as well as a random imputation baseline. Random im-
putation is performed by filling the missing values by random
sampling the training data distribution. It shows that VAE and
SVD are similar, and VAE and SVD achieve better concordance
indices than KNN for both grade and survival outcome correla-
tions. This suggests that VAE and SVD imputed data likely have
better resemblances to true data in the context of a biomedical
analysis for molecular biologists interested in specific genes in
the presence of missing values. Fig. 4 illustrates a pairwise dif-
ference between the coefficients obtained from the ground truth
and the coefficients obtained from the imputed data by KNN and
VAE, respectively, and shows sharper peaks around 0 for VAE in
all cases for histology and in most cases for survival. The pair-
wise differences are mostly distributed around 0, and a smaller
variance around the 0 indicates that the pairwise differences are
smaller overall. In each missing scenario VAE has a smaller vari-
ance than KNN across 10 trials (all P values < 0.005 in 2-sample
t-tests).

Figure 3: Imputation RMSE on the DNA methylation data for (a) MCAR cases of 5%, 10%, and 30%; (b) 5% of genes entirely missing; and (c) half of the coverage <6 CpG
sites missing. The numbers above bars show the Wilcoxon test significant scores between VAE and other methods.



8 Genomic data imputation

Table 2: Correlation with clinical phenotypes

KNN VAE SVD Random
Spearman correlation coefficient with tumor histologic grade

10% random missing 0.980 ± 0.001 0.982 ± 0.001 0.982 ± 0.001 0.950 ± 0.001
Highest GC content missing 0.949 ± 0.002 0.958 ± 0.001 0.958 ± 0.001 0.816 ± 0.006
Entire genes missing 0.918 ± 0.005 0.932 ± 0.004 0.939 ± 0.005 0.500 ± 0.004
Lowest value missing 0.977 ± 0.001 0.983 ± 0.001 0.986 ± 0.000 0.906 ± 0.007
Cox regression coefficient with survival outcome
10% random missing 0.969 ± 0.002 0.974 ± 0.001 0.972 ± 0.002 0.873 ± 0.050
Highest GC content missing 0.917 ± 0.006 0.931 ± 0.004 0.933 ± 0.006 0.717 ± 0.016
Entire genes missing 0.851 ± 0.004 0.881 ± 0.005 0.906 ± 0.006 0.508 ± 0.010
Lowest value missing 0.963 ± 0.002 0.971 ± 0.002 0.976 ± 0.002 0.842 ± 0.013

Figure 4: Pairwise difference between the coefficients obtained from the ground truth and the coefficients obtained from the imputed data by KNN and VAE: (a)
Spearman correlation coefficients with histologic grade; and (b) regression coefficients with survival outcome.
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Imputation time for new samples

The computation time for SVD or KNN to impute a single sample
scales linearly with the dimension of the entire data matrix; in
comparison, a VAE model can be pre-trained and applied directly
to any given new sample to impute missing values. Once a VAE
model is trained, the time to impute a new sample is almost neg-
ligible. VAE thus has the benefit of reducing the computational
cost, especially at evaluation time.

Benchmark experiments are done on a 20 core cluster with
Intel Xeon 2.40 GHz CPUs, where the 3 methods are used to im-
pute 100 samples in a gene expression matrix that consists of
6,600 samples and 17,176 genes. It takes an average of 2,800 sec-
onds to train the VAE network. In terms of evaluation time, the
KNN method takes 8,400 seconds on average, while SVD takes
36,900 seconds and VAE takes only 60 seconds, showing that VAE
is several orders of magnitude faster at evaluation time.

β-VAE and deterministic auto-encoder

We perform 3 random missing experiments with β-VAE and vary
the hyperparameter β between 0, 1, 4, and 10. Figure 5 shows
that imputation results are similar for β = 0 and β = 1, while
increasing β to larger values worsens the prediction accuracies.

The fact that β > 1 produces worse imputation errors leads us
to the hypothesis that the total loss of VAE, shown on the right
side of (3) and consisting of the reconstruction loss and regular-
ization loss, may be considered a tradeoff between reconstruc-
tion quality and latent space coding efficiency. If a greater em-
phasis is put on latent space regularization, the reconstruction
quality suffers. We conclude that stronger regularization does
not help VAE’s imputation performance.

Furthermore, when β = 0, the imputation performance is
similar to vanilla VAE (β = 1). Therefore, for imputation, remov-
ing latent space regularization will not affect performance. From
previous discussion in the β-VAE method section, the loss of β-
VAE with β = 0 looks similar to that of a simple AE, but the key
difference is that noise is injected to the latent space for β-VAE
(β = 0). We find that with a simple AE, the imputation iterations
cannot converge and the resulting RMSE is very large (not shown
because of non-convergence). This suggests that the noise in-
jection to the latent space enables the imputation ability of the
VAE.

Discussion

We have described a deep-learning imputation framework for
transcriptome and methylome data using a VAE. We implement
a shift-correction method to improve VAE imputation perfor-
mance on a commonly encountered MNAR scenario. We demon-
strate that the proposed framework is competitive with SVD,
which is a time-inefficient method for real-world scenarios. We
also show that VAE outperforms KNN in multiple scenarios, such
as when using bulk transcriptome and methylome data. VAE
thus can be an important tool to analyze the large amounts of
publicly available data from thousands of studies, including RNA
sequencing and microarray data that are publicly available in the
Gene Expression omnibus [37].

We provide insights on the effect of latent space regulariza-
tion on imputation performance. We show that increasing latent
space regularization in the VAE implementation leads to larger
errors, and thus should be avoided in the imputation tasks. In
addition, the regularization of latent space can be removed with-
out affecting VAE’s performance in imputation.

We also found that noise addition to the latent space largely
helps VAE’s good imputation performance, compared to a reg-
ular deterministic AE. The method of noise injection during
training is reminiscent of DAEs. However, the noise additions
for VAE and DAE are different. First, the noise in VAE depends
on the input, whereas the DAE noise is independent of the in-
put. Second, although noise additions to intermediate layers
have been proposed in stacked DAEs for the purpose of repre-
sentation learning [29], in most data imputation applications
noise has only been added to the input layer of DAE [27, 56].
In contrast, noise is added to the latent space layer in VAE.
It is not in the scope of this paper to evaluate how different
noise addition schemes impact imputation and to compare their
performances. However, this may be worth exploring in future
work.

Finally, in the context of imputing large data sets with high
dimensional features, VAE has the potential benefit of reduc-
ing the computational cost at evaluation time, compared to
SVD and KNN. This is because an AE model can be pre-trained
and applied directly to new samples, while SVD and KNN re-
quire computing the entire matrix each time a new sample is
given.

Conclusion

In future work, it may be interesting to investigate VAE’s appli-
cation on single-cell RNA sequencing data, which has different
missing scenarios than bulk RNA sequencing data. In addition,
it may also be of interest to fully understand the effect of β in
β-VAE when β is in the range from 0 to 1. Based on the hypothe-
sis that there is a trade-off between reconstruction quality and
desired latent space property regulated by β, it can be expected
that removing the regularization term (β = 0) may even improve
the vanilla VAE’s (β = 1) imputation performance. It is worth not-
ing that such phenomenon did not occur, which invites further
study.

Supplementary Data

Figure S1. Model performances for 6 architectures: 3 hidden lay-
ers with latent sizes of 50, 200, and 400, and 5 hidden layers with
latent sizes of 50, 200, and 400. Experiments are conducted on a
simulated 10% random missing case.
Table S1. RMSEs from each method for each individual gene
from 1 experimental trial in the second MNAR scenario for RNA
sequencing data.

Availability of source code and requirements

Project name: Genomic data imputation with variational auto-
encoders
Project home page: https://github.com/gevaertlab/BetaVAEImp
utation.
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python 3.6.6 or higher, Pytorch 0.4.1
License: BSD 3-Clause License
RRID:SCR 018730
BiotoolsID: betavaeimputation

Availability of supporting data and materials

All data used in this manuscript are publicly available.

https://github.com/gevaertlab/BetaVAEImputation
https://scicrunch.org/resolver/RRID:SCR_018730
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Figure 5: Imputation RMSE of β-VAE with 5%, 10%, and 30% random missing values of gene expression, with β = 0, 1, 4, and 10, denoting the increasing strength of
regularization.

Gene expression data is version 2 of the adjusted pan-cancer
gene expression data obtained from Synapse (synapse ID
syn4976369) [57]. Clinical data of TCGA LGG/GBM can be found
in Supplementary Table S1 in Ceccarelli et al. [55]. DNA methy-
lation data is the WGBS data for BLUEPRINT methylomes (2016
release) obtained from rnbeads.org [58].
An archival copy of the code and supporting data is available via
the GigaScience repository, GigaDB [59].
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auto-encoder.
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