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The cell is a highly organized system of interacting molecules including proteins, mRNAs, and miRNAs. Analyzing the cell
from a systems perspective by integrating different types of data helps revealing the complexity of diseases. Although there is
emerging evidence that microRNAs have a functional role in cancer, the role of microRNAs in mediating cancer progression
and metastasis remains not fully explored. As the amount of available miRNA and mRNA gene expression data grows, more
systematic methods combining gene expression and biological networks become necessary to explore miRNA function. In this
work I integrated functional miRNA-target interactions with mRNA and miRNA expression to infer mRNA-mediated miRNA-
miRNA interactions. The inferred network represents miRNA modulation through common targets. The network is used to
characterize the functional role of microRNA response element (MRE) to mediate interactions between miRNAs targeting the
MRE. Results revealed that miRNA-1 is a key player in regulating prostate cancer progression. 11 miRNAs were identified as
diagnostic and prognostic biomarkers that act as tumor suppressor miRNAs. This work demonstrates the utility of a network
analysis as opposed to differential expression to find important miRNAs that regulate prostate cancer.

1. Introduction

MicroRNAs (miRNAs) are small (18–24) nucleotide long
noncoding RNAs that play a major regulatory role in a broad
range of biological processes and complex diseases. Since the
discovery of microRNAs [1], they emerged as a new layer of
gene regulation that dramatically influence genes by binding
to its 3′UTR and inactivate it by promoting its degradation
or translational repression [2]. Computational predictions
estimated that there are around 1700 miRNAs in human and
each targets hundreds of mRNAs and over 50% of the human
protein coding genes are regulated by miRNAs [3]. The area
of miRNA genetics has rapidly expanded from identifying
miRNAs to exploring their function and their potential as
therapeutic options. Several studies have demonstrated that
miRNAs are key players in the initiation and progression of
cancer including prostate cancer and they act as oncogenes
and tumor suppressors [4–6]. Examination of prostate

tumor miRNA expression has revealed widespread dysregu-
lation of miRNAs in primary and metastatic compared with
normal prostate tissue [7]. Profiling miRNAs in various types
of cancer provided evidence that miRNAs are diagnostic and
prognostic biomarkers [8] that may stratify prostate tumors
based on specific genetic profiles and thereby improve
aspects of patient management such as staging and treatment
[9, 10].

A big body of research has been focusing on identifying
the functional association between miRNAs and mRNA
targets. Several factors affect the association between miR-
NAs and targets. The first is the degree of complemen-
tarity between the miRNA and the target [11]. Several
computational methods have been proposed to identify
miRNAs sequence and their target based complementary
sequence and thermodynamics stability with mRNA target
[11, 12]. The problem with computational predictions is
that they are false positive prone methods and they are not
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functional. The second factor is the functional association
between miRNAs and targets. Since miRNA promote target
degradation, a negative correlation between a miRNA and its
targets is anticipated [13, 14]. Considerable body of research
has concentrated on the area of integrating sequence-based
miRNA target prediction and expression data to identify
functional miRNA-target interactions and find miRNA-
target modules. Several tools and algorithms have been
developed in this respect. GenMiR++ and GenMiR3 [15]
are two such tools; GenMiR3 is the modified version
of GenMiR++; it combines the results of miRNA target
prediction programs like TargetScanS with paired miRNA-
mRNA expression data. The algorithm scores each miRNA-
mRNA pair by a Bayesian approach. It evaluates whether
the expression of the miRNA explains the expression level of
mRNA. Target pairs get high score when miRNA or mRNA is
highly expressed while the other molecule is downregulated.
The third factor is endogenous RNA competition. Recently,
several studies have characterized the power of miRNAs as a
communication language between noncoding RNAs [16, 17].
Considerable body of research has emerged to characterize
the function of noncoding RNA and the regulatory function
of coding mRNAs. Results revealed that the MRE of RNAs
is an important part of RNA that can play a key role in
gene regulation by competing for miRNA. RNAs (coding
or noncoding) that share similar MRE showed an ability
modulate each other by buffering targeting miRNAs and
compete for miRNA and thus influence its availability [16,
17].

Gene expression techniques are witnessing a revolution
in the last decade that lead to produce very large amount
of high throughput gene expression data to study cellular
systems, but the drawback of these techniques is that
they study individual components of the system. A major
challenge in systems biomedicine is not only understanding
the function of individual elements in the system, but
rather understanding the function of elements as a system.
There is a big gap between the biological techniques to
generate high-throughput data and computational biologists
who use this data to build models to explain the data.
Thus a more statistical and systematic methods integrating
gene expression with biological networks to have high-
level understanding of biological systems function is needed.
miRNA and mRNAs are two cellular molecules that interact
together and regulate each other’s expression. miRNAs
regulate mRNAs expression by downregulating them; on
the other hand, mRNA regulates miRNA by modulating its
availability. Thus a new layer of gene regulation has emerged
that affect mRNA expression based on miRNA language.
However, how mRNA can influence and play the modulator
role in miRNA regulation has not been investigated.

This study focuses on the role of MRE or 3′UTR in
mediating the interactions among miRNAs. I hypothesize
that MRE can modulate miRNA-miRNA interactions activity
and that miRNAs can influence each other through MREs.
Sponge modulators include both messenger RNAs (mRNAs)
and noncoding RNAs, which contains multiple miR-binding
sites for distinct miRNAs are key player in modulating
miRNA availability. Depending on their expression levels and

on the total number of functional miR-binding sites that they
harbour, sponge modulators can decrease the number of free
miR molecules available to repress other functional targets.
When modulators expression is high, miRNAs targeting
them will get decreased. miRNAs that share a modulator
and have similar expression profile given the expression
of the modulator are anticipated to be functionally related
and form a posttranscriptional regulatory network. In this
work a 3′UTR-mediated miRNA-miRNA in prostate cancer
is constructed to identify key miRNA players that influence
each other.

2. Materials and Methods

2.1. miRNA Targets Interactions. Human miRNA target pre-
dictions for miRNA with conserved 3′UTR were taken from
TargetScan 5.1 [11] (PredNet), and experimentally validated
miRNAs and their targets were taken from mirTarBase [8]
and miRecord [20]. I used the union of mirTarBase and
miRecord as a source of experimentally validated miRNA-
target interactions (ExpNet). PredNet and ExpNet will
constitute the miRNA-target interaction networks that will
be used to associate miRNAs with their targets.

2.2. Expression Datasets. MRNA and miRNA expression data
from the MSKCC Prostate Oncogenome Project, that is,
available at the Gene Expression Omnibus (GEO accession
number: GSE21032) [21], was used in this study. The
data contains expression levels of 26443 genes across 179
samples (131 primary cancer, 19 metastatic, and 29 normal
samples), and expression of 370 miRNAs across 140 samples.
The expression data of 139 samples with both mRNA
and miRNA data for our analysis was used in this study.
I also used localized prostate cancer miRNA expression
data from independent prostate patient cohort (GSE23022
[22]) to further validate the predicted function of miRNAs.
Taylor data was used to build the network of miRNAs
and GSE23022 data was used to further characterize the
diagnostic role of the network results.

2.3. MRE-Mediated miRNA-miRNA Network Construction.
Here I describe the mathematical model used to build
mRNA-mediated miRNA-miRNA interaction network as
illustrated in Figure 1. I hypothesize that the expression
of mRNA(m) can modulate interactions between miRNAs
(miR1, miR2) that have miR-binding site in the MRE of the
mRNA (m). The model requires miRNA-target interaction
data (PredNet or ExpNet) and expression profiles of miRNAs
and targets from the same sample set. To find the mRNA(m)-
mediated miRNA-(miR1-) miRNA(miR2) interactions, I
used conditional mutual information as described in [17].
Mutual information between miR1 and miR2 is calculated as

MImiR1,miR2 =
∑

d∈miR1

∑

r∈miR2

p(d, r) log
p(d, r)
p(d)p(r)

, (1)

where p(d, r) is the joint probability density function (pdf)
of miR1 and miR2, and P(d) and p(r) are the marginal pdf ’s
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Figure 1: Overview of MRE-mediated miRNA-miRNA network construction. miRNA-miRNA interaction network was constructed by
combing miRNA-target networks and expression profiles of both miRNAs and targets. I considered competition between miRNAs for
common targets to construct miRNA-miRNA network. miRNAs that target same 3′UTR or MRE and are conditionally dependent on target
are anticipated to be functionally associated.

of miR1 and miR2, respectively. The modulation effect of
mRNA (m) on miR1 and miR2 is calculated as

ΔMImiR1,miR2/m =
∣∣∣∣MI(miR1, miR2)−MI

(
miR1,

miR2
m

)∣∣∣∣.

(2)

The significance (P value (miR1, miR2/m)) for each
interaction (miR1, miR2) given a mRNA (m) was calculated
by permutating (shuffling) the expression values of m
across the 139 samples 1000 times and then comparing the
observed ΔMI value against the expected ΔMI values from
the permutation distribution. Since miRNAs target multiple
mRNAs, I obtained multiple P values for each miRNA-miR
interaction given a mRNA and then find the final significance
P value across all mRNA targets by converting individual
P values pk for each miRNA-miR to a X2 test statistics
using Fisher’s method, where X2 = −2

∑N
k=1 ln(pk), where

N is the total number of targets for miRNA. This method
is very similar to the miRNA mediated mRNA interactions
constructed by Sumaizin et al. [17] but the major difference
is that they consider miRNAs as modulators and I consider
mRNAs as modulators.

Computing the mutual information between all miRNAs
pairs given all possible mRNAs is very time consuming.

Thus I used prior knowledge from miRNA-target inter-
actions as a base to predict mRNA mediated miRNA-
miRNA interactions. For each miRNA from miRNA-target
interaction in PredNet or ExpNet and its targets, I calculated
ΔMImiRNA,miR/target across all miRNAs (miR) in Taylor dataset
and obtained a P value by shuffling the expression of target
across the 139 samples. As a result I obtained a P value
for each miRNA-miR interaction given a target. The final
step was to generate one P value for the miRNA-miR
interactions that depend on different targets. The P values
were converted using Fisher’s method. Only significant
(P < e−5) were considered to build the miRNA-miRNA
interactions network.

3. Results

3.1. MRE-Mediated miRNA-miRNA Interactions. Genome-
wide inference of MRE modulators identified a miRNA-
miRNA posttranscriptional regulatory network. I modelled
the network graphically, with miRNAs represented as nodes
and their MRE-mediated interactions as undirected edges.
This network represents an indirect regulatory effect between
miRNAs. A miRNA can influence the expression of its
miRNA partners by regulating their common target and thus
modulate the partner’s miRNA activity. I first used ExpNet
data to construct the miRNA-miRNA network. Figure 2
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Figure 2: MRE-mediated miRNA-miRNA interactions network
using ExpNet. miRNA-miRNA interactions using ExpNet show a
list of 11 miRNAs that are highly connected. The network shows
243 miRNA linked with 528 link. miRNA-1 and miRNA-204 are
hub miRNAs that are linked to more than 50% of the miRNAs. The
size of the miRNA node is proportional to the miRNA connectivity.
Cytoscape was used for network visualization [18].

shows 528 interactions among 243 miRNAs. The miRNAs in
the network have an average of 20 interactions ranging from
1 to 190. This suggests that, on average, there are 20 targets
that mediate interactions between miRNA pairs.

The overall regulatory effect on a node depends on
several variables, including the number of mRNAs that
harbour a binding site for the node, the number of distinct
binding sites on a mRNA, and the expression level of the
modulator mRNA. 11 miRNAs are more connected than
others. The network revealed that miNRA-1 and miRNA-
204 are hub miRNAs in the network with connection to
more than 70% of the miRNAs in the network. Additional
miRNAs like miR-205, miR-27b, miR-31, miR-222, miR-221,
miR-133a, miR-143, let-7a, and miR-145 was shown also to
be highly connected to other miRNAs. I will refer to this set
of miRNAs as the 11 miRNAs. I further applied the method
on PredNet and showed that the 11 miRNAs are hub nodes
(Figure 3). This suggests that the resulting network is not
biased to the miRNA-target interactions used.

I then asked if the resulting MRE-mediated miRNA-
miRNA network is biased to the number of mRNA targets
that miRNAs share. So I constructed a miRNA-miRNA

Figure 3: MRE-mediated miRNA-miRNA interactions network
using PredNet. 3753 miRNA-miRNA interactions among 345
miRNA was constructed using PredNet. A list of 16 miRNAs that are
highly connected. miRNA-1, miR-133a, miR-133b, miR-221, miR-
145, and miRNA-205 are hub miRNAs that are linked to more than
50% of the miRNAs. Cytoscape was used for network visualization.
It is worth pointing out the difference between Figures 2 and 3 is
that Figure 2 uses ExpNet miRNA-target interactions and Figure 3
uses PredNet miRNA-target interactions.

network (Figure S1) based only on the common mRNA
targets. Interactions in this network represent how much the
two partner miRNAs share common targets. Surprisingly,
none of the hub miRNAs in Figure 2 showed any significance.
This means that the interactions among the 11 miRNAs and
the high connectivity of the 11 miRNAs is not due the large
number of common binding sites between miRNAs. I then
constructed another miRNA-miRNA based on expression
correlation (Figure S2) and found interesting results. The
identified hub miRNAs are highly correlated with each other,
but not correlated with other miRNAs in the genome. Several
miRNAs like miR-1224-3p and miR-937 was shown to be
correlated with most of the miRNAs but not with our
identified list of miRNAs. This result indicates that our hub
miRNAs are correlated in subset of samples and not all of
them.

Further an MRE-mediated miRNA-miRNA network
was constructed using only expression data from primary
prostate samples (98). The purpose of this network is to
assess if the MRE-mediated miRNAs network is biased to the
primary cancer samples that constitute large portion of the
samples used in the study. Also it helps to reveal miRNAs that
may play a role in subtyping primary cancer. Interestingly
miR-1, miR-155, and miR-16 were found to be hub miRNA.
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This could shed light on the role of miRNAs in different
stages of prostate cancer progression.

3.2. Tumor Suppressor miRNAs Network in Prostate Cancer.
To find the robustness of the interactions between the 11
miRNAs, PredNet was used to construct the MRE-mediated
miRNA-miRNA interactions of 345 miRNA nodes and 3753
edges. A more stringent cutoff was then used to reduce
the network to 70 miRNA nodes connected by 128 edges.
Both resulting networks support that the 11 miRNAs are
significantly associated and miRNA-1 which is the master
regulator of miRNA interactions. This result indicates that
the 11 miRNAs are regulating each other and they have
similar mode of actions. Several miRNAs among the 11
miRNA (miRNA-1, miRNA-145, miRNA-143) have been
characterized as tumor suppressors in prostate cancer [3, 6].
Thus our network results suggest that the other miRNAs may
act as a network of tumor suppressors.

3.3. Functional Analysis of Key 11 miRNAs. Here I asked
if the 11 key miRNAs (hub miRNAs) have any functional
role in prostate cancer. I extracted the target genes of
the 11 key miRNAs from experimentally verified miRNA-
target interactions (ExpNet) and characterized their function
using DAVID online tool (http://david.abcc.ncifcrf.gov/).
462 genes are targeted by the 11 miRNAs, 240 of them
are targeted by miRNA-1. The function of the 462 genes
was characterized by analyzing the biological pathways
they are involved in and the biological processes they are
part of in addition to biological terms associated with
them. Target genes are associated with phosphoprotein
(1.1× e−21), proto-oncogene (2.6 × e−13), disease mutation
(5.2× e−8), acetylation (6.7× e−7), actin-binding (1.2× e−6),
and apoptosis (8.2 × e−6). Analyzing the pathways revealed
strong correlation between the target genes and several
types of cancer including prostate, melanoma, thyroid,
pancreatic cancers (Figure 4). Target genes also are involved
in several biological processes like cell proliferation, cell
motion, regulation of cell death, regulation of biosynthetic,
and metabolic processes and kinase activity (Figure 5). All
these enrichment analysis support that the 11 miRNAs play
key role in prostate cancer by targeting genes from multiple
biological processes. Though the enriched pathways are not
prostate specific, they show that the 11 miRNAs target core
pathways and mainly phosphorylation signaling pathways.

3.4. Diagnostic and Prognostic Relevance of Key miRNAs. The
diagnostic and prognostic power of the 11 miRNAs was
further characterized using independent prostate expression
dataset. The expression of the 11 miRNAs was extracted from
GSE23022 and analyzed the power of the 11 miRNA in dis-
criminating tumor samples from normal samples using three
methods. Hierarchical clustering was used to group patients
based on the expression level of the 11 miRNAs (Figure 6).
The heatmap clearly shows three distinct groups: tumor,
normal, and a mixed group. Principal component analysis
showed that normal and tumor samples are distinguishable
using the first three principal components (Figure 7). Finally,

support vector machine classified the samples (tumor versus
normal) using the expression of the 11 miRNAs with 85%.
To find the significance of this classification, I randomly
generated 1000 lists of 11 miRNAs and calculated the average
accuracy (50.7%) P value (0).

Taylor data was used to assess the power of the 11 miRNA
to discriminate primary from normal samples (88% versus
77% (random)) (Figure S4). I compared this result with
the 11 most downregulated genes identified using significant
analysis of microarray (SAM) [23] and found that 5 (miR-
221, 222, 145, 133a, 143)out of the key miRNAs are among
the 11 most downregulated genes. The top 11 upregulated
genes were able to classify cancer from normal samples with
90% and the 11 downregulated genes are able to classify the
samples with 86%. This indicates that the 11 hub miRNAs are
good diagnostic biomarkers. I then analyzed the power of the
11 miRNAs to discriminate metastatic samples from primary
cancer using Taylor gene expression data. Results showed
that the 11 miRNAs significantly discriminate primary from
metastatic samples with 99.1% using SVM. Using random
list of 11 miRNAs resulted in an average of 88.8%P value
(0). Principal component analysis showed that metastatic
samples are clearly separated from primary and normal
(Figure 8); however, some primary samples are very close to
normal samples. One reason could be because the primary
samples are still in early stages of cancer and due to the
heterogeneity of the primary cancer. This indicates that
these 11 miRNAs are important molecules in prostate cancer
initiation and progression.

To analyze the prognostic power of the 11 miRNAs,
I extracted their expression from Taylor data and used
cox regression model to find association between miRNAs
expression and cancer recurrence. Clustering the samples
using k-means based on the 11 miRNAs into two groups
showed that the two groups have significant different
outcome (HR: 4.9, 95%CI (2.15–11.19), P = 0.00016)
(Figure 9). Using univariate cox regression revealed that all
the 11 miRNAs are associated with outcome; low expression
level of the 11 miRNA is associated with aggressive cancer.
Using univariate regression model showed that miR-1 is
the most significant miRNA associated with outcome. I
then analyzed the differential expression profiles of the 11
miRNAs in aggressive cancer versus nonaggressive (based on
Taylor groups) and found that all of them are significantly
downregulated in aggressive cancer (P less that 1 × 10−5).
Table 1 shows the hazard ratio, multivariate regression
coefficients, and the differential expression power using fold
change and SAM analysis.

4. Discussion

The applications of systems biology to understand complex
disease driven by the fact that complex diseases like cancer
are attributed to dysregulation of multiple components of
the cellular system [24]. Prostate cancer is the most widely
spread cancer in male in western countries. One of the
challenging in studying prostate cancer is the heterogeneity
of the system. Several genes are attributed to initiate and

http://david.abcc.ncifcrf.gov/
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Figure 4: Pathway enrichment analysis of the 450 target genes of the 11 miRNA using Enrichment Map [19]. 450 genes targeted by the 11
miRNA were identified using ExpNet. I used DAVID online tool to identify enriched pathways of the 450 genes using Enrichment Map [19].
Results showed that the target genes are enriched with multiple cancer pathways including prostate, thyroid, and pancreatic cancer pathways.

Table 1: Diagnostic and prognostic characteristics of the 11 miRNAs from Taylor data.

HR (95% CI) Cox multivariate regression coefficient Fold change (cancer/normal) SAM q-value

hsa-let-7a 0.77 (0.18–3.26) −0.25 0.88 2.3

hsa-miR-1 0.30 (0.09–0.9) −1.17 0.64 0

hsa-miR-133a 1.23 (0.41–3.67) 0.20 0.43 0

hsa-miR-143 1.67 (0.53–5.19) 0.51 0.49 0

hsa-miR-145 1.72 (0.31–9.6) 0.54 0.45 0

hsa-miR-204 1.34 (0.68–2.66) 0.29 0.48 0

hsa-miR-205 1.03 (0.8–1.34) 0.03 0.22 0

hsa-miR-27b 2.85 (0.77–10.5) 1.05 0.63 0

hsa-miR-221 0.29 (0.05–1.53) −1.22 0.42 0

hsa-miR-222 1.23 (0.23–6.4) 0.2 0.35 0

hsa-miR-31 0.63 (0.31–1.2) −0.45 0.39 0

develop prostate cancer, in addition to role of miRNAs
in initiating and progressing prostate cancer [4]. Several
miRNAs profiling studies have been conducted to identify
miRNAs that are differentially expressed in tumor versus
normal tissues [10]. Identifying prognostic miRNAs that
can help to predict patient outcome or the stage of dis-
ease is another important aspect to understand diseases
progression. Identifying miRNA-mRNA function modules
is another important task in miRNA genetics. One of the
least studied factors affect the functionality of miRNAs is
competing for target. Recent study showed that targets that
compete for miRNAs pose a regulatory effect on each other
by limiting the availability of miRNA [16, 17]. Using this
notion, Sumazin et al. [17] generated a miRNA-mediated
network among RNA molecules. Here it is worth mentioning
that miRNAs mediate all RNA molecules that harbour a

binding site for the miRNA. This study motivated us to
analyze the systematic function of miRNAs in prostate cancer
by analyzing the influence of each miRNA on the other
miRNAs through the target. miRNAs that share MRE of
several targets and their expression conditionally dependent
on the target are anticipated to regulate each other.

In this work I analyze the functional role of miRNAs in
prostate cancer by integrating expression data of targets and
miRNAs and miRNA-target networks. Several studies that
integrated expression data with miRNA-target networks lead
to identifying miRNA-target modules that may play a role
in prostate cancer [14]. However, in this work I integrated
expression data using conditional mutual information to
assess the conditional dependence between pairs of miRNA
and their common target(s). miRNAs modulate each other
through their common targets that affect miRNA availability.
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The association between miRNAs depends on the number
of common targets and the significance of the conditional
dependence on the target.

One of the challenges I faced in this study is constructing
the miRNA-miRNA interaction network using all possible
targets as mediators that is computationally very expensive.
To reduce computational cost, I started with the miRNA-
target network and we only computed conditional depen-
dency between one miRNA and the rest of miRNAs given the
expression of the targets. I used both experimentally verified
and computationally predicted miRNA-target interactions
to identify the miRNA-miRNA networks. Both networks
showed that miRNA-1 is a hub miRNA in both networks.
This indicates that it has regulatory effect over other miRNAs
through its targets. Based on the two networks (Figures
2 and 3), 11 miRNAs were identified as hub miRNAs
and further analyzed their function and prognostic role.
Analyzing their function showed that they play a role in
several biological processes including cell proimmigration,
cell death, and metabolic biosynthesis (Figure 5). Analyzing

their prognostic role revealed that the 11 miRNAs act as
diagnostic and prognostic biomarkers. The low expression of
the 11 miRNAs showed to be associated with cancer recur-
rence (Figure 9). Several miRNAs among the 11 miRNas are
already in clinical trials (miR-16, miR-222, miR-221) [3].
Here it is worth mentioning that the 11 hub miRNAs are
not the top differentially downregulated miRNAs but they
are powerful diagnostic biomarkers.

The results in this work caught the attention to the
significance of miR-1. Therefore, I further investigated its
role in prostate cancer and argue that it is the guardian of
the miRNA-mediated gene expression control. microRNA-
1(miR-1) is reported to be one of the most consistently
downregulated microRNAs in human prostate tumors [25].
Recent study showed that miR-1 is further reduced in distant
metastasis tumors and is a candidate predictor of disease
recurrence. miR-1 is encoded by the miR-1-133 cluster which
has two copies (at 18q11 and 20q13) in the human genome
producing identical mature miR sequences for miR-1 and
miR-133. It was recently reported that miR-1, miR-133, and
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Figure 6: Heatmap of the 11 miRNA in GES23022 prostate data. Heatmap of the 11 miRNAs shows that the 11 miRNAs are effective to
group tumor samples. Clustering the samples using k-means revealed three groups, tumor, normal, and mixed cluster.
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support vectors.

miR-206, which is a functional homolog of miR-1, are among
the most frequently downregulated miRs in solid human
cancers. Recent study reexpressed miR-1 in human prostate
cancer cell lines and their results revealed that miR-1 is a
novel candidate marker for disease recurrence in prostate
cancer and exhibits a tumor suppressor activity that affects
multiple pathways, leading to higher order chromosomal
and epigenetic alterations globally similar to those of histone
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Figure 8: Prostate samples across the first two PCAs using Taylor
miRNA expression data. I first identified the first two principal
components (PCAs) using Taylor data that has normal, primary,
and metastasis samples. Results show that metastasis samples are
well separated from normal and primary samples across the first
component.

deacetylase inhibitors. Our results found that miRNA-1
targets 240 genes from ExpNet and 527 in PredNet. Both lists
showed that they are enriched with phosphoproteins (5.3 ×
e−6) and acetylation proteins (3.7 × e−7). 3′UTR-mediated
miRNA interactions show consistent results that miRNA-1
is a hub miRNA using different miRNA-target interactions
with different cutoff values (Figures 2 and 3). I found that
miRNA-1 is hub in primary prostate cancer network and
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Figure 9: Kaplan Meier plot of the prognostic power of the 11
miRNAs. We characterized the prognostic power of the 11 miRNAs
by extracting their expression from Taylor data and group samples
based on their expression into two groups. The two groups showed a
very significant separation between high-risk and low-risk patients.
This indicates that the 11 miRNA can act as therapeutic targets for
prostate cancer treatment.

a hub in the other miRNA-miRNA networks revealed that
miRNA-1 is a key regulator of genes and a master coordinator
of other miRNAs. Epigenetic analysis showed that promoter
hypermethylation may be the reason behind the reduced
expression of miRNA1-133 cluster including miRNA-1 [25].

Next I asked if the miRNA interactions are biased toward
other factors that may influence the association among
miRNAs. First, correlation between miRNAs was shown
to influence the interactions among the 11 miRNAs. I
found that the 11 miRNAs are correlated but they are not
correlated with other miRNAs, which indicates that these
miRNAs have something common between them and not
with other miRNAs. The second factor is the number of
common targets that might influence the network. So I
calculated the association between miRNAs based on the
number of common targets between them and found that
the 11 miRNAs are not significantly connected and they are
not among the hub genes. This indicates that the number
of common targets between miRNAs did not influence the
interactions between miRNAs.

Lastly, the expression of primary prostate samples was
used to identify the miRNA-miRNA interactions based on
expression of primary cancer samples alone. Interestingly, I
found that miR-1 is still the most connected miRNA and
other miRNAs (miR-155, miR-16) are hubs. This indicates

that these miRNAs play a significant role in cancer initiation
and not metastasis.

5. Conclusion

As the field of miRNA continues to grow, a deeper under-
standing of miRNA expression, function, and control in
prostate cancer will influence the development of miRNA-
based therapeutics. In this work I showed that miRNA-1
is a key player in regulating gene expression and has high
influence on other miRNAs. 11 miRNAs are identified as a
network of tumor suppressors that have prognostic role in
cancer recurrence.

Acknowledgments

The author would like to thank NSERC for funding.

References

[1] G. Ruvkun, “Molecular biology: glimpses of a tiny RNA
world,” Science, vol. 294, no. 5543, pp. 797–799, 2001.

[2] S. Sevli, A. Uzumcu, M. Solak, M. Ittmann, and M. Ozen, “The
function of microRNAs, small but potent molecules, in human
prostate cancer,” Prostate Cancer and Prostatic Diseases, vol. 13,
no. 3, pp. 208–217, 2010.

[3] A. Gordanpour, R. K. Nam, L. Sugar, and A. Seth, “MicroRNAs
in prostate cancer: from biomarkers to molecularly-based
therapeutics,” Prostate Cancer and Prostatic Diseases, vol. 1, p.
6, 2012.

[4] L. He and G. J. Hannon, “MicroRNAs: small RNAs with a big
role in gene regulation,” Nature Reviews Genetics, vol. 5, no. 8,
p. 631, 2004.

[5] Y. Pang, C. Y. F. Young, and H. Yuan, “MicroRNAs and
prostate cancer,” Acta Biochimica et Biophysica Sinica, vol. 42,
no. 6, pp. 363–369, 2010.

[6] B. Zhang, X. Pan, G. P. Cobb, and T. A. Anderson, “microRNAs
as oncogenes and tumor suppressors,” Developmental Biology,
vol. 302, no. 1, pp. 1–12, 2007.

[7] G. A. Calin and C. M. Croce, “MicroRNA signatures in human
cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866,
2006.

[8] S. D. Hsu, F. M. Lin, W. Y. Wu et al., “Mirtarbase: a
database curates experimentally validated microRNA-target
interactions,” Nucleic Acids Research, vol. 39, no. 1, pp. D163–
D169, 2011.

[9] A. Esquela-Kerscher and F. J. Slack, “Oncomirs-microRNAs
with a role in cancer,” Nature Reviews Cancer, vol. 6, no. 4,
pp. 259–269, 2006.

[10] M. Ozen, C. J. Creighton, M. Ozdemir, and M. Ittmann,
“Widespread deregulation of microRNA expression in human
prostate cancer,” Oncogene, vol. 27, no. 12, pp. 1788–1793,
2008.

[11] A. Grimson, K. K. H. Farh, W. K. Johnston, P. Garrett-Engele,
L. P. Lim, and D. P. Bartel, “MicroRNA targeting specificity in
mammals: determinants beyond seed pairing,” Molecular Cell,
vol. 27, no. 1, pp. 91–105, 2007.

[12] A. Krek, D. Grün, M. N. Poy et al., “Combinatorial microRNA
target predictions,” Nature Genetics, vol. 37, no. 5, pp. 495–
500, 2005.



10 Advances in Bioinformatics

[13] J. I. Satoh and H. Tabunoki, “Comprehensive analysis of
human microRNA target networks,” Biodata Mining, vol. 4,
no. 1, p. 17, 2011.

[14] V. Jayaswal, M. Lutherborrow, D. D. F. Ma, and Y. H.
Yang, “Identification of microRNA-mRNA modules using
microarray data,” BMC Genomics, vol. 12, p. 138, 2011.

[15] J. C. Huang, T. Babak, T. W. Corson et al., “Using expression
profiling data to identify human microRNA targets,” Nature
Methods, vol. 4, no. 12, pp. 1045–1049, 2009.

[16] L. Poliseno, L. Salmena, J. Zhang, B. Carver, W. J. Haveman,
and P. P. Pandolfi, “A coding-independent function of gene
and pseudogene mRNAs regulates tumour biology,” Nature,
vol. 465, no. 7301, pp. 1033–1038, 2010.

[17] P. Sumazin, X. Yang, H.-S. Chiu et al., “An extensive
microRNA-mediated network of RNA-RNA interactions reg-
ulates established oncogenic pathways in glioblastoma,” Cell,
vol. 147, no. 2, pp. 370–381, 2011.

[18] M. Smoot, K. Ono, J. Ruscheinski, P. Wang, and T. Ideker,
“Cytoscape 2.8: new features for data integration and network
visualization,” Bioinformatics, vol. 27, no. 3, pp. 431–432,
2011.

[19] D. Merico, R. Isserlin, O. Stueker, A. Emili, and G. D. Bader,
“Enrichment map: a network-based method for gene-set
enrichment visualization and interpretation,” PLos one, vol.
15, no. 11, p. e13984, 2010.

[20] F. Xiao, Z. Zuo, G. Cai, S. Kang, X. Gao, and T. Li, “Mirecords:
an integrated resource for microRNA-target interactions,”
Nucleic Acids Research, vol. 37, no. 1, pp. D105–D110, 2009.

[21] B. S. Taylor, N. Schultz, H. Hieronymus et al., “Integrative
genomic profiling of human prostate cancer,” Cancer Cell, vol.
18, no. 1, pp. 11–22, 2010.

[22] S. Wach, E. Nolte, J. Szczyrba et al., “MicroRNA profiles
of prostate carcinoma detected by multiplatform microRNA
screening,” International Journal of Cancer, vol. 130, pp. 611–
621, 2012.

[23] V. G. Tusher, R. Tibshirani, and G. Chu, “Significance analysis
of microarrays applied to the ionizing radiation response,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 98, no. 9, pp. 5116–5121, 2001.

[24] J. J. Hornberg, F. J. Bruggeman, H. V. Westerhoff, and J.
Lankelma, “Cancer: a systems biology disease,” Biosystems, vol.
83, no. 2-3, pp. 81–90, 2006.

[25] R. S. Hudson, M. Yi, D. Esposito et al. et al., “MicroRNA-
1 is a candidate tumor suppressor and prognostic marker in
human prostate cancer,” Nucleic Acids Research, vol. 40, no. 8,
pp. 3689–3703, 2012.


	Introduction
	Materials and Methods
	miRNA Targets Interactions
	Expression Datasets
	MRE-Mediated miRNA-miRNA Network Construction

	Results
	MRE-Mediated miRNA-miRNA Interactions
	Tumor Suppressor miRNAs Network in Prostate Cancer
	Functional Analysis of Key 11 miRNAs
	Diagnostic and Prognostic Relevance of Key miRNAs

	Discussion
	Conclusion
	Acknowledgments
	References

