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abstract

 

Tumor cell membranes have multiple components that participate in the process of metastasis. The

 

present study investigates the physical association of 

 

�

 

1-integrins and Kv1.3 voltage-gated potassium channels in
melanoma cell membranes using resonance energy transfer (RET) techniques. RET between donor-labeled anti–

 

�

 

1-integrin and acceptor-labeled anti-Kv1.3 channels was detected on LOX cells adherent to glass and fibronectin-

 

coated coverslips. However, RET was not observed on LOX cells in suspension, indicating that molecular proximity

 

of these membrane molecules is adherence-related. Several K

 

�

 

 channel blockers, including tetraethylammonium,
4-aminopyridine, and verapamil, inhibited RET between 

 

�

 

1-integrins and Kv1.3 channels. However, the irrelevant
K

 

�

 

 channel blocker apamin had no effect on RET between 

 

�

 

1-integrins and Kv1.3 channels. Based on these find-
ings, we speculate that the lateral association of Kv1.3 channels with 

 

�

 

1-integrins contributes to the regulation of
integrin function and that channel blockers might affect tumor cell behavior by influencing the assembly of su-
pramolecular structures containing integrins.
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I N T R O D U C T I O N

 

Integrins are a major family of cell surface hetero-
dimeric transmembrane glycoproteins that broadly par-
ticipate in the control of cell adhesion and motility, and,
for tumor cells, their invasive and metastatic potential
(Dedhar, 1990; Hynes, 1992; Albelda, 1993). Each het-

 

erodimer is composed of noncovalently associated 

 

�

 

and 

 

�

 

 chains. Multiple 

 

�

 

 and 

 

�

 

 chains exist, which can
be assembled in several fashions to yield many integrins
(Hynes, 1992). For example, 

 

�

 

1 integrins are assembled
from multiple 

 

�

 

 chains (CD49a-f) and the 

 

�

 

1 chain to
yield receptors for extracellular molecules such as lami-
nin, collagen, and fibronectin. Integrins provide a trans-
membrane signaling conduit for both chemical and me-
chanical signals (Hynes, 1992; Wang et al., 1993). Inte-
grins also mediate transmembrane communication in
the opposite direction from the cell interior to the ex-
tracellular environment, which is known as inside-out
signaling (Shaw et al., 1993). Integrins have been shown
to interact with several other membrane-associated pro-
teins (Petty et al., 2002). For example, integrins can
form noncovalent interactions with GPI-linked proteins
(urokinase receptors, Fc

 

�

 

 receptor type III, and CD14),
Fc

 

�

 

 receptor type IIA, tetraspans, CD98, IAP (integrin-

associated protein), and others. Not surprisingly, inte-
grins can participate in, or in some cases mediate, trans-
membrane signaling on behalf of a partner protein (for
a recent review see Petty et al., 2002). Furthermore, lat-
eral interactions can regulate the function of both the
integrin and the partner protein. Thus, integrins dem-
onstrate great flexibility in their assembly and interac-
tions with other components on the outside, inside, and
within the plasma membrane.

Recent studies have suggested that lines of communi-

 

cation exist between cell surface integrins and K

 

�

 

 chan-
nels. When fibronectin binds to integrins on tumor cell
membranes, K

 

�

 

 channels are activated, thus leading to
membrane hyperpolarization. Hyperpolarization pre-
cedes a marked cell spreading in erythroleukemia cells
(Arcangeli et al., 1991) and serves as a commitment sig-
nal to neuritogenesis in neuroblastoma cells (Arcangeli
et al., 1993). Fibronectin binding promotes activation of

 

Ca

 

2

 

�

 

-dependent K

 

�

 

 channels in murine erythroleuke-
mia cells, HERG K

 

�

 

 channel currents in human preo-
steoclastic leukemia cells, and inwardly rectified K

 

�

 

channels in neuroblastoma cells (Arcangeli et al., 1989,
1991; Becchetti et al., 1992; Hofmann et al., 2001).
Laminin also promotes inwardly rectifying K

 

�

 

 currents
in neuroblastoma cells (Arcangeli et al., 1996). Certain
antibodies against 

 

�

 

1-integrins mimic the effects of
laminin, further supporting the integrin-related activa-
tion of K

 

�

 

 channels. Complementary evidence using K

 

�

 

channel blockers (e.g., tetraethylammonium [TEA],*
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4-aminopyridine [4-AP], quinine, verapamil, diltiazem,
cetiedil) have demonstrated cross-talk between K

 

�

 

 chan-
nels and integrin function. Migration of transformed re-
nal epithelial cells and human melanoma cells requires
K

 

�

 

 channel activity (Schwab et al., 1994, 1999). More
specifically, voltage-gated K

 

�

 

 channels have been linked
with integrin activation and integrin-mediated processes
(Lewis and Cahalan, 1995). In contrast to the inhibitory
effects of K

 

�

 

 channel blockers, elevated extracellular
K

 

�

 

, in the absence of a “classical” immunological stimu-
latory signal, is a sufficient stimulus for activation of T
cell 

 

�

 

1 integrins and induction of integrin-mediated ad-
hesion and migration (Levite et al., 2000). Thus, the co-
operation of integrins and K

 

�

 

 channels in eliciting cell
functions has been established.

One potential mechanism to account for integrin–K

 

�

 

channel cross-talk is physical interactions between
these two cell surface molecules. Indeed, recent studies
have suggested that at least two types of K

 

�

 

 channels
can be immunoprecipitated with integrins (McPhee et
al., 1998; Levite et al., 2000). Using resonance energy
transfer (RET) techniques, we now extend these previ-
ous studies by demonstrating the molecular proximity
of the Kv1.3 channel and 

 

�

 

1 integrins on living cell
membranes. We further show that this interaction is
promoted by cell adherence and inhibited by channel
blockers. This latter observation leads to the specula-
tion that the disassembly of supramolecular complexes
containing integrins and K

 

�

 

 channels may be impor-
tant in the action of certain antimetastatic drugs.

 

M A T E R I A L S  A N D  M E T H O D S

 

Materials

 

Fibronectin was purchased from Life Technologies. TRITC and
FITC were obtained from Molecular Probes, Inc. TEA, 4-AP,
apamin, and verapamil were purchased from Sigma-Aldrich.

 

Antibodies

 

A FITC-conjugated monoclonal antibody (mAb) against CD29
(

 

�

 

1

 

 integrin subunit; K20 clone, IgG

 

2a

 

 isotype) was purchased
from Immunotech (Beckman Coulter). Polyclonal rabbit anti-
Kv1.3 antibody, monoclonal goat anti–rabbit antibody, and
TRITC-conjugated monoclonal goat anti–rabbit antibody were
purchased from Chemicon International Inc.

For TRITC antibody conjugation, the pH of antibody solutions
was increased by overnight dialysis against carbonate buffer (pH
9.6; 0.2 M). TRITC was then added at a molar ratio 1:13 for 3 h
with shaking followed by overnight dialysis against PBS (pH 7.4)
and Sephadex G25 column chromatography.

 

Cell Culture

 

The human amelanotic malignant melanoma cell line LOX was
provided by Dr. Oystein Fodstad (Institute for Cancer Research,

 

Norwegian Radium Hospital, Oslo, Norway). LOX cells were cul-
tured in Dulbecco’s modified Eagle medium (Life Technologies)
and RPMI-1640 (Life Technologies) medium at 1:1 ratio supple-
mented with 10% heat-inactivated fetal calf serum (Life Technol-
ogies), 5% Nu-serum IV (Becton Dickinson), and 0.01% antibi-
otic-antimicotic (Life Technologies) in an atmosphere of 5%
CO

 

2

 

 at 37

 

�

 

C.

 

Indirect Immunofluorescence Staining

 

To study Kv1.3 channel and 

 

�

 

1-integrin localization on cell sur-
faces, LOX cells were incubated for 2 h on uncoated or fibronec-
tin-coated glass coverslips. Coverslips were coated with fibronec-
tin (10 

 

�

 

g/ml) in PBS (pH 7.2) by incubation for 2 h at 37

 

�

 

C or
overnight at 4

 

�

 

C, followed by extensive washing. Cells attached to
the coverslip were fixed with 3% paraformaldehyde for 15 min at
room temperature. Coverslips with attached cells were washed
several times with HBSS. Cells were then labeled with first step
polyclonal rabbit antibody against Kv1.3 channel (10 

 

�

 

g/ml) for
1 h at room temperature followed by second-step TRITC-conju-
gated goat anti–rabbit IgG antibody for 1 h at room temperature.
In other experiments a TRITC-conjugated anti-Kv1.3 antibody
was employed. After several washes, cells were fixed again with
3% paraformaldehyde and blocked with 3% BSA in HBSS, fol-
lowed by labeling with FITC-conjugated anti-

 

�

 

1 integrin/CD29
mAb for 1 h at room temperature. After extensive washing the
coverslip was inverted and mounted on a slide. The stained cells
were observed using fluorescence microscopy.

 

Fluorescence Microscopy

 

Cells were observed using an axiovert fluorescence microscope
(ZEISS) with mercury illumination interfaced to a Scion image
processing system. A narrow bandpass discriminating filter set
(Omega Optical) was used with excitation at 485/22 nm and
emission at 530/30 nm for FITC and an excitation of 540/20 nm
and emission at 590/30 nm for TRITC. Long-pass dichroic mir-
rors at 510 and 560 nm were used for FITC and TRITC, respec-
tively. For RET imaging, a 485/22 nm narrow bandpass discrimi-
nating filter was used for excitation and a 590/30 nm filter was
used for emission. The fluorescence images were collected with
an intensified charge-coupled device camera (Geniisys; Dage-
MTI). DIC photomicrographs were taken using ZEISS polarizers
and a charge-coupled device camera (Model 72; Dage-MTI).

 

Single Cell Emission Spectrophotometry

 

Energy transfer was also examined by means of a microscope
spectrophotometer apparatus. Fluorescence emission spectra
were collected from single cells by a Peltier-cooled IMAX camera
and intensifier (Princeton Instruments, Inc.) attached to a ZEISS
Axiovert fluorescence microscope (Petty et al., 2000). Winspec
software (Princeton Instruments, Inc.) was used to analyze spec-
trophotometric data. In some cases spectral subtractions were
performed to highlight changes. Intensity levels were obtained
by calculating differences between the intensity levels of the cell
RET peaks and the background intensity levels. Intensity levels
are given as the mean 

 

�

 

 SE. 

 

P

 

 values were calculated using Mi-
crosoft Excel 2000 software.

 

R E S U L T S

 

Physical Proximity of Kv1.3 Potassium Channels and 

 

�

 

1 
Integrins on Adherent but not Nonadherent LOX Cells

 

To assess the physical proximity of Kv1.3 channels and

 

�

 

1-integrins on LOX melanoma cells, RET experi-

 

*

 

Abbreviations used in this paper:

 

 4-AP, 4-aminopyridine; RET, reso-
nance energy transfer; TEA, tetraethylammonium. 
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ments were conducted on cells labeled with donor- and
acceptor-conjugated antibodies directed against Kv1.3
and the common chain of 

 

�

 

1-integrins. Experiments
were first performed using cells in suspension. Cells
were detached from tissue culture plates, fixed with
paraformaldehyde, washed extensively, and then la-
beled with fluorescent antibodies directed against the
Kv1.3 channel and 

 

�

 

1-integrin molecules. Immunoflu-
orescence microscopy showed uniform distributions of

 

�

 

1-integrins and Kv1.3 channels on the LOX cell sur-
face (Fig. 1, A–D). RET imaging experiments did not
demonstrate energy transfer (Fig. 1 D). Moreover, sin-
gle cell emission spectrophotometry did not reveal en-
ergy transfer between these two labels on LOX cells
Fig. 1, E–H. Thus, these two molecules are expressed
on LOX cells, but are not in the physical proximity of
one another on nonadherent cells.

LOX cells were next studied while adherent to glass or
fibronectin-coated coverslips. Fluorescence microscopy
shows that both anti–

 

�

 

1-integrin and anti-Kv1.3 label
LOX cells adherent to glass (Fig. 2, A–D). Labeling is also
observed after adherence to fibronectin-coated coverslips
(Fig. 2, E–H), which results in a greater number of mor-
phologically polarized cells. It also results in nonuniform
distributions of 

 

�

 

1-integrin and Kv1.3 channel labeling,
which resemble one another (Fig. 2, E–H). RET between
FITC-labeled anti–

 

�

 

1-integrin and a TRITC-labeled sec-
ond-step antibody attached to anti-Kv1.3 was demon-
strated by emission spectrophotometry and immunofluo-
rescence imaging. Fig. 2 illustrates the sensitization of ac-
ceptor fluorescence (TRITC) as a result of RET between
these labeled membrane proteins. RET was observed dur-
ing adherence to both glass and fibronectin-coated sur-
faces (Fig. 2, I and K, respectively). Difference spectra
(Fig. 2, J and L) underscore the appearance of acceptor
emission at 

 

�

 

585 nm (compare with Fig. 1 H). Since RET
is only possible when two molecules are separated by 

 

�

 

7
nm or less (Szollosi et al., 1987), we suggest that 

 

�

 

1-inte-
grins and Kv1.3 channels are in close physical proximity
on adherent LOX cells. The average RET intensity level
was indistinguishable between LOX cells adherent to
glass or fibronectin-coated coverslips (Table I). We were
concerned that the TRITC-labeled second-step antibody
might bind to the first step anti-CD29 reagent thereby
promoting RET. This nonspecific effect is unlikely to be
true since RET was not observed on nonadherent cells us-
ing the same protocol. Nonetheless, we rigorously elimi-
nated this remote possibility using several controls. First,
adherent cells were fixed then labeled with FITC-conju-
gated anti-CD29 and the TRITC-conjugated second-step
goat anti–rabbit antibody. No rhodamine fluorescence or
RET was observed on adherent cells, suggesting that
cross-reaction between these reagents cannot explain the
RET signal (unpublished data). Second, binding of anti-
CD29 could not be inhibited by blocking the second-step

reagent by a nonspecific mouse IgG2a reagents. In the
third type of experiment the anti-Kv1.3 reagent was di-
rectly conjugated to TRITC. When adherent LOX cells
were directly labeled with FITC–anti-CD29 and TRITC–
anti-Kv1.3 reagents, RET was observed. Thus, RET could
not be explained by the second-step label. However, the
total RET intensity is somewhat diminished using direct
labeling due to fewer acceptors in the vicinity of the do-
nor. Thus, cell adherence accompanies integrin-to-Kv1.3
channel proximity.

Figure 1. An absence of RET between �1 integrins (CD29) and
Kv1.3 potassium channels on LOX cells in suspension as deter-
mined by RET imaging and microspectrophotometry. (A–D) Rep-
resentative immunofluorescence microscopy experiments of non-
adherent cells labeled with anti-CD29 (B) and anti-Kv1.3 (C) are
shown. The corresponding DIC image is shown in A. Although
cells are labeled with anti-CD29 and anti-Kv1.3 channel reagents,
no RET is observed between these labels (D). (E–H) LOX cells in
suspension were examined by fluorescence emission microspec-
trophotometry. The data shown here and elsewhere are plotted as
intensity (photon counts) vs. wavelength (nm). LOX cells in sus-
pension were labeled with FITC-conjugated anti-CD29 mAb only
(E), first step rabbit anti-Kv1.3 Ab and second step goat anti–rabbit
TRITC-conjugated mAb only (F), or both FITC-conjugated anti-
CD29 mAb and rabbit anti-Kv1.3 Ab followed with TRITC-conju-
gated goat anti–rabbit Ab (G). The difference spectrum obtained
by mathematical subtraction of anti–�1-integrin FITC (E) from
RET spectrum (G) is shown in H. (See text for additional con-
trols.) LOX cells in suspension revealed no RET between �1 inte-
grins and Kv1.3 channels.
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Potassium Channel Blockers Inhibit RET between Kv1.3 
Channels and 

 

�

 

1 Integrins

 

We investigated the effect of K

 

�

 

 channel blockers on
RET between Kv1.3 channels and 

 

�

 

1-integrins. The in-
hibitors TEA, which blocks voltage-gated K

 

�

 

 channels
and large conductance Ca

 

2

 

�

 

-dependent K

 

�

 

 channels,
and 4-AP, which blocks only voltage-gated K

 

�

 

 chan-
nels, were tested. These “classical” K

 

�

 

 channel blockers
are known to inhibit Kv1.3 K

 

�

 

 channel currents (Grissmer
et al., 1994). Treatment of LOX cells with TEA or 4-AP
blocked RET between 

 

�

 

1-integrins and Kv1.3 channels
as shown by both emission spectrophotometry and flu-
orescence imaging (Figs. 3 and 4). Emission spectro-
photometry data show that treatment of LOX cells with
10

 

	

 

3 

 

M TEA or 10

 

	

 

4 

 

M 4-AP reduced the number of
RET positive cells by 77% and 93%, respectively (Table

 

II). Apamin, an irrelevant small conductance Ca

 

2

 

�

 

-
dependent K

 

�

 

 channel blocker, was used as a negative
control. Adherence of cells to fibronectin-coated cover-
slips in the presence of 10

 

	

 

9

 

 M apamin had no effect on
RET between 

 

�

 

1-integrins and Kv1.3 channels (Figs. 3
and 4). Thus, certain K

 

�

 

 channel blockers inhibit 

 

�

 

1-
integrin-to-Kv1.3 channel proximity.

We next tested the effect of verapamil on RET be-
tween Kv1.3 channels and 

 

�

 

1-integrins. Although a
“classical” Ca

 

2

 

�

 

 channel antagonist, verapamil has re-
cently been shown to block Kv1.3 channels (Pancrazio
et al., 1991; Rauer and Grissmer, 1996, 1999; Madeja et
al., 2000; Robe and Grissmer, 2000). It has been shown
that at low concentrations verapamil blocks Ca

 

2

 

�

 

 chan-
nels, whereas higher concentrations block K

 

�

 

 channels
(Pancrazio et al., 1991; Rauer and Grissmer, 1996).
LOX cells were incubated on fibronectin-coated cover-

Figure 2. Resonance energy transfer
between FITC-labeled �1-integrin and
TRITC-labeled Kv1.3 potassium chan-
nel on LOX cells adherent to glass or
fibronectin-coated coverslips. (A–H)
Representative DIC (A and E) and im-
munofluorescence images of �1-inte-
grin (B and F) and Kv1.3 channel (C
and G) labeling on LOX cells adherent
to the glass (A–D) and fibronectin-
coated (E–H) coverslips. Note the mor-
phological polarization and spreading
of the cells in A and E. These cells dis-
played significant levels of RET (D and
H). (I–L) Cells adherent to glass (I and
J) or fibronectin (K and L) were exam-
ined by fluorescence spectroscopy. Cells
were labeled with FITC-conjugated
anti–�1-integrin Ab only (gray line in I
and K), rabbit anti-Kv1.3 Ab/goat anti–
rabbit TRITC-conjugated mAb only
(dashed line in I and K), or both anti–
�1-integrin and rabbit anti-Kv1.3 Ab/
goat anti–rabbit TRITC-conjugated
mAb (black line in I and K). Emission
RET spectrophotometry detected RET
between �1-integrin and Kv1.3 mole-
cules on LOX cells adherent to glass
and fibronectin-coated coverslips (ap-
pearance of second peak or shoulder in
the FITC emission spectra; black lines
in I and K). The difference spectra ob-
tained by mathematical subtraction of
anti–�1-integrin FITC spectrum (gray
line in A and C) from RET spectrum
(black line in I and K) represents the
RET between integrin and channel.
These spectra are shown in J and L for
LOX cells adherent to glass or fibro-
nectin-coated coverslips, respectively.
(Compare with Fig. 1 H.)
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slips in the presence of various concentrations of ve-
rapamil. Verapamil at 100 

 

�

 

M inhibited spreading and
polarization of LOX cells on fibronectin-coated cover-
slips. Less dramatic changes were observed at lower
doses. LOX cells adherent to fibronectin-coated cover-
slips were incubated with 0.1, 1, and 10 

 

�

 

M verapamil
for 30 min, then fixed and labeled with the Kv1.3 chan-
nel and 

 

�

 

1-integrin reagents. Verapamil decreased the
number of RET-positive cells in a dose-dependent fash-
ion (Table II; Figs. 5 and 6). Representative RET spec-
tra (Fig. 6) demonstrate RET between 

 

�

 

1-integrins and
Kv1.3 channels on cells treated with 0.1 �M verapamil,
but not between these molecules at 100 �M verapamil.
Thus, the verapamil studies are consistent with an ef-
fect of this compound on K� channels.

T A B L E  I

Quantitative Summary of RET Intensity Levels between �1-integrin and Kv1.3 Potassium Channel

Substrate Treatment N CN RET P

arbitrary units

Cell suspension 4 90 5,142 � 412a 
 0.01c

Glass 3 107 18,177 � 107

Fibronectin 3 150 18,168 � 603 
 0.001d

Fibronectin 10	9 M apamin 3 85 16,779 � 712 
 0.01d

Fibronectin 10	3 M TEA 3 80 5,416 � 395a 
 0.01c

Fibronectin 10	4 M 4-AP 3 92 5,538 � 162a 
 0.01c

Fibronectin 10	7 M verapamil 3 88 11,381 � 805 � 0.01d

Cell suspension 10	4 M verapamil 3 100 4,969 � 124a 
 0.01c

Cell suspension control 4 80 5,267 � 513b

TEA control 3 80 5,110 � 441b

4-AP control 3 90 5,588 � 538b

M verapamil control 3 93 5,178 � 541b

Background control 3 60 5,062 � 67e

Baseline 3 60 5,015 � 18f

N, the number of independent trials; CN, the number of cells measured; RET, intensity level.
aThe RET intensity level was obtained as a mathematical difference between intensity level at 590 nm of RET spectrum and intensity level at 590 nm of 
RET spectrum from cells labeled with FITC-conjugated mAb only.
bThe intensity level at 590 nm of RET spectrum from cells labeled with FITC-conjugated mAb only.
cThe RET level for the given treatment was compared with the RET level for that treatment control.
dThe RET level for the given substrate was compared with the RET level for the glass.
eThe instrumentation base line in the presence of the slide with unlabeled cells.
fThe instrumentation base line.

Figure 3. Inhibition of RET between �1-integrins and Kv1.3
channels by K� channel blockers. The effect of K� channel block-
ers on RET between �1-integrins and Kv1.3 channels was investi-
gated using emission spectrophotometry. LOX cells were allowed
to adhere to the fibronectin-coated coverslips at the presence of
10	3 M TEA (A and B), 10	4 M 4-AP (C and D), or 10	9 M apamin
(E and F). The cells were fixed then labeled with anti–�1-integrin
and anti-Kv1.3 channel antibodies as described above. Representa-
tive emission (A, C, and E) and difference (B, D, and F) spectra
are shown. RET is absent in cells treated with TEA and 4-AP (A–D).
However, RET was observed in the presence of apamin, a K� chan-
nel blocker that has no effect on Kv1.3 channels.
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D I S C U S S I O N

Our resonance energy transfer studies demonstrate mo-
lecular proximity between �1 integrins and Kv1.3 chan-
nels at tumor cell surfaces, thus suggesting that a direct
line of communication exists between these two key cell
surface regulatory systems. Recent studies have indicated
that integrins are capable of forming supramolecular
complexes with other cell surface molecules (Petty et al.,
2002). For example, �1 integrins interact with the uroki-
nase-type plasminogen activator receptors (Chapman,
1997; Xue et al., 1997), which may contribute to the co-
ordination of adhesive/proteolytic events during in vivo
cell motility. Moreover, additional molecules may also in-
teract with integrins in cell membranes. Recently, Levite
et al. (2000) have suggested that integrins interact with
Kv1.3 channels on lymphocyte membranes. Our studies
agree with those of Levite et al. (2000), although we
have used a different technique and cell type. Further-
more, our studies of living cells indicate that the �1 inte-
grin–Kv1.3 channel interaction is not static, but rather
can be quite dynamic, depending upon the experimen-
tal circumstances. �1 integrin–Kv1.3 channel proximity
is affected by cell adherence and the presence of K�

channel blockers. Thus, a direct physical interaction be-
tween �1 integrins and Kv1.3 channels may contribute
to cell signaling and functions.

Previous studies have demonstrated that K� channel
blockers can inhibit integrin-mediated cell adhesion to
the extracellular matrix, proliferation, migration, and

metastasis (Lewis and Cahalan, 1995; Lepple-Wienhues
et al., 1996; Xu et al., 1996; Schwab et al., 1999; Yao and
Kwan, 1999). Moreover, the availability of functionally
active Kv1.3 channels is a prerequisite for �1-integrin–
mediated activation of T cells (Levite et al., 2000). In
the present studies, we found that treatment of LOX
cells with TEA or 4-AP dramatically reduced the num-
ber of RET-positive cells and led to an almost uniform
distribution of Kv1.3. However, melanoma cell treat-
ment with apamin, an irrelevant K� channel blocker,
had no effect on the RET between Kv1.3 channels and
�1-integrins. Thus, it would appear that a functional K�

channel is required for both the molecular proximity
of �1 integrins and Kv1.3 channels and certain integrin
functions.

We investigated the effect of verapamil on RET be-
tween �1-integrins and Kv1.3 channels. Verapamil, a
well-known blocker of L-type voltage-gated Ca2� chan-
nels, has been shown to affect K� channels as well.
Depressive effects on K� conductance have been de-
scribed in lymphocytes (DeCoursey et al., 1985), alveo-
lar epithelial cells (Jacobs and DeCoursey, 1990), small
cell lung cancer cells (Pancrazio et al., 1991), kidney
cells (Bleich et al., 1990), enterocytes (Tatsuta et al.,
1994), rat prostatic cancer cells (Fraser et al., 2000),
and human prostate cancer cells (Rybalchenko et al.,
2001). It was shown that verapamil blocks voltage-gated
Ca2� channels at nanomolar concentrations and can
block Shaker voltage-gated K� channels at micromolar
concentrations (Chandy et al., 1993). When we investi-
gated the effect of several verapamil concentrations, we
found that RET was inhibited at higher doses of ve-
rapamil (�100 �M), thus suggesting an important role
for K� channels. The formation of �1-integrin–Kv1.3
channel supramolecular proximity complexes may be

Figure 4. Inhibitory effect of potassium channel blockers on
RET between �1-integrins and Kv1.3 channels. The effect of K�

channel blockers on RET between �1-integrins and Kv1.3 chan-
nels was investigated using fluorescence microscopy. LOX cells ad-
herent to the fibronectin-coated coverslips in the presence of
10	3 M TEA (A–D), 10	4 M 4-AP (E–H), or 10	9 M apamin (I–L)
were labeled with anti–�1-integrin and anti-Kv1.3 channel reagents.
Columns 1–4 show (a) DIC, (b) FITC fluorescence of anti-�1-inte-
grin, (c) TRITC fluorescence of anti-Kv1.3 channel, and (d) RET
between these two reagents. Note that although all of the cells
were labeled with both reagents, RET was only observed in the
presence of apamin.

T A B L E  I I

Inhibitory Effect of Potassium Channel Blockers on the RET between 
�1-integrin and Kv1.3 Potassium Channel on LOX Cell Membranes

Substrate Inhibitor N CN % RET P

Glass No inhibitor 3 107 88.3 � 5.2

Fibronectin

No inhibitor 3 150 84.0 � 9.9 
 0.001a

10	3 M TEA 3 100 19.0 � 3.8 � 0.001b

10	4 M 4-AP 3 75 6.0 � 2.0 � 0.001b

10	9 M apamin 3 100 80.0 � 3.5 
 0.001b

10	7 M verapamil 3 150 52.0 � 9.5 � 0.001b

10	6 M verapamil 3 150 28.0 � 8.1 � 0.001b

10	5 M verapamil 3 150 13.3 � 7.1 � 0.001b

Cell suspension 10	4 M verapamil 3 150 14.0 � 5.0 � 0.001b

N, the number of independent trials; CN, the number of cells measured;
% RET, percentage of cells with RET between integrin and Kv1.3
potassium channel.
aThis value was compared with the % RET value for LOX cells adherent
to the glass at the absence of inhibitors.
bThis value was compared with the % RET value for LOX cells adherent
to the fibronectin in the absence of inhibitors.
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particularly important in view of the reduced in vitro
invasiveness and the small, but significant reduction in
in vivo metastasis found using verapamil (Yohem et al.,
1991; Taylor et al., 1997; Farias et al., 1998; Iishi et al.,
2001). Although verapamil per se is not likely to be
broadly used in managing disease, the identification of
a molecular pathway contributing to its action, such
as the control of �1-integrin-to-Kv1.3 channel inter-
actions, may lead to more effective therapeutic ap-
proaches. One practical example of this would be
screening for new drugs based on the inhibition of
these interactions.

Several potential mechanisms of �1-integrin-to-Kv1.3
channel communication can be envisioned. First, a cis-
partnership might lead to reciprocal changes in inte-
grin and channel conformation, thus affecting their
functions. Both integrins and Kv channels are known to
undergo conformational changes (e.g., Yellen et al.,
1994; Ma et al., 2002). Furthermore, channel blockers
might result in channel conformational changes that
are not favorable for channel–integrin interactions
thereby leading to an inhibition of RET. Second, it has
been shown that upon activation and gating the Kv1.3
channel becomes phosphorylated by a tyrosine kinase
(Holmes et al., 1996). Thus, as a result of interacting
with integrins, the channel may provide integrins with
access to both its channel activity and additional signal-
ing molecules. In other words, the channel (or inte-
grin) could be viewed as a scaffolding protein for the
integrin (or channel), thereby affecting its transmem-
brane signaling capacity. For example, kinases associ-
ated with integrins may mediate the phosphorylation of
Kv1.3. Thus, integrin–channel communication in these

supramolecular proximity complexes could take on sev-
eral forms. However, we have not shown that integrins
directly bind to K� channels. Similarly, immunoprecipi-
tation demonstrates that integrins and Kv1.3 channels
coimmunoprecipiate (Levite et al., 2000), but this does
not prove that the molecules directly interact as some
other component of the precipitate could link the two
together. The positive energy transfer suggests that
these membrane proteins are nearest neighbors; thus,

Figure 5. Dose-dependent inhibitory effect of verapamil on RET
between �1-integrins and Kv1.3 channels. LOX cells were allowed
to adhere to fibronectin-coated coverslips at the absence and pres-
ence of 0.1 �M to 10 �M verapamil for 2 h. Since cells exposed to
100 �M verapamil could not adhere, experiments at this dose were
performed in suspension. The cells were fixed, labeled with anti-
�1-integrin and anti-Kv1.3 channel reagents as described, then ex-
amined with emission spectrophotometry. The number of cells ex-
hibiting RET were counted and are shown here as a percentage of
the total number of cells.

Figure 6. Effect of verapamil treatment on RET between �1-
integrins and Kv1.3 channels. (A–H) Representative DIC (A and
E) and immunofluorescence images of �1-integrin (B and F) and
Kv1.3 channel (C and G) labeling on LOX cells on fibronectin-
coated coverslips in the presence of 0.1 �M (A–D) and 100 �M
(E–H) verapamil. These cells displayed significant levels of RET in
the presence of 0.1 �M verapamil (D), but not in the presence of
100 �M verapamil (H). (I–L) Spectrophotometry experiments
were conducted in the presence of 0.1 �M verapamil (I and J) or
100 �M verapamil (K, L). Cells were labeled as described above.
Emission RET spectrophotometry detected RET between �1-inte-
grins and Kv1.3 channels on LOX cells in the presence of 0.1 �M
verapamil, but not in the presence of 100 �M verapamil. The dif-
ference spectra obtained by mathematical subtraction of anti-�1-
integrin FITC spectrum (unpublished data) from the RET spec-
trum (I) represents the RET between integrin and channel. These
spectra are shown in J and L. These data indicate that RET can be
observed at doses consistent with binding to calcium channels, but
not at doses more consistent with binding to K� channels.
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a linker protein is unlikely to come between the inte-
grin and channel. One potential route to sorting out
these possibilities and to identify relevant binding re-
gions within these proteins is the use of chimeric inte-
grins and channels coupled with evaluation of molecu-
lar proximity.

Integrins and K� channels collaborate to perform ad-
herence-related cell functions. This reciprocal partner-
ship is illustrated by the ability of integrin ligation to
promote K� currents and the ability of K� channel
blockers to inhibit integrin-mediated adherence. Al-
though the functions of integrins are clear enough be-
cause they directly attach to basement membranes,
other cells, and glass, what adherence-related functions
might K� channels serve? Several possibilities might be
considered. Voltage-gated channels respond to changes
in the membrane potential (i.e., an influx of Na� or
Ca2�). Oscillating membrane potentials and Ca2� levels
have been found in migrating cells (e.g., Petty, 2001).
Thus, K� channels might serve the crucial role of reset-
ting the local signaling apparatus. This is likely impor-
tant since cell migration requires that integrins undergo
numerous cycles of attachment and release. Integrin-to-
ligand binding causes K� channel activation (Arcangeli
et al., 1989, 1991, 1996; Becchetti et al., 1992), which
may enhance Ca2� influx. For example, inhibition of K�

channels by TEA, 4-AP, and verapamil block Ca2� influx
(Lepple-Wienhues et al., 1996; Yao and Kwan, 1999).
Thus, repetitive changes in membrane potential, inte-
grin avidity (adherence vs. detachment), and Ca2� sig-
nals (which participate in resculpting the cytoskeleton)
participate in the choreography of cell adherence.
Emerging technologies, such as high-speed imaging
(see below), should allow these events at adherence sites
to be precisely mapped. Finally, activation of K� chan-
nels will, in general, cause a loss of K� and Cl	, thereby
reducing cell water and volume. Such a reduction in vol-
ume might be crucial in in vivo cell migration such as
the migration of tumor cells across endothelial cell bar-
riers (e.g., Soroceanu et al., 1999).

A quantitative understanding of the structure and
function of membrane complexes of tumor cells is
likely to dramatically increase our understanding of tu-
mor cell motility, an integral feature of metastasis. Al-
though it has been demonstrated that integrins inter-
act with both urokinase-type plasminogen activator re-
ceptors and Kv1.3, whether or not all three molecules
are simultaneously present in the same assembly is not
known. One possible approach to address this question
is the use of two-step RET, wherein energy is trans-
ferred among three molecules from donor to accep-
tor/donor to acceptor. Moreover, recent developments
in high-speed imaging (Petty and Kindzelskii, 2000,
2001; Petty et al., 2000) make it possible to spatiotem-
porally map signals emanating from adherence sites.

For example, it is possible to image the ignition and
propagation of metabolic waves at adhesion sites (Petty
and Kindzelskii, 2000). The direct observation of pro-
tein–protein complexes and their signals will greatly
enhance our ability to link molecular interactions with
cell behavior.
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