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Abstract: (1) Background: The virulence of coronavirus diseases due to viruses like SARS-CoV or
MERS-CoV decreases in humid and hot weather. The putative temperature dependence of infectivity
by the new coronavirus SARS-CoV-2 or covid-19 has a high predictive medical interest. (2) Methods:
External temperature and new covid-19 cases in 21 countries and in the French administrative regions
were collected from public data. Associations between epidemiological parameters of the new case
dynamics and temperature were examined using an ARIMA model. (3) Results: We show that,
in the first stages of the epidemic, the velocity of contagion decreases with country- or region-wise
temperature. (4) Conclusions: Results indicate that high temperatures diminish initial contagion rates,
but seasonal temperature effects at later stages of the epidemy remain questionable. Confinement
policies and other eviction rules should account for climatological heterogeneities, in order to adapt
the public health decisions to possible geographic or seasonal gradients.
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1. Introduction

Two coronavirus pandemics occurred in the last 20 years, transmitted from animals to humans:
(i) in 2002, the SARS-CoV virus provoked a severe acute respiratory syndrome (SARS) and spread from
China, with more than 8000 cases and 774 deaths in 30 countries (about 10% mortality) [1] and (ii) in 2012,
the MERS-CoV virus caused also a respiratory syndrome and spread from Saudi Arabia, with 1589 cases
and 567 deaths in 26 countries (about 30% mortality) [1]. In 2019, the SARS-CoV-2 virus (called also
covid-19) epidemic started in China in December in Wuhan (Hubei province) [2]. The SARS-CoV-2 and
SARS-CoV genomes are very similar [3] and the spread of SARS-CoV is temperature-dependent [4].
Hence, SARS-CoV-2 is suspected, like other coronaviruses, to have a weather-dependent virulence.
The changes in weather alone would not necessarily decrease numbers of confirmed cases during
the whole epidemic, but warm and humid weather could make SARS-CoV-2 less transmissible and
less stable, provoking a break in the chain of transmission, and hence diminishing the contagious
force of the disease [5]. Ancient [1,4,5] studies, as well as characteristics of the covid-19 disease
compared to past corona infections like the SARS one [3,6–8], suggest that the spread of covid-19 could
diminish in warm weather, particularly at the start of the epidemic, and may have a low temperature
threshold under which it could spread fastest. These seasonal changes could occur in exactly the
same way as for other pathogens, like the common cold or influenza [9–12]. This phenomenon
can be modelled and the deterministic as well as stochastic models [2,13–25] include potentially
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temperature-dependent parameters, like the contagion coefficient increasing with cold, dry weather
because of faster evaporation of aerosol droplets. The present paper aims to identify such parameters
from the covid-19 spread dynamics.

Section 2 describes how we collected information about the covid-19 spread since the beginning
of March 2020. Then, we proposed two types of modelling in which parameters can depend on the
temperature and we give a statistical method for studying the anti-correlation between the spread
velocity and the external temperature. In Section 3, we give the results of the correlation analysis for
all French administrative regions and for 21 countries suffering the covid-19 epidemic.

2. Materials and Methods

2.1. Epidemic Data Extraction

We used web sites giving world weather data (like https://www.weather-atlas.com or http://data.
un.org/Data.aspx?d=CLINO&f=ElementCode%3A11). Analyses at country level used mean annual
temperatures for that country (from https://en.wikipedia.org/wiki/List_of_countries_by_average_
yearly_temperature), and mean daily temperatures for the first half of March in the administrative
capital of each French administrative region.

Covid-19 spread data exist in databases such as www.who.int/emergencies/diseases/novel-
coronavirus-2019, www.cdc.gov/coronavirus/2019-ncov, www.cia.gov/library/publicapublications/
the-world-factbook/fields, www.worldometers.info/coronavirus, www.fr.statista.com/statistiques/
1101324/morts-coronavirus-monde, www.santepubliquefrance.fr/recherche/#search=COVID-19%20:
%20point%20epidemiologique&sort=date). These repositories are updated daily and offer free access
to information concerning new cases, deaths and recovered cases, which is sufficient to build and assess
mathematical models. Data for countries are from www.worldometers.info/coronavirus and for French
administrative regions from www.statista.com/statistics/1101388/coronavirus-france-confirmed-cases.
Data collection was constrained by the date of website accession—third week of March—and the
availability of adequate data for specific countries at that date. This implies the inclusion of the first
record with at least 100 cases after February 15, which excludes some countries for which the spread of
the virus was more advanced at that period.

Figure 1 gives an example of data extracted from these databases. Epidemiological kinetics vary
among countries, and could be due to differences in weather variables like temperature.
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Figure 1. Left: Start of covid-19 epidemic in countries with various climates. Right: Daily number of
new cases from 25 January until 14 March 2020 in France.
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2.2. Modelling the Epidemic Spread with Temperature-Dependent Parameters

The classical epidemic modelling uses the continuous differential approach, which describes
the infinitesimal change in the size of population of susceptible (S), infective (I) and recovering (R)
individuals between times t and t + dt. This model explains the dynamics of epidemic spread, following
the classical Bernoulli-d’Alembert-Ross equations [14]:

∂S/∂t = rS − bSI − k1S + vS∆S, ∂I/∂t = bSI − k2I − k’2I − k1I + vI∆I, ∂R/∂t = k′2I − k1R + vR∆R, (1)

where r is a renewal coefficient (depending on natality and immigration), v’s are diffusion coefficients
(depending on population displacements), b is the contagion coefficient, which can depend on
temperature, and the constants k1 and k2 are, respectively, the natural death rate and the specific
epidemic death rate. An example of this continuous differential approach, applied to the covid-19
spread, has been developed by P. Magal [2], and more sophisticated approaches would take into
account more general demographic (age-classes), sociologic (socio-economic categories), geographic
(latitude and altitude) and climatic (temperature and humidity) variations explaining the heterogeneity
of the data between the regions of the same countries and between the countries of the same
geo-climato-demographic cluster. Some parameter dependencies are described in [14–16], like the
dependency of v on altitude, b on temperature and humidity and k’s on age. The applications described
in [14,16] have been performed, respectively, on classical Black Death data from St Anthony’s Order
and Mali malaria data from O.K. Doumbo.

2.3. Statistical Time Series Modelling

The statistical time series modelling has been introduced by N. Wiener for prediction and
forecasting [26]. Its parametric approach assumes that the underlying stationary stochastic process
of the covid-19 new daily cases N(t) can be described using a small number of parameters using the
autoregressive ARIMA model N(t) = Σi=1,s a(i) N(i) + W(t), where W is a random residue whose
variance is to minimize. The autocorrelation analysis is done by calculating the correlation A(k)
between the N(t)’s and N(t − k)’s (t belonging to a moving time window) by using the formula:

A(k) =
E[N(t) − E(N(t))]E[N(t− k) − E(N(t− k))]

σ(N(t))σ(N(t− k))
, (2)

where E denotes the expectation and σ the standard deviation. The autocorrelation function A allows
examining the serial dependence of the N(t)’s.

2.4. Statistical Analyses for French Administrative Regions and Selected Countries

Daily rates of new cases in French administrative regions and selected countries were correlated
with mean temperatures in administrative capitals, using Pearson’s correlation coefficient r.

3. Results

3.1. Temperature Decreases Initial Negative Autocorrelation Slope of Epidemic Spread in Five Countries

By using the classical ARIMA approach on the new cases’ time series in five countries with
different weather (mild for France, Mediterranean for Italy, continental for Germany, oceanic for Chile
and continental for China), we show that, for all countries, the regression minimizing the standard
deviation (STD) of the residue W is of order 6 (Table 1), which is in agreement with the duration of the
presence of virus in urine and blood after the mean incubation time of 6 days, which corresponds to
the maximum of contagion for sputum, stool and swab (Figure 2a).

From the data of weather-atlas, we can calculate a mean temperature, obtained as the mean of the
highest temperatures minus the mean of the lowest temperatures observed each day during February
until 14 March 2020. The autocorrelation curves of the ARIMA regression have temperature-dependent



Biology 2020, 9, 94 4 of 10

shapes and the negative initial slope of their autocorrelation function decreases with the mean
temperature (Figure 2b,c), reinforcing the plausibility of our hypothesis that the spread of covid-19
could diminish in warm weather, particularly at the start of the epidemic.

Table 1. ARIMA length of regression of new covid-19 cases on ambient temperature and standard
deviation of the residue R(t) for five countries, France, Italy, Germany, Chile and China. (using
https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima_model.ARIMA.html)

Country ARIMA (3,1,0)
Residual STD

ARIMA (4,1,0)
Residual STD

ARIMA (5,1,0)
Residual STD

ARIMA (6,1,0)
Residual STD

ARIMA (3,1,1)
Residual STD

France 51.85 46.80 45.83 41.25 48.06
Italy 252.72 198.51 184.90 230.10

Germany 99.98 99.97 99.96 95.54 99.97
Chile 1.99 2.00 1.78
China 361.52 344.30 343.50 342.61 349.15
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Figure 2. (a) Virulence of covid-19 in liquids and secretions (from [27]); (b) Linear regression of negative
initial autocorrelation slope on mean weather temperature of six countries, France, UK, Spain, Italy,
China and Chile (Pearson correlation coefficient R = 0.97, one-tailed p = 0.001). (c) Autocorrelation
function A for three countries, France, Spain and Chile showing during February until 14 March 2020 a
decrease in the positive correlation duration and the negative initial slope of the auto-correlation curve
when the mean temperature of the country increases.

3.2. Temperature Decreases Regional Initial Rates of Epidemic Spread in France

Table 2 presents the mean temperature in the first half of March in the 16 administrative regions
of metropolitan France, numbers of confirmed covid-19 cases on 4 March, and ulterior daily rates
as compared to data from the previous publication date. The last row shows Pearson correlation

https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima_model.ARIMA.html
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coefficients between regional rates of infection and mean temperatures across the period. Correlations
show a slower increase in infection rates in warmer regions. The strength of this tendency decreases
towards the end of this short period of rapid increase. This suggests that temperature most affects
the early phases of epidemic dynamics. Figure 3 presents correlation analyses for two dates, 6 and 15
March 2020. Note that Figure 3 includes R2, which is the square of the Pearson correlation coefficient
R. These adjustments are along logarithmic and exponential models for 6 and 15 March, respectively.
We give the best (highest R2) models for these dates among linear (y = a.T + b), logarithmic (y = a.ln(T)
+ b), exponential (ln(y) = a.T + b) and power (ln(y) = a.ln(T) + b) regression models.

Table 2. Dependence of the covid-19 new cases on temperature across administrative regions of Figure 2.
Columns are: 1. Administrative region; 2. Mean temperature in the first half of March; 3. Numbers
of confirmed cases on 4th of March; 4–10. Daily rate in change in number of cases vs previous date.
Last row is the Pearson correlation coefficient R of above data in that column with mean temperature.
For column 3, the latter correlation is not with a rate, as the date of first infection in that region varies
among regions. All R < −0.47615 and R < −0.63385 have p < 0.05 and p < 0.01, respectively, according
to one-tailed tests. Results indicate that negative effects of temperature on infection rates are strongest
at the beginning of regional epidemics.

French Regions
2020 New Cases vs.

Previous Day

Temp 4III 5III 6III 7III 10III 15III 23III 25III

Auvergne-Rhône-Alpes 11.00 49 15 11 27 49.0 54.8 150.9 181.5
Bourgogne-Franche-Comté 10.00 16 23 39 51 −2.0 67.6 110.8 111.0

Bretagne 11.53 23 6 3 8 14.3 27.0 34.0 56.5
Centre-Val de Loire 10.73 0 2 9 5 1.0 14.0 34.0 100.0

Corse 14.13 0 3 0 2 12.3 14.6 9.9 15.5
Grand Est 9.00 38 39 59 114 79.7 201.4 345.0 611.5

Hauts de France 10.40 65 9 23 76 25.3 58.0 91.3 242.0
Ile de France 10.80 55 21 13 15 121.3 275.6 545.6 724.5
Normandie 10.53 2 4 5 0 9.7 21.6 45.4 88.5

Nouvelle-Aquitaine 13.40 5 3 3 6 13.3 19.0 65.5 118.0
Occitanie 12.60 9 2 7 18 11.3 36.0 64.6 157.5

Pays de la Loire 11.40 7 1 8 2 4.3 15.4 23.1 37.5
Provence-Alpes-Côte d’Azur 11.80 13 5 8 12 24.0 56.2 139.9 208.5

Pearson Rx100 −48.95 −68.34 −74.73 −65.17 −34.3 −48.1 −43.5 −43.8

3.3. Temperature Decreases Country-Wise Initial Rates of Epidemic Spread

Table 3 presents the cumulative numbers of confirmed cases for countries with more than 100 cases
in at least two days as of 14 March (last measure, besides for South Korea (10 March)). The constant
and slope are for the exponential regression model to these data ln(N) = a × D + b, where D is the
number of days since N crossed 100 confirmed cases in that country. Figure 4 shows the slope in the
last column of Table 3 as a function of the mean annual temperature in that country. Slopes are lower
and higher than expected by temperature for Canada and Spain, respectively. The causes for this might
range from differences in containment policies and/or populational compliances, to other climatic
factors (for example, humidity).
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Table 3. Slope of exponential model fitted to data in Table 2 as a function of mean annual temperature in that country. The Pearson correlation coefficient is R = −0.568,
one-tailed p = 0.0036.

Country/Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Const Slope

Australia 112 122 140 197 88.138 0.1832
Austria 104 112 131 182 302 361 504 66.244 0.2825
Bahrain 109 110 189 195 210 88.724 0.1884
Belgium 109 169 200 239 267 314 314 599 102.14 0.1963
Canada 138 176 108.2 0.2432

Czech Rep 116 150 89.707 0.257
France 100 100 191 212 282 420 613 706 1116 1402 1774 2269 2860 3640 71.019 0.2898

Germany 129 157 196 262 534 639 795 1112 1139 1296 1567 2369 3062 106.46 0.2624
Iran 141 245 388 593 978 1501 2336 2922 3513 4747 5823 6566 7161 8042 9000 10,075 11,364 223.37 0.2641
Italy 124 229 322 400 650 888 1128 1689 2036 2502 3089 3858 4636 5883 7375 9172 10,149 12,462 15,113 17,660 169.95 0.2475

Japan 105 132 144 157 164 186 210 230 239 254 268 284 317 349 408 455 488 514 568 620 107.47 0.0872
Malaysia 117 129 129 129 197 100.72 0.1042

Netherlands 128 188 265 321 382 503 614 804 112.28 0.2485
Norway 113 147 169 192 277 489 489 750 79.017 0.2716
S Korea 104 204 346 602 763 977 1261 1766 2337 3150 3736 4212 4812 5328 5766 6284 6767 7134 7382 7513 323.41 0.1664

Singapore 102 106 108 110 110 117 130 138 150 160 166 178 187 200 90.377 0.0551
Spain 114 151 198 257 374 430 589 1024 1639 2140 2965 4231 71.126 0.335

Sweden 137 161 203 248 326 461 620 775 96.68 0.2572
Switzerland 209 264 332 332 491 645 858 1125 155.58 0.2388

UK 118 167 210 277 323 373 460 594 802 103.55 0.2223
USA 108 129 148 213 213 213 472 696 987 1264 1678 64.111 0.2882
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4. Discussion

A study (https://www.accuweather.com/en/health-wellness/coronavirus-expert-says-the-virus-
will-burn-itself-out-in-about-6-months/679415) by J. Nicholls from the Sun Yat-sen University in
Guangzhou, the capital of south China’s Guangdong province, has determined how the spread of the
new coronavirus might be affected by changes in season and temperature.

We show in the present study that the negative initial slope of the autocorrelation curve related to
the new daily cases N(t) of covid-19 spread and the duration of the positive autocorrelation period
decreases when the weather temperature increases, which corresponds to a shorter duration of the
period of contagiousness. The entropy of the distribution of daily R0’s during this period would
decrease if the period becomes shorter, for the same overall R0. For example, if the daily R0’s tend
to be the same (without peak), the entropy is maximum, equal to the logarithm of the number of
contagious days. The decrease in the duration of the contagiousness period is considered favorable
and corresponds to the "mitigation" of the contagion. The calculation of the entropy needs a precise
estimation of the ARIMA coefficients a(i)’s in the development, N(t) = Σi=1,s a(i) N(i) + W(t), which is
difficult during the transient start of the spread, due to the weak number of cases.

The two independent datasets, analysed at the level of French metropolitan administrative regions
and of countries, show that temperature affects the increase in the number of cases at relatively local,
as well as global, levels. The mechanisms by which temperature decreases the rates of detected cases
are unknown. Higher temperatures might prevent the spread of droplets that transmit viruses, perhaps
through faster evaporation. Other factors, like the decrease in the virus survival time in atmosphere
probably also affect these rates, in particular at the level of the unexplained variation among countries
shown in Figure 4. These results have to be considered with caution. They indicate that temperature
affects early rates of spreading. It is unclear whether ulterior increases in seasonal temperatures will
decrease rates [28–31]. Indeed, once a dynamic is set, temperature might not affect this dynamic
anymore, or affect it only marginally.

Some papers on influenza show that if the warm weather period is followed by a cold season,
the rebound of the epidemic could be severe, due to the loss of immune defense [8,15], and the present
results have to serve as model for building a system of systematic surveillance along the future months
of the covid-19 spread.

5. Conclusions

For more than fifty years, the relationship between weather and diseases has been studied [32].
Such studies are important for predicting viral disease spread, in particular if this leads to pandemics
like in case of covid-19, in order to help decisions in public health policies at the world level.
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