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Introduction

Presently, more than 100 different human papillomavirus (HPV) types have been dis-

covered [1,2]. Among these, at least 30 different types of HPVs are known to cause can-

cers in the cervix, vagina, anus and penis as well as genital warts in the form of sexually 

transmitted diseases [1,2]. In particular, a high oncological risk group, type 16, and to a 

lesser degree type 18 are responsible for more than 70% of cervical cancers [3]. Other 

high risk groups of HPV include types 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82 

[4]. On the other hand, low oncological risk groups, types 6 and 11, are known to cause 

90% of all genital warts [5]. Moreover, HPV has been also reported to be linked to the 

incidence of cancers in the oropharynx, although smoking and drinking are other 

well-known risk factors. In oral epithelial dysplasia, all 20 of the patients in a previous 

study were positive for high oncological risk HPVs as determined by in situ hybridiza-

tion [6]. Epidemiologic evidence has also shown that HPV 16 and 18 are associated 

with incidence of oral cancers as an independent risk factor [7]. In the study, HPV was 

transmitted by sexual behaviors (i.e., oral sex practices). It has been thought that HPV 

does not enter into the blood stream but attaches to the exposed epithelial cells of the 

mucus and skin. In this context, HPV is highly tropic for the epithelial cells of the ano-
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Human papillomavirus (HPV) infection is a major cause of cervical cancer and its precancer-
ous diseases. Cervical cancer is the second deadliest cancer killer among women worldwide. 
Moreover, HPV is also known to be a causative agent of oral, pharyngeal, anal and genital can-
cer. Recent application of HPV structural protein (L1)-targeted prophylactic vaccines (Gardasil® 
and Cervarix®) is expected to reduce the incidence of HPV infection and cervical cancer, and 
possibly other HPV-associated cancers. However, the benefit of the prophylactic vaccines for 
treating HPV-infected patients is unlikely, underscoring the importance of developing thera-
peutic vaccines against HPV infection. In this regard, numerous types of therapeutic vaccine 
approaches targeting the HPV regulatory proteins, E6 and E7, have been tested for their ef-
ficacy in animals and clinically. In this communication, we review HPV vaccine types, in par-
ticular DNA vaccines, their designs and delivery by electroporation and their immunologic and 
antitumor efficacy in animals and humans, along with the basics of HPV and its pathogenesis.
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genital and oropharygeal regions. It is likely that HPV expo-

sure to the epithelial cells might lead to subsequent viral in-

fection. However, overall incidence of head and neck cancers 

(cancers of the oral cavity, the oropharynx, the hypopharynx, 

the larynx, the nasopharynx and the sinonasal tract) is not 

clearly associated with HPV infection. It was reported that a 

far smaller portion of head and neck squamous cell carcino-

ma (HNSCC) was caused by HPV when compared with cervi-

cal cancer [8]. In the previous study, HPV-positive HNSCC had 

male predominance [8]. Recently, clinical evidence has 

shown that HPV-positive HNSCC has a better prognosis than 

HPV-negative HNSCC, and that different risk factors exist be-

tween these two cancer types [9, 10], suggesting a different 

biology. This is supported by a more recent study of 117 cases 

of head and neck cancers (96% SCC types) in Senegal, only 4 

(3.4%) of which were found to possess HPV DNA [11]. These 

findings suggest that HPV-targeted vaccines might be also 

beneficial for protecting from HPV-positive HNSCC. 

 HPV has double-stranded circular DNA which is surround-

ed by a capsid protein structure [12]. HPV genome codes for 

six early regulatory proteins (E1, E2, E4, E5, E6, E7) and two 

structural proteins (L1 as a major structural protein and L2 as 

a minor structural protein) [12]. It is well known that E6 and 

E7 proteins are associated with oncogenesis through their in-

hibition of the cellular proteins (p53 and pRb) involved in the 

cell cycle. For instance, E6 and E7 proteins are highly synthe-

sized by the disruption of E2, in which E6 proteins inactivate 

p53 while E7 proteins inactivate pRb proteins, resulting in an 

increment of the mitotic activity [13-15]. It is also known that 

the expression of viral early regulatory genes is limited in the 

basal cells, but infectious virus particles tend to be produced 

from the outer epithelial cells (Fig. 1). This strong dependence 

of viral replication on the status of cellular differentiation sta-

tus makes it difficult to propagate HPV in vitro. When HPV-

infected basal cells are not monitored by the host immune 

system, they tend to progress to the precancerous state, cervi-

cal intraepithelial neoplasia (CIN). The precancerous diseas-

es CIN 2 and 3 spontaneously regress in about 20% of HPV 

infected patients [16]. Although there is presently no cure for 

HPV, the ultimate goal of designing therapeutic vaccines against 

HPV infection is to regress CIN and cure invasive cancers. Pro-

phylactically, HPV infection is preventable by inducing neu-

tralizing antibodies against viral coat proteins, while viral-in-

fected cells can be recognized and lysed by cytotoxic T lym-

phocytes (CTLs) specific for viral early regulatory proteins. 

This is well illustrated in Fig. 1.

Prophylactic Vaccines

Presently, the two prophylactic vaccines, Gardasil® (Merck) 

and Cervarix® (GSK), have been licensed against HPV infec-

tion and cervical cancer. Gardasil® provides complete protec-

tion from infection with HPV types 6, 11, 16, and 18, which are 

responsible for approximately 70% of cervical cancers and 

90% of genital warts. On the other hand, Cervarix® provides 

protective immunity against HPV types 16 and 18. These two 

vaccine types utilize the major structural protein present in 

different HPV types, L1 as a target antigen in a form of virus-

like particle (VLP). In fact, VLP is unable to infect vaccinated 

persons as it doesn’t possess an HPV genome but behaves as 

an actual virus particle, which allows for the induction of an-

tibodies against L1 protein, a component of VLP. Furthermore, 

a possible application of these prophylactic vaccines might 

be also beneficial for prevention of orophryngeal cancer. This 

is based on the notion that the vaccines should work against 

Fig. 1. Two different mechanism(s) of human papillomavirus (HPV) 
vaccines for the control of HPV infection vs. HPV-associated diseases. 
Prophylactic vaccines induce neutralizing antibodies against HPV L1 
structural proteins, which are associated with protection from HPV 
infection. However, therapeutic vaccines induce cytotoxic T lympho-
cyte (CTL) responses to HPV early regulatory proteins, possibly lead-
ing to eradication of cervical intraepithelial neoplasia (CIN), cervical 
cancer and other HPV-associated diseases. The antibodies neutralize 
infectious HPV particles, while CTLs recognize and kill HPV-infected 
epithelial cells and HPV-associated cancer cells. 
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these same HPVs in different locations, such as the orophar-

ynx. In addition to these commercially available vaccines, dif-

ferent types of vaccines targeting the structural proteins are 

being tested in animals. A recent work from Roden’s group 

showed that DNA vaccines coding for L1 proteins induced 

high titers of neutralizing antibodies against HPV [17]. De-

spite this result, it is too early to conclude that an L1 DNA vac-

cine type might be effective at preventing HPV infection. Based 

on these results, prophylactic vaccines are thought to reduce 

type-specific HPV infections, thus preventing the incidence 

of cervical cancer or its precancerous diseases.

DNA Vaccines and Other Vaccine Types as 
Therapeutic Vaccines against HPV

DNA vaccines can be manufactured simply and are stable at 

ambient temperature. Thus, they are likely less costly in pro-

duction and distribution processes. They can also carry mul-

tiple antigens without vector-induced immune responses, 

which allow for repeated immunizations. Numerous studies 

using DNA vaccines demonstrated that they are indeed safe 

and tolerable in a human. One additional advantage of DNA 

vaccines is that the DNA vector backbone itself has an adju-

vant effect via its inherent immunostimulatory elements. The 

unmethylated CpG motifs of DNA vectors can be recognized 

by Toll-like receptor (TLR)-9 [18], a microbial pattern recog-

nition receptor, and trigger innate inflammatory responses 

[19,20]. DNA vectors in the cytoplasm can be also recognized 

and stimulate Absent In Melanoma 2 (AIM2) [21], and STim-

ulator of IFN Genes (STING) pathways [22]. Consistent with 

this, we also observed in an HPV 16 E7 DNA vaccine model 

that the TLR9-MyD88 signaling pathway is essential for in-

creased induction of Ag-specific immune responses and anti-

tumor resistance [23]. In this context, it is likely that DNA vac-

cines have a number of advantages over other vaccine types. 

In the development of therapeutic vaccines against HPV in-

fection, CIN and cervical cancer, E6 and E7 viral proteins 

have been considered potential targets because they play a 

critical role in tumor formation and maintenance in virus-in-

fected epithelial cells. To date, E6- or E7-specific cellular re-

sponses including CTLs are known to be associated with clin-

ical control of HPV-associated diseases [24-26]. Similarly, im-

munization with E7 DNA vaccines [27-32] as well as other 

vaccine types [33-36] resulted in controlling E7-expressing 

tumors through induction of Ag-specific CTL responses in 

animals. The possible clinical efficacy of HPV DNA vaccines 

can be also expected based on the magnitude of Ag-specific 

CTL responses induced by E6 or E7 DNA vaccines in both an-

imal and human studies [32,37,38], and this is further sup-

ported by a recent clinical study showing that one-half of 20 

patients with HPV 16-associated grade 3 vulvar intraepitheli-

al neoplasia completely regressed after therapeutic vaccina-

tion with HPV 16 E6/E7 synthetic long peptides (50% com-

plete regression rates by immunization vs. 1.5% spontaneous 

regression rates) [39]. However, the long peptide vaccines 

neither induced tumor regression nor prevented progressive 

disease when tested in patients with advanced or recurrent 

HPV 16-induced cervical cancers [40]. In detail, 11 of the 13 

tested patients displayed vaccine-induced ELISPOT counts, 

suggesting that the vaccines may act to induce Ag-specific 

cellular responses without showing any clinical benefits. In 

this case, it is possible that cancer cells might have developed 

immune evasion schemes, such as a lack or loss of class I an-

tigen expression, induction of regulatory T cells or myeloid 

derived suppressor cells and their production of immune in-

hibitory molecules (interleukin-10, transforming growth 

factor-β, cytotoxic T-lymphocyte antigen 4, etc.). These mole-

cules as well as the immune cell types are well known to be 

involved in suppression of immune induction [41,42]. In cer-

vical cancer patients, moreover, a lack or loss of class I anti-

gen expression has been previously reported [43]. Table 1 

shows HPV therapeutic vaccines tested in clinics and their 

clinical and immunologic efficacy. For immunological treat-

ment of cancers, therefore, the alteration of tumor microenvi-

ronments by conventional therapy modalities, such as surgi-

cal excision, chemotherapy and radiotherapy, might be need-

ed. Previously, our group reported that, when combined with 

chemotherapy, E7 subunit vaccines or adoptive T cell trans-

fer were dramatically more effective at increasing tumor cure 

rates and long-term antitumor memory responses in a TC-1 

tumor model [44,45]. A similar finding was also observed 

when E7 subunit vaccines were combined with radiotherapy 

[46]. In these studies, increased sensitivity of chemo- or ra-

dio-treated tumor cells to E7-specific CTL-mediated tumor 

killing was responsible for increased tumor cure rates. Along 

with these strategies to alter tumor microenvironment, it is 

also considered important to augment the magnitude of CD8+ 

CTL responses to HPV-associated antigens. In HPV DNA vac-

cines, numerous strategies have been utilized to improve their 

immunologic efficacy. Wu’s group first reported that intracel-

lular targeting of E7 antigens to the endosomal/lysosomal 

compartments of cells by conjugating E7 genes to lysosome-
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associated membrane proteins-1 (LAMP-1) genes resulted in 

enhancement of Ag-specific antitumor immunity in a TC-1 

tumor model [47]. Moreover, conjugation of E7 genes to DNAs 

coding for calreticulin, bacterial toxin, heat shock protein 70 

and viral protein 22 has been also shown to increase antitu-

mor efficacy against TC-1 tumor cell challenges [27-30]. Our 

group also demonstrated that both codon optimization of E7 

genes and their endosomal/lysosomal targeting appro ach 

were essential for enhancing antitumor protective immunity 

against TC-1 cells, and that this was mediated by more anti-

gen production and subsequent augmentation of E7-specific 

CTLs [31]. Moreover, Wu’s group also reported that co-injec-

tion of E7 DNA vaccines with plasmid DNAs encoding anti-

apoptotic proteins or serine protease inhibitors increased an-

titumor activity by increasing dendritic cells survivals for lon-

ger antigen presentation [48,49]. In our study, however, co-

injection of endolysosome-targeting E7 DNA vaccines with 

IL-12 DNAs resulted in dramatic suppression in Ag-specific 

CTL and antitumor protective responses [50], suggesting that 

an appropriate use of molecular adjuvants as well as the 

types of antigens and their intracellular locations should be 

evaluated prior to their combined use. More recently, it was 

reported that conjugation of an IgE leader sequence to co-

don-optimized E6 and E7 genes resulted in greater induction 

of Ag-specific humoral and cellular responses including CTL 

in animals and humans [37, 38]. In the study, moreover, on-

cogenic portions on the E6 and E7 DNA sequences were also 

modified to minimize the potential roles of E6 and E7 pro-

teins in the tumor cell formation. More recently, our unpub-

lished data have shown that intramuscular (IM) delivery of 

E7 DNA vaccines plus IL-2 cDNA in combination with adop-

tive transfer of anti-4-1BB antibodies dramatically increases 

tumor cure rates and long-term antitumor memory respons-

es through the augmentation of Ag-specific CTL lytic activity. 

This study clearly shows that proper use of immune-potenti-

ating antibodies is also beneficial for achieving better tumor 

control. Taken together, HPV DNA vaccines appear to be safe, 

tolerable, less costly and highly immunogenic in humans and 

small animals. Furthermore, DNA vaccines might be more 

beneficial for treating patients with HPV-associated diseases 

when they are modified or used together with other therapy 

protocols. 

Electroporation as a DNA Vaccine Delivery 
Method 

Electroporation (EP), the administration of electrical pulses 

to muscle or skin following DNA injection, for enhancement 

of the immunogenicity of DNA vaccines has been tested in a 

wide variety of small and large animal models. The clinical 

efficacy of EP delivery of DNA vaccines has been also sug-

gested and demonstrated [38,51,52]. To date, DNA vaccine 

studies have mainly utilized muscle or skin as a vaccination 

target. In IM delivery, myocytes and antigen presenting cells 

(APCs) ingest DNA and then generate antigens by antigen 

processing-dependent, endogenous processing pathway, 

which can be recognized by naïve CD8+ T cells in the context 

with MHC class I molecules [53-55]. In this case, only bone 

marrow-derived APCs, but not myocytes play a dominant 

role in presenting antigens on MHC class I molecules to na-

ïve CD8+ T cells [56,57]. Soluble and secreted vaccine anti-

gens are phagocytosed by APCs and then gain entry into the 

MHC class II pathway for subsequent presentation to naïve 

CD4+ T cells [58]. This suggests that normally bone marrow-

Table 1. HPV therapeutic vaccine types tested in clinics and their clinical and immunologic efficacy

HPV types Disease types Vaccine types Clinical and immunological outcomes

HPV 16 VIN3 E6/E7 synthetic long peptides CR (15/20 patients, 50%), T cell responses (cytokines) detected [39]
HPV 16 Advanced/recurrent 

  CC
E6/E7 synthetic long peptides No clinical response (0/13 patients), ELISPOT responses (11/13 patients)  [40]

HPV 16 & 18 CIN2/3-treated 
  patients 

IgE leader -E6/E7 
  DNA (IM-EP delivery)

Ab induction detected in most patients, potent ELISPOT responses (CTL)  
   detected in most patients

[38]

HPV 16 CIN2/3 patients Sig-E7-HSP70 DNA (IM delivery) CR (3/9 in high dose DNA groups, 33%), No Ab, but mild T cell responses  
   detected in some patients

[76]

HPV 16 CIN2/3, VIN Th cell epitope-lipid tail conjugated 
  E7 peptides 

CR (3/18 patients), PR (6/18 patients), T cell responses (10/18 patients) [77]

HPV 16 & 18 Recurrent CC DC pulsed with E6/E7 No clinical responses, Ab, CD4+ T, CD8+ T cell responses detected in some  
   patients

[78]

Ab, antibody; CC, cervical cancer; CIN, cervical intraepithelial neoplasia; CR, complete regression; DC, dendritic cells; ELISPOT, enzyme-linked immunosorbent spot; HSP, 
heat shock protein; IM-EP, intramuscular-electroporation; PR, partial regression; VIN, vulva intraepithelial neoplasia.
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derived cells are responsible for antigen presentation to prime 

the adaptive immune response while muscle cells can serve 

as an antigen depot to expand activated effector cells. In con-

trast, skin is the first barrier of the body from infectious patho-

gens and other foreign substances. Keratinocytes in the skin 

are associated with induction of innate and adaptive immune 

responses through the release of cytokines [59]. Moreover, 

the epidermis and dermis of the skin also have immunologi-

cal functions. They have resident APCs, such as Langerhans 

cells and dermal dendritic cells, which can take up antigens 

and present them to the draining lymph nodes for induction 

of adaptive immune responses [60]. When DNA was deliv-

ered to skin, the gene expression was detected in Langerhans 

cells and dermal dendritic cells [61], suggesting the impor-

tant role of these cells for subsequent antigen presentation. 

Skin vaccination through intradermal delivery was once uti-

lized during the smallpox eradication campaign and is still in 

use in BCG vaccination. Previously, it was reported that a sin-

gle intradermal injection of DNA vaccines coding for influen-

za virus nucleoprotein could induce Ag-specific antibody 

and CTL responses and provide resistance to challenge with 

a heterologous strain of influenza virus, and that the antibody 

titers were higher than those induced by IM injection [62]. A 

similar finding was also observed when intradermal delivery 

of DNA vaccines by EP was more effective at inducing neu-

tralizing antibodies against influenza virus and at reducing 

viral loads following viral challenge compared to that of IM-

EP delivery [63]. In the study, however, IM-EP more highly 

induced Ag-specific cellular responses than intradermal de-

livery with EP. Based on these previous findings, it is highly 

likely that skin vaccination is one potential strategy to increase 

vaccine immunogenicity toward antibody responses. Con-

trary to adenoviral vector delivery of antigens, DNA vaccines 

are known to be less immunogenic [64]. This tendency is more 

prominent in humans than in small animals [65-67]. The rea-

son why DNA vaccines fail to induce the expected level of im-

mune responses in humans is still unclear. However, this might 

result from the fact that the amount of DNA vaccines relative 

to body mass and the level of TLR9 expression are simply low-

er in a human than in small animals [64]. However, the appli-

cation of EP in the delivery of DNA vaccines likely overcomes 

the lack of vaccine immunogenicity in large animals includ-

ing humans. IM delivery of DNA vaccines is known to attract 

APCs at the injection site [68-69]. However, EP augments the 

attraction of macrophages and dendritic cells to the DNA in-

jection site [70]. This local effect of EP has been thou ght to 

contribute to the magnitude and longivity of the responses to 

DNA vaccines in larger animals, such as rabbits and humans 

[71]. EP also increases the permeability of muscle cells, there-

by facilitating DNA uptake and subsequent antigen produc-

tion [72-75]. Recently, we reported that IM-EP of E7 DNA 

vaccines elicited antitumor activity against establish ed TC-1 

tumors dramatically more than IM injection alone, and that 

this was mediated by more antigen expression at and more 

immune cell attraction to the sites of DNA injection [32]. A re-

cent phase I clinical study also showed that HPV 16 and 18 E6 

and E7 DNA vaccines delivered by EP induced a significant 

level of Ag-specific humoral and cellular responses including 

CTL responses [38]. This result is in contrast to the data ob-

tained without use of EP [76]. Collectively, these studies sup-

port the notion that using EP as a DNA delivery method has 

the high potential to augment Ag-specific immune responses 

in both humans and animals. In this context, EP delivery of 

DNA vaccines targeting HPV antigens might be beneficial for 

treating HPV-associated diseases.

Conclusion

It is evident that therapeutic DNA vaccines can contribute to 

curtailing HPV-associated diseases commonly observed in 

oral, pharyngeal, anal and genital parts of the body. In this 

case, EP has a critical role in augmenting vaccine immunoge-

nicity through increased attraction of APCs and other immu-

ne cells to and more antigen expression at the injection sites. 

Contrary to intradermal delivery with EP, IM-EP delivery of 

DNA vaccines could serve to better engender Ag-specific CTL 

responses, which are more importantly involved in killing of 

HPV-infected epithelial cells. Moreover, current immunologi-

cal evidence obtained from IM-EP of E6/E7 DNA vaccines 

sheds some light on possible impact of DNA vaccines on the 

treatment of HPV-infected patients. However, this benefit is 

likely increased when such treatments are used in combina-

tion with chemotherapy, radiation, surgery or antibody ther-

apy.
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