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Abstract: The vast majority of marketed drugs are orally administrated. As such, drug absorption is
one of the important drug metabolism and pharmacokinetics parameters that should be assessed in the
process of drug discovery and development. A nonlinear quantitative structure–activity relationship
(QSAR) model was constructed in this investigation using the novel machine learning-based
hierarchical support vector regression (HSVR) scheme to render the extremely complicated
relationships between descriptors and intestinal permeability that can take place through various
passive diffusion and carrier-mediated active transport routes. The predictions by HSVR were found
to be in good agreement with the observed values for the molecules in the training set (n = 53, r2 = 0.93,
q2

CV = 0.84, RMSE = 0.17, s = 0.08), test set (n = 13, q2 = 0.75–0.89, RMSE = 0.26, s = 0.14), and even
outlier set (n = 8, q2 = 0.78–0.92, RMSE = 0.19, s = 0.09). The built HSVR model consistently met the
most stringent criteria when subjected to various statistical assessments. A mock test also assured the
predictivity of HSVR. Consequently, this HSVR model can be adopted to facilitate drug discovery
and development.

Keywords: intestinal permeability; passive diffusion; active transport; in silico; quantitative structure–
activity relationship; hierarchical support vector regression

1. Introduction

Oral administration is the predominant route for medication that can be manifested by the fact
that ca. 56% of unique drugs approved by FDA in 2018 were orally administrated [1]. Accordingly,
drug absorption is one of critical absorption, distribution, metabolism and excretion, and toxicity
(ADME/Tox) factors that should be taken into consideration in the process of drug discovery and
development as well as practical applications [2]. For instance, curcumin, which is the major constituent
of the spice turmeric (Curcuma longa), has a great beneficial potential in treating cancer, diabetes,
osteoarthritis, antianxiety, and even novel coronavirus disease 2019 (COVID-19) [3,4] and yet its practical
clinical applications are very limited mainly due to its poor absorption [5]. Clinically, tuberculosis (TB)
is one of the leading causes of death globally, especially for HIV/AIDS patients [6], and the survival of
extremely ill TB patients is diminished due to the poor absorption of anti-TB agents [7].

Drug absorption mainly relies on solubility and intestinal permeability [8], which is also termed
as intestinal absorption [9], since oral drugs must permeate the gastrointestinal barrier before they
can be absorbed by the bodies [9]. In fact, solubility and permeability have been adopted by the
biopharmaceutics drug disposition classification system (BDDCS), which suggests that the intestinal
permeability rate is closely correlated with the extent of metabolism [10] Nevertheless, intestinal
permeability is an extremely complicated process since drugs can pass through the intestinal epithelium

Int. J. Mol. Sci. 2020, 21, 3582; doi:10.3390/ijms21103582 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-6927-1517
http://www.mdpi.com/1422-0067/21/10/3582?type=check_update&version=1
http://dx.doi.org/10.3390/ijms21103582
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2020, 21, 3582 2 of 24

to enter blood vessel by active transport as well as passive diffusion, as illustrated by Figure 3 of
Dahlgren and Lennernäs [11]. Mechanistically, the active transport can be mediated by two superfamilies
expressed in the intestine, namely the influx transporters of the solute carrier (SLC) family and the
efflux transporters of the ATP-binding cassette (ABC) family, whereas the passive diffusion can take
place through the transcellular and/or paracellular routes [12].

In addition, the ABC transporters including P-glycoprotein (P-gp, MDR1, ABCB1), breast cancer
resistance protein (BCRP, ABCG2), MRP2 (ABCC2), MRP3 (ABCC3), MRP4 (ABCC4), MRP5 (ABCC5),
MRP6 (ABCC6), MRP7 (ABCC10), MRP8 (ABCC11), and MRP9 (ABCC12) [13], and the SLC transporters
involving peptide transporter 1 (PepT1, SLC15A1), concentrative nucleoside transporter 1 (CNT1, SLC28A1),
concentrative nucleoside transporter 2 (CNT2 SLC28A2), equilibrative nucleoside transporter
(ENT2, SLC29A2), organic cation transporters 1 (OCT1, SLC22A1), organic cation/carnitine transporter 1
(OCTN1, SLC22A4), organic cation/carnitine transporter 2 (OCTN2, SLC22A5), monocarboxylate
Transporter 1 (MCT1, SLC16A1), organic anion transporting polypeptide 2B1 (OATP2B1, SLC02B1),
serotonin transporter (SERT, SLC6A4), and apical sodium-dependent bile acid transporter;
(ASBT. SLC10A2) [14] can be found in the intestine. Their expression levels can be different in varied
segments of intestine [15,16].

Of various in vitro assay systems to measure intestinal permeability, human colorectal
adenocarcinoma cells (Caco-2), Madin−Darby canine kidney cells (MDCK), and parallel artificial
membrane permeability assay (PAMPA) are commonly used [9], and they can be affected by factors
such as cell line types and cultured conditions. The in situ single-pass intestinal perfusion (SPIP) model is
the most prevalent assay [17] that normally measures effective permeability (Peff) of the gastrointestinal
(GI) tract segments, namely duodenum, jejunum, ileum, and colon, in human, rat, and mouse [18].
The parameter Peff, which is expressed as cm/s, can be calculated by

Peff =
−Q ln

(
C′out/C′in

)
A

(1)

where Q is the perfusion buffer flow rate; C′out and C′in are the outlet and inlet solute concentrations,
respectively; and A represents the surface area within the intestinal segment that can be computed by
the radius of the intestinal segment (R) and the length of the perfusion intestinal segment (L) [19],

A = 2πRL (2)

When compared with in vitro assays, in vivo tests provide a closer to real-life environment,
but they are costly, time consuming, and sometimes inhumane, and are subjected to discrepancies
by a number of factors such as individual differences in intestinal cell surface and epithelial cell
integrity [20], especially they are very sensitive to the animal species because of differences in
physiological conditions [21]. More importantly, those factors can make substantial contribution to
data inhomogeneity that, in turn, can create paramount obstacles to producing a sound quantitative
theoretical model based on the data compiled from the public domain since only homogenous data
can produce a good in silico model [22].

In silico technologies have been seamlessly integrated into the drug discovery and development
and they especially provide valuable advantages in ADME/Tox profiling due to their extremely
fast throughput and low cost [23]. As such, it is plausible to expect an in silico model that can
predict intestinal permeability is very useful. Nevertheless, no sound quantitative structure–activity
relationship (QSAR) model has been published to date despite, even though some qualitative studies
have been conducted. The scarcity in QSAR model can be plausibly attributed to the lack of consistent
and homogenous data in the public domain and, more importantly, the extremely complex process
of intestinal permeability (vide supra) since it can take place through various active transport and
passive diffusion routes. More specifically, the SLC transporters can enhance the drug uptake into
the intestine and hence increase drug absorption, whereas ABC proteins can elevate drug efflux out
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of intestine and therefore reduce drug absorption [24], leading to problematic situations for model
development. For instance, the substrates of PepT1 and P-gp, which are two of the most abundant SLC
and ABC transporters, respectively, in jejunum [15], can interact with their transporter proteins by
hydrogen-bond donor (HBD) [25,26], suggesting that HBD can simultaneously promote and hinder
intestinal permeability. As such, traditional or machine learning (ML) modeling schemes are not
sophisticated enough to manage such exceedingly nonlinear situations.

Accordingly, it is extraordinarily difficult, if not entirely infeasible, to develop a robust in silico
model to predict the intestinal permeability with the consideration of those critical factors governing the
perplexing efflux and influx active transport and passive diffusion mentioned above. Such challenge,
nevertheless, can be solved by the novel ML-based hierarchical support vector regression (HSVR)
scheme devised by Leong et al. [27] since HSVR can properly depict the complicated and inconstant
dependencies of descriptors that can be greatly attributed to the fact that HSVR has the advantageous
features of both a local model and a global model, namely larger coverage of applicability domain (AD)
and a higher degree of predictivity, respectively. Unlike most predictive models, which are vulnerable
to the “mesa effect”, i.e., give mediocre performances when applied to extrapolated predictions,
HSVR can substantially minimize such performance deterioration, as demonstrated elsewhere [1,28,29],
suggesting that HSVR is insusceptible to outliers in contrast to the other predictive models that is of
crucial importance to a theoretical model [30]. Herein, this investigation was aimed at developing an
accurate, rapid, and predictive in silico model based on the HSVR scheme to predict the intestinal
permeability to facilitate drug discovery and development.

2. Results

2.1. Data Partition

Of all molecules selected in this study, 53 and 13 molecules were randomly assigned to the
training set and test set, respectively, with a ca. 4:1 ratio. Figure 1 shows the projection of all molecules
enrolled in this investigation in chemical space, spanned by the first three principal components (PCs),
which characterized 97.7% of the total variable variance. It can be observed that the training samples
and test samples showed similar distributions in the chemical space. Furthermore, the high degrees of
biological and chemical similarity between both datasets can also be observed in Figure S1, which
displays the histograms of log Peff, molecular weight (MW), log D, log P, hydrogen-bond acceptor
(HBA), hydrogen-bond donor (HBD), and polar surface area (PSA) in density form for the training and
test molecules. Thus, the unbiased partition of data samples can be ascertained [31].

It is not trivial to establish the AD of predictive models prior to model development to identify the
outliers and exclude them from data collection [32]. There are various versions to define AD [33]. This study
adopted the version based on the chemical similarity/dissimilarity using principal component analysis
(PCA) to graphically assess the outliers [32]. Those designated outliers, conversely, are very dissimilar
from the training samples, as manifested by the fact that they are totally situated outside the perimeter
of the training set in the chemical space shown in Figure 1. In fact, the differences between the outliers
and the other samples can be realized by the fact that their surface areas are unanimously more than
600 Å2, whereas surface areas of the others are less than 600 Å2.
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Figure 1. Molecule distribution for the molecules enrolled in this investigation in the training set (solid
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2.2. SVRE

Various SVR models were built based on various descriptor combinations and runtime parameters,
and three SVR models, denoted as SVR A, SVR B, and SVR C, were selected to construct the SVR
ensemble, which, in turn, was subjected to regression by another SVR to generate the HSVR model.
The optimal runtime parameters of SVR A, SVR B, SVR C, and HSVR, are listed in Table S2.

These three SVR models, which unanimously selected four descriptors with different combinations
(Table 1), were adopted based on their individual performances on the molecules and statistical
assessments in the training set and test set. Table S1 lists their predictive log Peff values. Tables 2 and 3
summarize the corresponding statistical assessments of these three SVR models in the training set and
test set, respectively.

Table 1. Descriptors selected as the input of SVR models in the ensemble, the correlation coefficient (r)
with log Peff, and their descriptions.

Descriptor SVR A SVR B SVR C r Description

µ X † X X −0.16 Dipole moment of molecule

Log D X X 0.23 Logarithm of the n-octanol–water partition
coefficient at PH 6.5

Log P X 0.22 Logarithm of the n-octanol–water
partition coefficient

HBD X X −0.07 Hydrogen-bond donor
nN+O X −0.29 Number of nitrogen and oxygen

Shadow-ν X 0.23 Ratio of largest to smallest dimension
MR X X −0.12 Sum of molar refractivity of substituents

† Selected.
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Table 2. Statistic evaluations, namely correlation coefficient (r2), maximal absolute residual (∆Max),
mean absolute error (MAE), standard deviation (s), RMSE, leave one out cross-validation correlation
coefficient (q2

CV), and average correlation coefficient of Y-scrambling (<r2
s >) evaluated by SVR A, SVR B,

SVR C, and HSVR in the training set.

SVR A SVR B SVR C HSVR

r2 0.62 0.83 0.79 0.93
∆Max 1.18 0.91 1.42 0.50
MAE 0.33 0.25 0.15 0.16

s 0.26 0.15 0.27 0.08
RMSE 0.42 0.29 0.31 0.17
q2

CV 0.12 0.02 0.07 0.84〈
r2
s

〉
0.02 0.02 0.02 0.02

Table 3. Statistic evaluations, correlation coefficients q2, q2
F1, q2

F2, and q2
F3, concordance correlation

coefficient (CCC), maximal absolute residual (∆Max), mean absolute error (MAE), standard deviation
(s), and RMSE evaluated by SVR A, SVR B, SVR C, and HSVR in the test set.

SVR A SVR B SVR C HSVR

q2 0.40 0.67 0.73 0.81
q2

F1 0.15 0.55 0.66 0.75
q2

F2 0.15 0.55 0.66 0.75
q2

F3 0.50 0.73 0.79 0.85
CCC 0.55 0.82 0.86 0.89
∆Max 0.99 0.68 0.64 0.47
MAE 0.39 0.26 0.24 0.22

s 0.29 0.24 0.20 0.14
RMSE 0.47 0.35 0.30 0.26

Figure 2 displays scatter the plot of observed versus the predicted log Peff values by SVR A, SVR B,
SVR C, and HSVR for the molecules in the training set. The predictions by SVR A, SVR B, and SVR C
are generally in good agreement with the observed values for most of the molecules in the training
set, as depicted by their small MAE and s values (Table 2). Furthermore, Figure 2 shows that most of
the points predicted by SVR B mostly lie on or are closer to the regression line when compared with
SVR A and SVR C. As such, SVR B generated the lowest ∆Max (0.91), MAE (0.25), s (0.15), and RMSE
(0.29) and the largest r2 parameter (0.83), suggesting that SVR B executed better than SVR A and SVR
C for the molecules in the training set. Nevertheless, SVR B produced not only the lowest q2

CV value
(0.02) but also the largest difference between r2 and q2

CV (0.81) when subjected to the leave-one-out
cross-validation (Table 2), signifying its high level of overtraining that, in turn, can severely limit its
practical application. SVR A, SVR B, and SVR C unanimously gave rise to the miniature <r2

s > values of
0.02 (Table 2) when subjected to the Y-scrambling, and their almost zero values of <r2

s > apparently
depict that there is little chance correlation associated with those SVR models [34].

The predictions by SVR A, SVR B, and SVR C in the test set are in modest agreement with
the experimental values, as shown in Figure 3, which displays scatter the plot of observed versus
the predicted log Peff values by SVR A, SVR B, SVR C, and HSVR for the molecules in the test set.
Nevertheless, the mean absolute errors calculated by SVR A, SVR B, and SVR C increase from 0.33,
0.25, and 0.15 in the training set to 0.39, 0.26, and 0.24 in the test set, respectively (Table 3). The other
statistical assessments also indicate the performance deteriorations of these three models in the SVRE
from the training set to the test set (Tables 2 and 3).
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Figure 2. Observed log Peff vs. the log Peff predicted by SVR A (open circle), SVR B (open triangle),
HSVR SVR C (open diamond), and HSVR (gray square) for the molecules in the training set. The solid
line, dashed lines, and dotted lines correspond to the HSVR regression of the data, 95% confidence
intervals for the HSVR regression, and 95% confidence interval for the prediction, respectively.
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Figure 3. Observed log Peff vs. the log Peff predicted by SVR A (open circle), SVR B (open triangle),
HSVR SVR C (open diamond), and HSVR (gray square) for the molecules in the test set. The solid line,
dashed lines, and dotted lines correspond to the HSVR regression of the data, 95% confidence intervals
for the HSVR regression, and 95% confidence interval for the prediction, respectively.

Furthermore, SVR A, SVR B, and SVR C yielded q2 values of 0.40, 0.67, and 0.73 in the test set,
which are smaller than their r2 counterparts in the training set. Most notably, the difference between
r2 and q2 evaluated by SVR A was 0.22, indicating the overtraining nature of SVR A that is also
confirmed by its q2

F1, q2
F2, q2

F3, and CCC.
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Significant performance decreases can be observed when those SVR models in the ensemble were
applied to the molecules in the outlier set, as depicted by the statistical parameters listed in Table 4.
SVR A, SVR B, and SVR C, for instance, gave rise to q2

F1 values of−0.10, 0.04, and 0.47, respectively, which
differ greatly from their r2 values in the training set (Table 2). In addition, they showed larger distances
between points and the regression line in the outlier set when compared with their counterparts in the
training set, as displayed in Figure 4. Such substantial variations in performance can be realized by the
fact most predictive models are vulnerable to the “mesa effect”, which leads to a predictive model
executing poorly when applied to extrapolated predictions [35].

Table 4. Statistic evaluations, correlation coefficients q2, q2
F1, q2

F2, and q2
F3, concordance correlation

coefficient (CCC), maximal absolute residual (∆Max), mean absolute error (MAE), standard deviation
(s), and RMSE evaluated by SVR A, SVR B, SVR C, and HSVR in the outlier set.

SVR A SVR B SVR C HSVR

q2 0.34 0.63 0.72 0.83
q2

F1 −0.10 0.04 0.47 0.78
q2

F2 −0.11 0.04 0.47 0.78
q2

F3 0.58 0.64 0.80 0.92
CCC 0.34 0.40 0.65 0.89
∆Max 0.97 0.64 0.52 0.31
MAE 0.33 0.36 0.26 0.17

s 0.29 0.19 0.16 0.09
RMSE 0.43 0.40 0.30 0.19
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2.3. HSVR

The HSVR model was yielded by the regression of the SVR ensemble based on the predictions of
all samples and statistical evaluations in the training set (Table S1 and Table 2) and its optimal runtime
conditions are listed in Table S2. HSVR generally executed better than SVR A, SVR B, and SVR C for
those training samples, as illustrated by Figure 2, in which it can be observed that the distances between
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the predictions by HSVR and regression line generally fall in the range between the largest ones and
smallest ones produced by its SVR counterparts in the ensemble. Nevertheless, HSVR predicted better
than all of the models in the SVRE in some cases as demonstrated by the prediction of compound 2
(aloin), in which SVR A, SVR B, SVR C, and HSVR yielded absolute residuals of 0.25, 0.20, 0.06,
and 0.03, respectively. As such, HSVR statistically functioned better than SVR A, SVR B, and SVR C,
as manifested by all parameters listed in Table 2 except MAE values, which were 0.15 and 0.16 for SVR
C and HSVR, respectively. In addition, HSVR gave rise to the largest r2 value (0.93) as compared with
its counterparts in the SVRE. In addition, there is a little chance that HSVR was produced by chance
correlation, as manifested by its nearly zero value of <r2

s > (0.02) [34].
When applied to the molecules in the test set, slight performance decreases can be observed for

HSVR. For instance, RMSE increased from 0.17 in the training set to 0.26 in the test set (Tables 2 and 3).
Nevertheless, the parameter ∆Max declined from 0.50 in the training set to 0.47 in the test set. Figure 3
shows that HSVR performed better than SVR A, SVR B, and SVR C in the test set. The performance
dominance of HSVR can be further confirmed by those statistical evaluations listed in Table 3.
For example, SVR A, SVR B, SVR C, and HSVR generated s values of 0.29, 0.24, 0.20, and 0.14,
respectively. Similar observation that HSVR gave rise to smaller absolute residuals than its counterparts
in the SVRE can also be noted in the test set. The absolute prediction deviation of compound 59,
for instance, was 0.04 yielded by HSVR, whereas SVR A, SVR B, and SVR C gave rise to the absolute
residuals of 0.35, 0.38, and 0.24, respectively. HSVR normally generated consistent and small errors in
both training and test sets, as depicted by those parameters listed in Tables 2 and 3, when compared
with its SVR counterparts in the ensemble. Moreover, HSVR yielded the largest q2 (0.81) in the test set
and the smallest difference between r2 and q2

CV (0.09), suggesting that HSVR was well-trained or no
overfitting effect was observed because it would otherwise generate a significant difference between
r2 and q2 or between r2 and q2

CV.
When applied to the outliers, HSVR even showed more pounced predominance, as indicated by

those statistical parameters listed in Table 5, from which it can be recognized that HSVR generated the
largest q2 values and smallest deviation-related parameters. The superiority of HSVR in the outlier set
can be plausibly due to the broad applicability domain encompassed by HSVR as compared with its
SVR counterparts in the ensemble and, more importantly, the more robust nature of HSVR makes it
more practically useful in real applications [30].

Table 5. Validation verification of HSVR based on prediction performance of the molecules in the
training set, test set, and outlier set.

Training Set Test Set Outlier Set

r2
o 0.94 0.75 0.83
k 1.04 0.99 0.87

r′2o 0.93 0.80 0.78
r2

m 0.88 0.66 0.76
r′2m 0.90 0.74 0.67〈
r2

m

〉
0.89 0.70 0.71

∆r2
m 0.02 0.08 0.08

Equation (16) X † X X
Equation (17) X N/A N/A
Equation (18) X X X
Equation (19) X X X
Equation (20) X X X
Equation (21) X X X
Equation (22) N/A a X X

† Fulfilled; a Not available.
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2.4. Predictive Evaluations

Figure 5 illustrates the scatter plots of the residual vs. the log Peff values predicted by HSVR
for the molecules in the training set, test set, and outlier set. It can be conceived that the residuals
are approximately evenly allocated on both sides of x-axis along the range of predicted values in all
datasets, suggesting that there is no significant systematic error associated with HSVR. The unbiased
predictions can be further rendered by its almost negligible average residuals that were 0.00, −0.10,
and 0.09 in the training set, test set, and outlier set, respectively (Table S1).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 25 
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The derived HSVR model was further assessed by combining the most rigorous validation
criteria collectively suggested by Golbraikh et al. [36], Ojha et al. [37], Roy et al. [38], and Chirico and
Gramatica [39] in the training set, test set, and outlier set (Equations (16)–(22)). The results are listed in
Table 5, from which it can be found that HSVR showed similar high levels of performance in those
three datasets. More importantly, HSVR completely fulfilled all validation requirements, suggesting
that this predictive model is highly accurate and predictive.

2.5. Mock Test

To imitate real world challenges, the derived HSVR model was checked by all marketed drugs
assayed by Lennernäs [40], of which seven were also included in this investigation, producing a good
way to calibrate the challenging system. However, Lennernäs measured the Peff values by the SPIP in
human jejunum in contrast to the compounds enrolled in this study, whose Peff values were obtained
using the rat jejunum segment. Thus, those drugs assayed by Lennernäs are not suitable as the test
set or second external set since their validation assessments (vide supra) are not applicable to these
drugs. The subsequent relationship between both measured systems was initially instituted and
checked based on those common seven drugs and the resulted scattered plot is displayed in Figure 6.
The results show that both systems were modestly correlated with each other with an r value of 0.80,
suggesting that it is plausible to validate the derived HSVR model by those novel molecules assayed
by Lennernäs, which is consistent with the fact that the rat SPIP Peff values can be useful to predict
human intestinal permeability [17].
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Figure 7 displays the tested results of 11 novel drugs. It can be observed that the r value between
experimental human log Peff and predicted rat log Peff was 0.79. The negligible difference between
both numbers (0.80 vs. 0.79) suggests that HSVR can almost reproduce the experimental observations.
Accordingly, this mock challenge by 11 marketed drugs apparently assured the predictivity of HSVR
and it is plausible to adopt this HSVR model as a surrogate for preliminary estimation of human
intestine permeability in the process of drug discovery and development.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 25 
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3. Discussion

Numerous in silico models have been reported to predict intestinal permeability [41–55]. However,
those published models were based on data assayed by different experimental conditions or different
measured parameters, and some of them were qualitative models, making the direct comparison
between HSVR and those models extremely difficult. In addition, intestine permeability is an extremely
complicated process, which can take place through various active transport and passive diffusion routes
(vide supra). As such, it is not uncommon to observe that various descriptor combinations associated
with intestinal permeability have been identified. For example, Shultz proposed the significance
of HBD, topological polar surface area (TPSA), and log P in intestinal permeability [56], whereas
Broccatelli et al. recognized the contributions of TPSA, MW, HBD, number of rotamers (nrot), charge,
and fraction ionized at pH 7.4 (cFI7.4) to intestinal permeability [57].

Drugs must pass through the hydrophobic mucus layer, which is adjacent to the intestinal wall,
before they can penetrate through the intestinal epithelial cells [58]. As such, hydrophobicity is of
critical importance in intestinal permeability and it can be represented by the n-octanol–water partition
coefficient (log P) and the n-octanol–water partition coefficient at pH 6.5 (log D). Moreover, it was
proposed by Balimane et al. that log P and log D should be adopted to predict the intestinal permeability
since log P alone is not sufficient enough to accurately render this complicated process [9]. As such,
both log P and log D were adopted by this study (Table 1). However, the selection of both descriptors
can plausibly lead to an overtrained model since the correlation coefficient between log P and log D
was 0.73 for all molecules included in this study. This controversial issue can be eliminated by the
fact that log D was adopted by SVR A and SVR B, whereas log P was selected by SVR C, depicting
the fact that no single SVR model included both descriptors simultaneously. In fact, this dilemma of
selecting both correlated descriptors to accurately predict intestinal permeability cannot be resolved by
any other traditional linear or machine learning-based QSAR schemes but only by any ensemble-based
scheme such as HSVR.

It has been observed that PSA is profoundly implicated in membrane permeability in passive
diffusion [59], which is completely consistent with the PAMPA study [1] as well as intestinal
permeability [56]. In addition, permeability also relies on MW, as proposed in [13]. Nevertheless,
neither PSA nor MW was adopted by any of the SVR models in the ensemble (Table 1). Conversely,
it is seemingly unusual to observe that the descriptor nN+O was selected by SVR A and yet has hitherto
not been adopted by any reported study. These discrepancies can be realized by the fact that nN+O was
modestly correlated with PSA and MW with r values of 0.88 and 0.71, respectively, for all molecules
selected in this study. The empirical observation indicated that models with the selection of nN+O

performed better than those with the selection of PSA or MW (data not shown), plausibly due to
the descriptor–descriptor interaction [1], suggesting that it is plausible to represent PSA or MW by
nN+O. The negative correlation between nN+O and log Peff (−0.29) is also consistent with the fact that
permeability can decrease with MW [60].

It has been postulated that hydrogen bond, which can be characterized by HBA and HBD, plays a
critical role in intestinal P-gp-mediated transport [61] and HBD makes substantial contributions to
intestinal permeability when compared with its HBA counterpart [56]. Accordingly, HBD was adopted
in this study. Nevertheless, the relationship between HBD and Peff is seemingly obscure, as illustrated
by Figure 8, which shows the average Peff for each histogram bin of HBD for all molecules included in
this investigation. This peculiar relationship can be plausibly attributed to the fact that the substrates of
PepT1 and P-gp, which are the most abundant SLC and ABC transporters, respectively, in jejunum [15],
can interact with their transporter proteins via HBD [25,26]. The complexity can be further increased by
taking into the account the fact that P-gp inhibitors, modulators, and substrates can interact with P-gp
through HBD [26,62,63]. As such, HBD can simultaneously facilitate and hinder intestinal permeability,
leading to a perplexing dependency, which, in turn, can create an unsurmountable hurdle for creating
a predictive theoretical model regardless of traditional linear or machine learning-based schemes.
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Shadow-ν is a size-related descriptor which measures the ratio of largest to smallest dimension.
It can be observed in Figure 9, which displays the average Peff for each histogram bin of shadow-ν,
that Peff generally increased with shadow-ν for all molecules selected in this investigation, suggesting
that molecules with larger shadow-ν have higher permeability than their smaller counterparts.
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It has been observed that molar refractivity (MR), which is possibly associated with molecular size,
polarity, and/or polarizability [64], is closely related to ligand-P-gp interactions [65,66]. Nevertheless,
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little correlation manifested between MR and log Peff for all molecules enrolled in this study, with an
insignificant r value of −0.12 (Table 1). This incongruity can be resolved by the nonlinearity between
MR and Peff, as demonstrated in Figure 10, which illustrates the average Peff for each histogram bin of
MR. It can be observed that Peff marginally increased with MR and substantially decreased afterwards,
suggesting the nonlinear relationship between MR and Peff. Thus, linear models cannot properly render
such a complicated relationship.
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The significance of the descriptor µ in intestinal permeability has been recognized [67] since µ
can describe the solute-solute and solute–solvent dipole interactions [68], as demonstrated in PAMPA
permeability [1], leading to nonlinear relationship between µ and permeability. In addition, it has been
observed that ligands can interact with the efflux transporter P-gp and the influx transporter PepT1
through dipole interactions [69–71], giving rise to the complex role played byµ in intestinal permeability.

It is of interest that most of descriptors selected in this study are associated with passive diffusion,
which is consistent with the fact that passive diffusion is the major route for intestinal permeability
for many administrated drugs [12]. Additionally, MR, shadow-ν, and nN+O, which was selected in
place of MW in this study (vide supra), are closely linked to molecular size, and the molecular size is a
determining barrier factor in intestinal permeability as postulated [72–74].

CSA, which is also another characteristic associated with molecular size, has been implicated in
membrane permeability [75]. Figure 11 exhibits the average Peff for each histogram bin of CSA. It can
be observed that Peff did not show substantial variations with CSA initially, yet the Peff value greatly
dropped once CSA was larger than 75, which is very similar to the trend observed for MR (Figure 10),
suggesting that it is more difficult to penetrate the intestinal wall once the CSA values are larger than
a threshold. Nevertheless, the empirical observation has indicated that HSVR with the selections of
MR executed better than those with the selection of CSA (data not shown), presumably because of the
descriptor–descriptor interaction [1].
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It has been indicated that ion class is one of critical factors in physiological-based pharmacokinetic
(PBPK) models and ADME/Tox properties that should be taken into account [20,76]. Actually, it has been
demonstrated that neutral compounds show higher passive diffusion [1]. Accordingly, all molecules
enrolled in this investigation were subjected to ion class analysis. Figure 12 displays the box plot
of the log Peff minimum, maximum, mean, median, the 25th percentile, and the 75th percentile for
each ion class. The log Peff values of neutral compounds are statistically greater than the other ion
classes, depicting that neutral compounds show higher intestinal permeability. It is possible to improve
the compound’s intestinal permeability of the other ion classes by chemical modification to produce
neutral compounds when they show low intestinal permeability.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 15 of 25 
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of log Peff from the 25th to the 75th percentile, the black and red lines represent the median and mean
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difference between neutral and the others (p < 0.05).

Initially, massive attempts were made in this investigation to construct various 2-QSAR
models by adopting numerous partial least squares (PLSs), but no acceptable models were yielded
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(data not shown) [29]. This challenge was due to little correlation between the selected descriptors
and log Peff for those molecules selected in this study and the largest absolute maximum r was merely
0.29 between nN+O and log Peff (Table 1), depicting the highly nonlinear relationship between them.
More importantly, the substantial difference in 2-QSAR development between the passive diffusion,
viz. the PAMPA system, and intestinal permeability can be greatly attributed to the significant and
complex roles played by those active (influx and efflux) transporters. As such, it is extremely difficult to
build a sound linear model to predict intestinal permeability. Conversely, the accurate and predictive
HSVR model can considerably delineate such nonlinear dependence of log Peff on descriptors.

4. Materials and Methods

4.1. Data Compilation

A comprehensive literature search was carried out to retrieve in vivo permeability data from
a variety of sources to construct quality data for this investigation. Of various assay systems,
74 compounds, which were measured by SPIP in rat jejunum with pH 6.5 phosphate buffered
saline (PBS), were adopted from various sources [77–98]. The mean value was taken to assure better
consistency if there were more than one Peff values for a given compound within close range. Chemical
structures without defined stereochemistry (e.g., racemates) were discarded from the collection. All
molecules included in this study, IUPAC names, SMILES strings, CAS registry numbers, logarithm of
observed Peff values, and references to the literature are listed in Table S1.

4.2. Descriptor Enumeration

All molecules selected in this study were subjected to full geometry optimization using the density
functional theory (DFT) B3LYP method with the basis set 6-31G(d,p) by the Gaussian package (Gaussian,
Wallingford, CT) since it has been demonstrated elsewhere that predictive models with the selection of
DFT descriptors can perform better [29]. To mimic the assay conditions, the water solvent system was
considered by the polarizable continuum model (PCM) [99,100]. The minimum of optimized geometry
on the potential energy surface was verified by force calculations in case no imaginary frequency
was obtained. Furthermore, atomic charges were also determined by the molecular electrostatic
potential-based method of Merz and Kollman [101]. The highest occupied molecular orbital energy
(EHOMO), lowest unoccupied molecular orbital energy (ELUMO), free energy (∆G), molecular dipole
(µ), and its maximum absolute components (|µ|Max) of each molecule were also retrieved from the
optimization calculations.

More than 200 one-, two-, and three-dimensional molecular descriptors, which can be categorized
as electronic descriptors, spatial descriptors, structural descriptors, thermodynamic descriptors,
topological descriptors, and E-state indices, were evaluated by the Discovery Studio package (BIOVIA,
San Diego, CA, USA) and E-Dragon (available at the website: http://www.vcclab.org/lab/edragon/).
Additionally, the cross-sectional area (CSA) was also computed using the method modified by
Muehlbacher et al. since it was implicated in membrane permeability [102]. Molecules were further
placed into four classes, namely neutral, zwitterion, acid, and base, by their pKa values. Specifically,
molecules with only one pKa value are defined as neutrals, whereas those with more than one pKa

value are designated as zwitterions, acids, and bases when their largest pKa values are larger than 7
and the smallest pKa values are smaller than 7; the largest and smallest pKa values are smaller than 7;
and the largest and smallest pKa values are larger than 7, respectively.

Descriptor filtration was initiated by discarding those descriptors missing for at least one sample
or barely displaying discrimination against most of samples. It was suggested by Topliss and Edwards
that the probability of spurious correlations can be reduced by removing those descriptors with
intercorrelation values of r2 > 0.80 [103]. Accordingly, the Spearman’s matrix was constructed and a
more conservative threshold of r2 = 0.64 was adopted. Descriptor normalization, which was designated

http://www.vcclab.org/lab/edragon/
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to reduce the possibility of descriptors with broader ranges outweighing those with narrower ranges,
was implemented by

χi j =
(
xi j −

〈
x j

〉)
/

 n∑
i=1

(
xi j −

〈
x j

〉)2
/(n− 1)

1/2

(3)

where xi j and χi j present the jth original and normalized descriptors of the ith sample, respectively;〈
x j

〉
is the mean value of the original jth descriptor; and n is the number of samples.
Descriptors are one of the critical factors influencing the performance of predictive models [104].

The initial descriptor selection was executed by genetic function approximation (GFA) using the QSAR
module of Discovery Studio due to its effectiveness and efficiency [105]. Further selection was done by
the recursive feature elimination (RFE) scheme, in which the model was repeatedly built by all but
one of descriptors. Their contributions to the predictive performance were then evaluated, and the
descriptor with the smallest contribution was discarded [106].

4.3. Sample Partition

It is of necessity to identify the outliers prior to the model development, which can be done
by examining the molecular distribution in the chemical space [107]. As such, the chemical space
was initially constructed based on principal components (PCs) using the Diverse Molecules/Principal
Component Analysis module of Discovery Studio and the outliers were determined. The remaining
compounds were randomly divided into the training set and test set with a ca. 4:1 ratio as proposed
to build and validate the models, respectively [108], using the Diverse Molecules/Library Analysis
module of Discovery Studio. In addition, it was suggested by Golbraikh et al. that only high levels
of chemical and biological similarity between the training samples and test samples can develop a
sound model [36]. As such, the data distribution was carefully examined to guarantee the high levels
of biological and chemical similarity in both datasets.

4.4. Hierarchical Support Vector Regression

Hierarchical support vector regression (HSVR), which was originally proposed by Leong et al. [27],
was evolved from support vector machine (SVM), which was originally invented by Vapnik et al. [109].
Initially, SVM was devised for classification and then modified for regression, termed support vector
regression (SVR) [110]. The most distinguished difference between SVR and HSVR is that the latter can
simultaneously take into account the characteristics of a global model, viz. broader applicability domain
(AD), and a local model, viz. higher predictivity, as compared with the former [28]. More importantly,
it has been demonstrated by a number of studies that predictive models based on the HSVR scheme
perform extremely well [1,26–28].

The principle and implementation of HSVR has been detailed elsewhere and the architecture
of HSVR schemeis depicted in Figure 1 of Leong et al. [27]. Briefly, SVR models were developed by
the svm-train module in LIBSVM (software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm)
using those samples in the training set with various descriptor combinations and SVR run parameters.
The derived models were validated by svm-predict using those samples in the test set. The regression
functions, namely ε-SVR and γ-SVR, were tried, and radial basis function (RBF) was selected as the
kernel function due to its simplicity and greater performance [111]. The runtime parameters including
regression modes ε-SVR and ν-SVR, the corresponding ε and ν, cost C, and the kernel width γ were
automatically run by the systemic grid search algorithm in a parallel fashion.

The principle of Occam’s razor was applied to the construction of SVR ensemble (SVRE),
which suggests that the fewer the ensemble members, the better [112]. More specifically, two SVR
models were selected to develop an SVRE, which was further subjected to regression by another SVR
to give rise to the final HSVR model. The construction of two-member SVREs was repeated until the
HSVR model executed well. Otherwise, three- or even four-member ensembles would be built by

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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adding one or more SVR models, respectively, in the case all two-member ensembles failed to show
good performance.

4.5. Predictive Assessment

The difference between the observed value (yi) and the predicted value (ŷi), viz. the residual,
was calculated

∆i = yi − ŷi (4)

The root mean square error (RMSE) and the mean absolute error (MAE) for n samples in the
dataset were computed

RMSE =

 n∑
i=1

∆2
i /n

1/2

(5)

MAE =
1
n

n∑
i=1

|∆i| (6)

The developed models were further assessed by the correlation coefficients r2 and q2 in the training
set and external set, respectively, by the following equation

r2, q2 = 1−
n∑

i=1

(ŷi − yi)
2/

n∑
i=1

(yi −
〈
ŷ
〉
)2 (7)

where
〈
ŷ
〉

represents the average predicted value.
Additionally, Ojha et al. [37] also proposed various modified versions of r2 to gauge the

model performance

r2
m = r2

(
1−

√∣∣∣r2 − r2
o

∣∣∣) (8)

r′2m = r2
(
1−

√∣∣∣r2 − r′2o
∣∣∣) (9)〈

r2
m

〉
=

(
r2

m + r′2m
)
/2 (10)

∆r2
m =

∣∣∣r2
m − r′2m

∣∣∣ (11)

where the correlation coefficient r2
o and the slope k were derived from the regression line (predicted vs.

observed values) without the intercept, whereas r′2o was calculated from the regression line (observed
vs. predicted values) without the intercept.

The developed model was further subjected to internal validation using the leave-one-out
cross-validation scheme, producing the correlation coefficient q2

CV. Furthermore, Y-scrambling or
Y-randomization was applied by randomly permuting the log Peff values, viz. Y values, to refit the
previously derived models while the descriptors remained unchanged. This procedure was repeated
25 times, as suggested in [34], to give rise the average correlation coefficient

〈
r2

s

〉
to ensure no chance

correlation was associated with those derived models.
Additionally, the predictivity in the external dataset was evaluated by the correlation coefficients

q2
F1, q2

F2, and q2
F3, and concordance correlation coefficient (CCC) using QSARINS [32,113]

q2
F1 = 1−

nEXT∑
i=1

(yi − ŷi)
2/

nEXT∑
i=1

(yi −
〈
yTR

〉
)2 (12)

q2
F2 = 1−

nEXT∑
i=1

(yi − ŷi)
2/

nEXT∑
i=1

(yi −
〈
yEXT

〉
)2 (13)
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q2
F3 = 1−

nEXT∑
i=1

(yi − ŷi)
2/nEXT

/
nTR∑

i=1

(yi −
〈
yTR

〉
)2/nTR

 (14)

CCC =

2
nEXT∑
i=1

(yi −
〈
yEXT

〉
)(ŷi −

〈
ŷEXT

〉
)

nEXT∑
i=1

(yi −
〈
yEXT

〉
)2 + (ŷi −

〈
ŷEXT

〉
)2 + nEXT(

〈
yEXT

〉
−

〈
ŷEXT

〉
)2

(15)

where nTR and nEXT are the numbers of samples in the training set and external set, respectively;〈
ŷTR

〉
stands for the average predicted value in the training set; and

〈
yEXT

〉
and

〈
ŷEXT

〉
represent the

average observed and predicted values in the external set, respectively.
Finally, the predictivity of developed models were further assessed by combining the most

stringent criteria collectively suggested by Golbraikh et al. [36], Ojha et al. [37], Roy et al. [38],
and Chirico and Gramatica [39]

r2, q2
CV, q2, q2

Fn ≥ 0.70 (16)∣∣∣r2
− q2

CV

∣∣∣ < 0.10 (17)(
r2
− r2

o

)
/r2 < 0.10 and 0.85 ≤ k ≤ 1.15 (18)∣∣∣r2

o − r′2o
∣∣∣ < 0.30 (19)

r2
m ≥ 0.65 (20)〈

r2
m

〉
≥ 0.65 and ∆r2

m < 0.20 (21)

CCC ≥ 0.85 (22)

where r in Equations (18)–(21) denotes r and q in the training set and external set, respectively. qFn in
Equation (16) symbolizes q2

F1, q2
F2, and q2

F3.

5. Conclusions

Intestinal permeability plays a pivotal role in systemic drug absorption that, in turn, can be of
critical importance to drug efficacy. As such, intestinal permeability is one of the important drug
metabolism and pharmacokinetics parameters that should be assessed in the process of drug discovery
and development. An in silico model to predict the intestinal permeability can be of great value
to drug discovery and development. Nevertheless, intestinal permeability is an extremely complex
process that can take place through various routes, namely passive diffusion and carrier-mediated
active transport. thus distinct descriptor combinations as well as various relationships are needed to
depict these variations in different mechanisms. The novel machine learning-based HSVR scheme,
which concurrently possesses the advantageous characteristics of a local model and a global model,
namely larger coverage of applicability domain and higher degree of predictivity, respectively,
was adopted in this investigation to construct a QSAR model to predict the intestinal permeability.
The constructed HSVR showed great prediction accuracy for the molecules in the training set and test
set, respectively, with superior predictivity and statistical significance. When subjected to a mock test by
a group of molecules to mimic real challenges, the built HSVR model also performed equivalently well.
In addition, the selected descriptors can render those interactions associated with passive diffusion and
active transport. Accordingly, it can be asserted that this HSVR model can be utilized as an accurate
and dependable predictive tool, even in the high throughput environment, to facilitate drug discovery
and development by predicting the intestinal permeability of hit and lead compounds even when they
are virtual. Additionally, the development of HSVR also paves the way to create more in silico models
to predict oral absorption, drug stability in stomach, and bioavailability in the future.
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QSAR Quantitative structure–activity relationship
HSVR Hierarchical support vector regression
ADME/Tox Absorption, distribution, metabolism and excretion, and toxicity
BDDCS Biopharmaceutics drug disposition classification system
SLC Solute carrier
ABC ATP-binding cassette
Caco-2 Colorectal adenocarcinoma
MDCK Madin–Darby canine kidney
PAMPA Parallel artificial membrane permeability assay
SPIP Single-pass intestinal perfusion
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