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Identification of dynamic signaling mechanisms on different cellular layers is now

facilitated as the increased usage of various high-throughput techniques goes along with

decreasing costs for individual experiments. A lot of these signaling mechanisms are

known to be coordinated by their dynamics, turning time-course data sets into valuable

information sources for inference of regulatory mechanisms. However, the combined

analysis of parallel time-course measurements from different high-throughput platforms

still constitutes a major challenge requiring sophisticated bioinformatic tools in order to

ease biological interpretation. We developed a new pathway-based integration approach

for the analysis of coupled omics time-series data, which we implemented in the R

package pwOmics. Unlike many other approaches, our approach acknowledges the role

of the different cellular layers of measurement and infers consensus profiles and time

profile clusters for further biological interpretation. We investigated a time-course data

set on epidermal growth factor stimulation of human mammary epithelial cells generated

on the two layers of RNA and proteins. The data was analyzed using our new approach

with a focus on feedback signaling and pathway crosstalk. We could confirm known

regulatory patterns relevant in the physiological cellular response to epidermal growth

factor stimulation as well as identify interesting new interactions in this signaling context,

such as the regulatory influence of the connective tissue growth factor on transferrin

receptor or the influence of growth arrest and DNA-damage-inducible alpha on the

connective tissue growth factor. Thus, we show that integrated cross-platform analysis

provides a deeper understanding of regulatory signaling mechanisms. Combined with

time-course information it enables the characterization of dynamic signaling processes

and leads to the identification of important regulatory interactions which might be

dysregulated in disease with adverse effects.
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INTRODUCTION

Omics data integration is a conclusive concept for a systemic
understanding of biological signaling mechanisms, both in
healthy conditions and disease (Kristensen et al., 2014; Ritchie
et al., 2015). The combination of different types of omics data
can provide a more comprehensive and complete picture of
individual cellular mechanisms. Furthermore, a cross-platform
analysis represents a measure to overcome individual platform
biases and technical limitations (Yeger-Lotem et al., 2009).

An even more informative approach is to analyze time-
course data sets from different omics levels, as a lot of cellular
signaling information is encoded in signaling dynamics (Purvis
and Lahav, 2013). This type of data provides more than only
a single “snapshot” of the underlying biological processes, thus
it can augment the knowledge we have about cellular signaling
events considerably. With these data feedback signaling loops,
molecular interactions and pathway crosstalk can be tracked over
time. Thus, combining different types of omics data with time
course information enables a comprehensive characterization
of cellular responses upon stimulation and also a detection of
regulatory mechanisms initiated by specific perturbations. In
Figure 1 a selection of dynamic regulatory signaling mechanisms
on protein and gene layer is depicted. These effects become
directly apparent in such omics data sets, so the “dynamic
knowledge” we can collect may also provide us with an idea of
modifications responsible for pathologic signaling and signaling
dynamics, thus forming a basis for an improvement of treatment
strategies.

Of course, such parallel time-course data sets are even
more challenging to analyze and interpret as they include

FIGURE 1 | A selection of cellular layer specific regulatory signaling mechanisms. The two layers of measurement are indicated as “protein” and “gene layer.”

The high number of effectors illustrates the mechanistic fine-tuning of signaling. Note that this fine-tuning also takes place in the dimension of time.

an additional dimension and require a meaningful cross-
platform integration method. Hence, there is a demand for
bioinformatic tools that can deal with the diverse data types
and combine them in such a way that their output enables a
straightforward biological interpretation of the data. Although a
lot of individual data integration methods have been developed
so far, they mostly address very specific integration questions
(Balbin et al., 2013; Hamon et al., 2014), are not implemented
as tools which can be freely used by other biologists and
bioinformaticians [e.g., QIAGEN’s Ingenuity R© Pathway Analysis
(IPA R©, QIAGEN Redwood City1)] or do not acknowledge the
different nature of different omics data types (Ding et al.,
2012; Sun et al., 2014). Very few tools also include the
biologically very interesting aspect of time-course data analysis
(Rogers et al., 2008), although these types of data sets are
expected to be generated more often in the near future (Bar-
Joseph et al., 2012) in order to address systems biology
questions.

We developed a pathway-based data integration approach
for the analysis of coupled high-throughput time-course
measurements on the cellular layers of proteins, transcripts and
genes. We implemented this approach as R package pwOmics,
that we presented earlier (Wachter and Beissbarth, 2015). In
brief, pwOmics joins the tools of network analysis: It uses
public signaling pathway knowledge to map molecular network
interactions, thereby identifying activated and inactivated genes
and proteins in cellular signaling upon perturbation. Thus, the
cellular layers on which the data is collected are acknowledged
during data analysis while simultaneously considering the

1www.quiagen.com/ingenuity.
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dynamics. Here we describe and test the utility of our method in
more detail.

Epidermal growth factor (EGF) signaling has already been
studied comprehensively in comparison to other signaling
pathways as dysregulation is associated with poor prognosis
in many human malignancies (Lurje and Lenz, 2009). As
various high-throughput and low-throughput omics data sets are
available and a lot of knowledge is already acquired on the basis
of which methodical evaluation can be performed, it constitutes
an adequate example for investigation of new approaches. The
data set analyzed heremeasures themitogenic response of human
mammary epithelial cells (HMEC) to EGF on the proteomic and
the transcriptomic layer over time (Waters et al., 2012), thereby
representing physiological signaling conditions. Figure 2 depicts
the experimental design used in the study. EGF stimulation is
associated with cellular proliferation, differentiation and survival
(Herbst, 2004) and directly affects signaling pathways such as the
MAPK signaling pathway, the ERBB signaling pathway and the
RAS signaling pathway.

We chose the comparably well characterized example of EGF
signaling in order to map the results of our new pathway-
based integration approach to known experimental results for
methodical evaluation and to reveal new dynamically relevant
mechanisms in EGF signaling on the different functional
layers. We focus on feedback signaling and pathway crosstalk,
both complex regulatory mechanisms that have been under
intensive biological investigation in individual experiments in
physiological and pathological conditions (Avraham and Yarden,
2011; Wang et al., 2011).

METHODS

Data Set
The data set investigated with the new pathway-based integration
approach was generated in a study on network analysis of

FIGURE 2 | Experimental design. HMEC cells were seeded and allowed to

attach and grow for 24 h. After 48 h of growth arrest with medium lacking

serum, EGF and other growth factors, EGF was added again to monitor the

mitogenic response of the cells. Samples for high-throughput genomic and

proteomic measurements were taken at time points 0, 0.25, 1, 4, 8, 13, 18,

24 h after EGF stimulation. The 0.25 h time point was excluded from the

microarray data set due to quality issues, therefore the coupled data set on

which our analysis is based includes time points 0, 1, 4, 8, 13, 18, and 24 h

after EGF stimulation.

EGF signaling. The experimental design used is illustrated in
Figure 2, the measurements included transcriptomic, proteomic
and phosphoproteomic data generation. Further details as well
as the preprocessing steps performed on both microarray raw
data and proteomic raw data are described in Waters et al.
(2012). The raw microarray data files are available via the Gene
Expression Omnibus database, GSE15668 (Waters et al., 2012).
The corresponding proteomic data is also publicly available2.

Shortly, biological samples were hybridized against
NimbleGen microarrays. A quality check revealed that time
point 0.25 h failed to hybridize, therefore the coupled data set
analyzed here includes only time points 0, 1, 4, 8, 13, 18, and
24 h after EGF stimulation. Proteome analysis was performed
MS-based, while phosphoproteome data were collected as
part of a parallel western blot analysis. For each time point
differentially expressed transcripts or differentially abundant
phosphoproteins/proteins compared to time point 0 h were
determined. Raw microarray data was quantile normalized
before performing a pairwise analysis of variance with a 5% false
discovery rate to determine differentially expressed transcripts.
Proteome and phosphoproteome levels were considered
significant when passing specific quality checks and showing a
fold change≥1.5.

Databases
Pathway information used for the pathway-based integration
approach were taken from KEGG (Kanehisa and Goto, 2000;
Kanehisa et al., 2014), Reactome (Croft et al., 2014), Pathway
Interaction Database (Schaefer et al., 2009), and Biocarta
(Nishimura, 2001). This information was used as gene sets in
the analysis of the phosphoproteome data and combined with
its topological information in the transcriptome data analysis.
It was downloaded via the AnnotationHub R package3 from
Bioconductor (Huber et al., 2015) as BioPAX level 2 files
and then processed further with the rBiopaxParser R package
(Kramer et al., 2013). The transcription factor (TF)—target
gene interaction information from the TRANSFAC R© database
(Biobase version 2014.4; Matys et al., 2006) was used. Network
reconstruction was based on the connected protein-protein
interaction (PPI) network of the STRING database (Franceschini
et al., 2013).

Analyses
All analysis steps described here are based on pre-processed
transcriptome, proteome and phosphoproteome data, as
described in Waters et al. (2012). Main analyses steps were
performedwith the R package pwOmics (Wachter and Beissbarth,
2015). Our methodical framework is depicted in Figures 3, 4.

Data Processing
First, individual analyses of the omics data sets were performed
during phosphoprotein data based downstream and transcript
based upstream analysis (Figure 3). For the downstream analysis
an identification of the pathways, which include differentially

2http://omics.pnl.gov.
3Morgan, M., Carlson, M., Tenenbaum, D., and Arora, S. AnnotationHub: Client

to Access AnnotationHub Resources. R package version 2.0.0.
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FIGURE 3 | pwOmics analyses steps. In the initial integrative analysis a downstream analysis of the phosphoproteome data and an upstream analysis of the

transcriptome data is performed. The former includes the identification of pathways that include differentially abundant phosphoproteins, the identification of the TFs in

these pathways and the determination of downstream target genes. In the upstream analysis the differentially expressed transcripts are identified, as well as their

upstream TFs. By determining the pathways of these TFs also potential proteomic regulators can be identified. The intersection of the molecules on each cellular layer

(protein, TF and gene/transcript) is determined before the intersection based analyses are performed. These include a static consensus analysis that can be

performed for each measured time point, the consensus-based dynamic analysis that enables the generation of a probabilistic network exploiting the time-course

information of those molecules that are part of the consensus analysis result. Furthermore, in a time profile clustering co-regulation patterns can be identified.

Eventually, the time course integration allows to map downstream consensus transcripts with differentially abundant proteins. The “=” sign depicts the molecular

overlap on each cellular layer, corresponding to the layer-specific consensus molecules.

abundant phosphoproteins, was performed. The transcription
factors of these pathways were then found by matching the gene
sets of the pathways against the transcription factors listed in the
transcription factor—target gene database. Downstream target
genes were identified, equivalently. The downstream analysis is
based in general on the assumption of downstream regulation
upon protein phosphorylation. Upstream analysis identified the
upstream TFs of significantly differentially regulated transcripts.
Subsequently, pathways including these TFs were identified
in order to find possible upstream proteomic regulators of
differentially expressed transcripts. The parameters chosen here
corresponded to at least one TF per pathway for pathway
identification and 10 orders of neighbors identified upstream
of the TF for potential proteomic regulators. The results of
each functional layer of signaling (pathway layer, TF layer, and
gene/transcript layer) of downstream and upstream analysis were
compared. These analyses steps were performed for each time
point. Gene and protein ID matching was done by conversion
of all IDs to HUGO gene symbols.

Static Consensus Analysis
In the static consensus analysis integrated signaling networks
were constructed based on intersecting proteins, TFs, genes and
transcripts on each functional layer (Figure 4A). The consensus

proteins and TFs were mapped to the PPI STRING database
and Steiner trees were generated via a shortest paths based
approximation algorithm (Sadeghi and Fröhlich, 2013). The
graphs were then completed by adding the corresponding TF—
target interactions using TRANSFAC information. In case both
consensus gene and consensus protein were part of the static
consensus graph feedback loops were added.

Dynamic Consensus Analysis
In order to leverage the complete dynamic information from
the data sets dynamic analysis was performed on basis of all
consensus molecules (Figure 4B). The data associated with these
nodes was used to fit cubic smoothing splines in order to generate
a sufficiently dense data set for network inference via empirical
Bayes estimation of a dynamic bayesian network with the R
package ebdbNet (Rau et al., 2010). The generation of data points
was based on the simplifying assumption of a gradual change
of signaling over time. For further parameters default values
were chosen. For visualization of the dynamic bayesian network
a probability threshold was chosen which reflects a moderate
number of regulatory interactions with a high probability in
the network. The resulting threshold for plotting of the edges
corresponded to a probability of an edge to be present by chance
of 0.15.
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FIGURE 4 | Consensus molecule analyses. Consensus molecules on each cellular layer are used for the static consensus analysis, the dynamic consensus

analysis and the time-course integration. (A) In the static consensus analysis static graphs are generated based on the PPI-mapped consensus proteins and

transcription factors, an approximation of the Steiner tree algorithm is applied and the connected networks are complemented with TF-target interactions from

TRANSFAC database. In case both consensus gene and corresponding consensus protein are part of the network, feedback loops are added. (B) In the dynamic

consensus analysis smoothing splines are fitted to the time courses for all consensus molecules. Based on the higher density data set a linear feedback state space

model is generated, hidden states are estimated and a probabilistic network is generated with dynamic Bayesian network inference (ebdbNet R package). (C) In the

time course integration downstream consensus transcripts of the differentially abundant phosphoproteins are identified. These are mapped to the differentially

abundant proteins. Time-courses of the downstream signaling players are visualized, subsequently. P, consensus proteins; TF, consensus transcription factors; T,

consensus transcripts; pP, phosphoproteins; DAP, differentially abundant proteins.

Time Profile Clustering
Additionally, time profile clustering was performed in order
to identify co-regulation patterns: Combining the described
integration approach with a soft clustering implemented as
fuzzy c-means algorithm (Kumar and Futschik, 2007) yielded an
integrated time profile clustering based on the log-fold changes
of consensus proteins and transcripts.

Time Course Integration
For further time course based integration with the proteome
data set downstream consensus transcripts of the measured
phosphoproteins were determined (Figure 4C). In a next step
theseweremappedtoproteins, thatweresignificantlydifferentially
abundant at any time point (Figure 2, proteomic data).

RESULTS

Individual Downstream and Upstream
Analyses
We performed individual downstream and upstream analyses
of the phosphoproteome and microarray data sets taking

into account the different functional layers of the cell the
data originates from. The used pathway information exploits
the signaling knowledge stored in public databases. Figure 3
illustrates the steps of the individual analyses and further
analysis steps explained in the next sections. Table 1 shows the
corresponding numbers of identified molecules and pathways
on the different functional cellular layers in downstream and
upstream analysis.

The data set for the phosphoproteome based downstream
analysis is very small with only five phosphoprotein abundances
investigated. However, as these were chosen thoroughly in the
experiment we observe a considerable number of pathways that
are influenced in downstream signaling. Altogether 121 pathways
were identified when querying the four pathway databases
used for the analysis. However, this set might include partly
redundant pathways when originating from different databases,
but describing the same signaling pathway. Pathways that are
identified in every time point include e.g., the Biocarta “egf
signaling” pathway, the NCI “EGF receptor (ErbB1) signaling
pathway,” the NCI pathway “EGFR-dependent Endothelin
signaling events” or the NCI pathway “ErbB1 downstream
signaling.” Furthermore, a number of pathways are identified
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TABLE 1 | Individual analysis.

Time after EGF stimulation [h] 0.25 1 4 8 13 18 24

DOWNSTREAM ANALYSIS

No. of differentially abundant phosphoproteins 5 3 3 2 3 2 2

No. of pathways 121 68 98 90 81 79 79

No. of TFs 64 61 62 62 62 62 62

No. of potential target genes 1296 1293 1294 1294 1295 1295 1295

UPSTREAM ANALYSIS

No. of differentially expressed transcripts − 35 87 66 85 134 1551

No. of TFs − 140 111 146 199 212 480

No. of pathways − 163 154 169 200 200 230

No. of potential upstream proteomic regulators − 871 950 897 920 976 1023

Downstream and upstream analyses characteristics over time. The expected bottleneck on the transcription factor layer can be observed. In the downstream analysis most pathways

are overlapping, so we observe no large difference in the target gene numbers. The pre-processed proteomic data set comprises one time point of measurement more than the

transcriptomic data set (0.25 h after EGF stimulation).

that are involved in cellular adhesion, STAT3 dependent signaling
and PI3K signaling. Differential abundance of phopho-MAPK14
was only identified at time point 0.25 h after EGF stimulation.
Corresponding pathways identified for that time point included
e.g., the Biocarta “p38 mapk signaling pathway” and the Biocarta
“mapkinase signaling pathway.” According to the TF—target
gene database the identified TFs activate the expression of a high
number of genes as shown in Table 1.

In the transcriptome based upstream analysis an identification
of upstream TFs was performed based on the differentially
expressed transcripts. Corresponding numbers at each time
point after EGF stimulation are displayed in Table 1. Identified
upstream pathways included e.g., the “MAPK signaling pathway,”
the “EGF receptor (ErbB1) signaling pathway” and the
“ErbB1 downstream signaling” pathway. The higher numbers
of differentially expressed transcripts resulted likewise in the
identification of more pathways. In those pathway sets the
topological information enabled the identification of possible
upstream proteomic regulators, subsequently.

The pathways identified in the downstream and upstream
analyses at each measured time point after EGF stimulation are
part of the Supplementary Material (Tables S2, S3).

Consensus Analysis
In the static consensus analysis we integrated the results of
the different platforms for each time point on each functional
layer. The aim was to reduce the individual downstream
and upstream analyses results to molecule sets which include
those molecules identified from both platforms and to reduce
at the same time false positive molecules on the different
functional layers. Exemplary, the consensus network of 1 h
after EGF stimulation is shown in Figure 5A, later time
point static consensus networks are part of the Supplementary
Material (Figures S2–S7). These networks provide interaction
and regulatory information on the consensus molecules. Yet, in
our further analyses we focus on the static consensus profiles
reflecting the presence of specific molecules in the consensus
networks at each time point, as illustrated in Figure 5B.
The static consensus profiles were used to explore the static

consensus characteristics of certainmolecules in order to evaluate
the integration method. As dynamic signaling is especially
interesting with regard to feedback signaling mechanisms and
pathway crosstalk, we focus on these two signaling patterns
in the following. Figure 5B shows the static consensus profiles
of the members of the static consensus graph 1 h after EGF
stimulation. A considerable number of genes being part of this
consensus graph are exclusively found at this early time point.
The profiles additionally show that both PLAU, the urokinase-
type plasminogen activator, and CTGF, the connective tissue
growth factor, comprise late regulatory changes. A figure with
all static consensus profiles is part of the Supplementary Material
(Figure S1). In these, 13 of 19 genes that are at least identified at
two time points not including the 1 h time point after stimulation
show a sustained pattern, indicative of a secondary cellular
response. The genes without such a sustained pattern are PLAU,
CTGF and IL1A, being already active 1 h after EGF stimulation
or genes showing an intermediate activation.

Next, we investigated the pattern of proteins in the static
consensus networks as well as the identified steiner nodes. The
first group comprises the intersection of differentially abundant
phosphoproteins in the proteomic data set and the potential
upstream proteomic regulators of the differentially expressed
genes. The second group is derived by generating Steiner trees
after mapping the consensus molecules to the PPI network and
might be functionally interesting, as its nodes are candidates for
the regulation of the unconnected, mapped proteins. The static
consensus profiles of the included proteins and the steiner node
identified in this analysis are shown in Figure 5C. Transcription
factor STAT3 is identified on the transcription factor layer at all-
time points. MAPK1 is identified 4–8 h after EGF stimulation.
PRKAR2B is identified later on (18–24 h after stimulation) on the
protein layer. VAV1 is identified as a Steiner node in the static
consensus graph 24 h after stimulation.

Additionally, we wanted to test in how far our integratory
pathway-based approach is able to trace pathway crosstalk in
the given data sets. In order to do so we chose a crosstalk
mechanism which we expected to be reflected in the data set as
it is not exclusively based on phosphorylation or ubiquitylation
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FIGURE 5 | Static consensus analysis results. (A) Static consensus graph for time point 1 h after EGF stimulation. (B) Static consensus profiles for members of

the static consensus graph 1 h after EGF stimulation. Colors in the heatmap correspond to colors used in the consensus graphs, “white” boxes represent no

membership in the consensus graph at that time point after EGF stimulation. Genes known to be IEGs (according to Tullai et al., 2007) are framed in black. (C) Static

consensus profiles for selected proteins.

events. This mechanism is characterized by the activation
of metalloproteinases (MMPs) by G-protein-coupled-receptors
(GPCRs; Yarden and Sliwkowski, 2001). Upon activation MMPs
cleave membrane-tethered ErbB ligands, which enables their
binding to ErbB receptors, thereby positively regulating the ErbB
signaling pathway. With EGFR being a receptor of the ErbB
family our approach could identify a considerable number of
the mentioned regulatory molecules in the consensus molecules
(Table 2). Expression of different MMPs is observed starting at
time point 4 h after EGF stimulation. Differentially expressed
ErbB ligands for the different time points after EGF stimulation
could be identified (such as self-induced EGF and AREG).

Exploiting Dynamic Information of Coupled
Time Course Data Sets
Our pathway-based approach additionally enables the utilization
of the complete time-series for each molecule in order to
generate a probabilistic network displaying those nodes of the
network with a high posterior probability of interaction. The
dynamic analysis is based on the simplifying assumption of a
gradual change in signaling over time, as existing high-frequency
components are not considered due to the small sampling rate.
Each consensus molecule at any time point after EGF stimulation
was taken into account. With this approach we obtained the
probabilistic network displayed in Figure 6. This network is a

TABLE 2 | Consensus analysis.

Time after EGF

stimulation [h]

1 4 8 13 18 24

MMPs − MMP1 MMP1 MMP1 MMP1 MMP1

MMP1 MMP1 MMP1 MMP2

MMP1 MMP1 MMP1 MMP10

ErbB ligands − − − EGF AREG AREG

EGF EGF

Regulatory molecules identified on the gene layer that are hypothesized to be involved

in the signaling crosstalk via GPCRs and MMPs. GPCRs activate MMPs which then

cleave the membrane-bound ErbB ligands leading to activated ErbB signaling (Yarden and

Sliwkowski, 2001). Although differential expression is not direct evidence for the activity

of these molecules, such regulatory mechanism can be hypothesized here.

reduced way to look at activating or inhibiting relationships
between consensus proteins and genes. Here, we observe mainly
activating relationships corresponding to an activation of the
regulatory effect of EGF stimulation and not to upregulation
directly. Likewise an inhibiting relationship in the network does
not imply a downregulation, but the inhibition of the effects
induced by EGF stimulation.

In total, we could identify five subgroups in the consensus-
based dynamic network by mapping them to the times in which
they are part of the consensus graphs (Figure 6): (1) immediate
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early signaling processes, (2) early, but sustained gene expression
changes, (3) intermediate gene expression changes, (4) late gene
expression changes, and (5) continuous protein phosphorylation
changes. In the group of the “immediate early signaling
processes” most early response genes that were identified in the
static consensus profiles are activated by the protein MAPK1
and the gene IL1A. This group reflects early phosphorylation
induced transcriptional changes. The next group, consisting of
five genes, is the group of “early, but sustained gene expression
changes” upon EGF stimulation. It includes CTGF, a connective
growth tissue factor. Its regulation is activated by MAPK1,
FKBP5, GADD45A and also self-activation is observed. CTGF
itself has activatory influence on gene members of its own group
(IGFBP3, FKBP5), but also onmembers of the “intermediate gene
expression changes” group and the “late gene expression changes”
group. Two further members (PLAU and ODC1) are influenced
by IL1A, a hub gene in the network, which we assigned to the
“immediate early signaling processes” group and to the “late gene
expression changes” group, as it shows immediate membership
in the static consensus graphs, but also a late response profile.
A small group showing intermediate gene expression changes
comprises TFRC and GADD45A. We observe in the graph
that GADD45A activates itself, but also PCNA, a gene of the
“late gene expression changes” group. PCNA is additionally self-
activated, as well as externally activated by the ErbB ligand AREG
and ASPH, the aspartate beta-hydroxylase. AREG and ASPH
are upregulated late after EGF stimulation. IL1A also activates
SLC3A2, the solute carrier family 3 member 2, and inhibits

LAMA3, a proliferating cell nuclear antigen, laminin alpha 3.
The second protein being part of the network is the transcription
factor STAT3. The changes in STAT3 phosphorylation are found
in the consensus graphs over all time points, thus we assign it
to the group of “continuous protein phosphorylation changes.”
Beside the activating influence of MAPK1 also autoregulation of
STAT3 can be detected.

Time Profile Clustering
In order to identify co-regulation patterns in the signaling
response after EGF stimulation we performed time profile
clustering. We obtained four dynamic co-regulation patterns of
which two exhibit positive regulation and two exhibit negative
regulation. Both positive and negative clusters each comprise one
cluster of immediate regulation and one of delayed regulation.
The clusters are depicted in Figure 7. Corresponding molecule
membership in the four different clusters is listed in the
Supplementary Material (Table S1). Cluster 1 is immediately
activated and thus contains various immediate early genes,
but also the proteins MAPK1 and STAT3, which are part
of the consensus-based dynamic analysis. Compared to the
groups identified in the latter analysis this cluster constitutes
the immediate early signaling processes together with early,
but sustained gene expression changes. Cluster 2 is the biggest
cluster with 52 members and is the delayed positively regulated
cluster. Cluster 3 only comprises two members (RARRES3 and
SLC3A2), both of which are showing a delayed negative dynamic
co-regulation. Cluster 4 is the early negatively regulated cluster.

FIGURE 6 | Probabilistic network displaying result of the consensus-based dynamic analysis. For network inference all consensus genes and proteins at any

time point were considered. For visualization of the dynamic bayesian network a probability threshold was chosen corresponding to a probability of an edge to be

present by chance of 0.15. Five groups could be identified comprising direct immediate early signaling processes, continuous protein phosphorylation changes, late

gene expression changes, intermediate gene expression changes and early, but sustained gene expression changes upon stimulation. Activating regulatory effects are

depicted with green edges whereas inhibiting regulatory effects are depicted as red edges. Consensus protein nodes are colored in red, consensus transcript nodes

in green. Activation/inhibition refers to changes in the regulatory effects initiated by EGF stimulation, not to activated or inhibited expression.
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FIGURE 7 | Fuzzy c-means time profile clustering revealed 4

co-regulation clusters with distinct cluster sizes. Two of the clusters

exhibit positive regulation and two exhibit negative regulation. Both positive

and negative clusters each comprise one cluster of immediate regulation and

one of delayed regulation. The clusters contain both protein and gene

expression changes. Cluster membership is listed in the Supplementary

Material.

Time Course Integration
The results of the time-course integration based on the
consensus analysis results are displayed in Figure 8 and
in the Supplementary Material (Figure S8). Of the five
phosphoproteins that were measured over time in the
coupled data set we could identify four phosphoproteins
with their downstream transcripts being part of our consensus
analysis and mapping to differentially abundant proteins
(MAPK1, STAT3, MAPK14, and PRKAR2B). MAPK1
downstream analysis revealed four transcripts (Figure 8A),
which mapped to significantly differential proteins, CYR61—
cysteine-rich angiogenic inducer 61, CCND1—cyclin D1,
SERPINB2—serpin peptidase inhibitor, clade B, member
2, and THBS1—thrombospondin 1. MAPK1 itself shows
increased phosphorylation levels in the very beginning after EGF
stimulation and again between 1 and 13 h after EGF stimulation.
In regard to temporal coordination CYR61 shows correlating
temporal expression on the transcript and protein layer up to
time point 4 h after EGF stimulation, but then a rather opposed
pattern. CCND1 belongs to the group of cyclins and thus
exhibits a specific expression and degradation pattern over the
cell cycle, in this way contributing to the temporal coordination
of mitotic events. Here we can observe an opposed temporal
pattern of transcripts and proteins over the whole timespan
measured: While on the mRNA layer, CCND1 shows higher
expression levels after EGF stimulation, the corresponding
proteins are found at lower levels over the whole time course.
High mRNA-to-protein levels have already been reported by
Waters et al. (2012). In the time-course SERPINB2 shows slowly
rising levels of transcripts after EGF stimulation, whereas on
the protein layer there is a direct decrease, an intermediate
increase, and a second decrease again to the 0-level at 18 h
after EGF stimulation. THBS1 protein levels are similar to that

of SERPINB2, however, here we observe rather correlating
transcript levels in the beginning and deviating ones after the
18 h time point.

STAT3 is the phosphoprotein showing the most downstream
transcripts that match to significantly regulated proteins
(Figure 8B). STAT3 itself shows sustained high expression
levels over the whole time-course. All MAPK1 downstream
transcripts that are part of the consensus analysis also belong
to the downstream transcripts of STAT3. Further ones are
SLC3A2, FKBP5, PPP2CA, CD44, and ODC1. All of these except
for ODC1 show anti-correlating patterns between transcripts
and proteins until 4 h after EGF stimulation. For later time
points most pairs exhibit correlating behavior. MAPK14 also
has CYR61, CCND1, and SERPINB2 as downstream targets
with corresponding proteins being significantly differentially
abundant, whereas for PRKAR2B only CYR61 could be
identified.

DISCUSSION

Pathway Layer Based Integration
In the downstream and upstream analyses the results indicate
that pathway identification based on differentially abundant
phosphoproteins and differentially expressed transcripts is
effective. In both pathway sets those pathways known to be
activated by EGF stimulation were identified reliably in the
different databases, expectedly the “EGF signaling pathway”
itself. This shows, that the two data sets are in concordance on
the pathway layer even if they are measured on different cellular
layers and analyzed individually. Based on these initial results
a pathway-based integration was considered to be constructive.
However, downstream and upstream analyses might also
introduce false positive findings, which we aimed to reduce from
further analysis steps by the subsequent intersection analysis.
The small set of phosphoproteins measured over time gives a
strong basis for the pathway layer based integration as they were
selected carefully for the experiment and belong to key pathways
in EGF signaling. However, a larger set of phosphoprotein data
as obtained now e.g., from mass-spectrometry approaches could
lead to more robust results.

Consensus Analysis Enables Identification
of Regulatory Dynamics
In order to evaluate our methods it is important to first
classify the data according to their temporal transcriptional
domains. According to Avraham and Yarden (2011) feedback
mechanisms in EGFR signaling can be assigned to two temporal
domains, one of them being the immediate group which
includes receptor endocytosis, secondary phosphorylation and
further protein modifications, the other constituting the late
group which includes newly synthesized adaptors, transcriptional
repressors, RNA-binding proteins and phosphatases of the
mitogen-activated protein kinase (MAPK) pathway. Especially
the integrated data with parallel time points between 1 and
24 h after EGF stimulation thus reflects the late group capturing
the transcriptional regulation with a wave-like regulation of
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FIGURE 8 | Time course integration. (A) MAPK1 downstream consensus transcripts identified were mapped to differentially abundant proteins. (B) Time course

integration for downstream consensus transcripts of STAT3. Note that the measurement range of the expression profiles across platforms can vary. Phosphoprotein

time course data is shown in solid, black lines, non-matching transcript data in solid, gray lines and matching transcript and proteome data in rainbow color palette

with proteins depicted as solid lines and transcripts depicted as dotted lines.

immediate early genes (IEGs), delayed early genes (DEGs),
secondary response genes (SRGs; Avraham and Yarden, 2011)
and their corresponding subsequent protein expression. IEGs
are known to induce transcriptional changes of DEGs which
then reduce the regulation of IEGs in a feedback subsequently,
but initiate regulation of SRG expression. Based on this
transcriptional regulation scheme the measured time points in
the investigated data sets capture stimulation of both IEGs and
DEGs 1 h after EGF stimulation while in subsequent time points
we expect only regulation of SRGs, conferring the stable cellular
phenotype.

We used the static consensus analysis in order to generate a
static view on the integrated networks at each time point. Via
static consensus profiles we can identify transcription factors
with regulatory effects and their regulated consensus molecules
on the gene layer at the 1 h time point. A large number of those
genes were already reported to be IEGs in the cellular response to
growth factor stimulation according to Tullai et al. (2007). PLAU
and CTGF, regulated as well at later time points, apparently
have an additional function in the definition of the phenotype.
The two-phase regulation pattern indicates 2-fold tasks and
can be interpreted to underly direct or indirect auto-feedback
regulation.

The static consensus profiles of most SRGs, in contrast, are
supposed to show a sustained activity. This is exactly what we
find in our consensus graph analysis.

Due to the low number of differentially abundant
phosphoproteins as a starting point the number of intersecting
proteins from downstream and upstream analyses are low,
as well. MAPK1 is involved in a variety of cellular growth
processes such as proliferation and differentiation, thus its

presence in the consensus graph corresponds well to the
expected cellular response after EGF stimulation. As a regulatory
subunit of the cAMP-dependent protein kinases PRKAR2B is
involved in various cellular functions. With its late activity we
suspect an involvement in the cellular reconstruction processes
taking place for the final phenotype definition. The VAV
proteins are guanine nucleotide exchange factors that activate
pathways leading to cytoskeletal actin rearrangements and
transcriptional alterations (Han et al., 1998). Thus, its functional
association can be linked to cellular restructuring during
proliferation.

In EGF signaling several pathways are involved which do not
only process signals in a linear way but also enable cross-pathway
regulatory influence on transcription. Oda et al. (2005) tried to
compress all known signaling interactions into a comprehensive
pathway map, resulting in a bow-tie architecture signaling
pathway. As this network has to convey fine-tuned messages,
it is deducable that slight dysregulation results in pathological
transcriptional responses. Many crosstalk mechanisms have been
investigated in more detail, most of them under pathological
conditions. However, in order to understand the consequences
of such dysregulation it is essential to also have a detailed
understanding of physiological pathway crosstalk mechanisms.
This is why we reviewed the consensus molecules in terms of
their possible role in the crosstalk described by Yarden and
Sliwkowski (2001). The large number of identified consensus
molecules implicated in this crosstalk on the gene layer supports
our hypothesis, that they are part of this signaling crosstalk
mechanism.

As the described regulatory dynamic patterns are based on two
independent data sets from different platforms we suppose that
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this pattern is not identified due to measurement bias and thus
has a biologically relevant function in the cellular response.

Identification of Regulatory Mechanisms
by Exploiting Dynamic Information of
Coupled Time Course Data Sets
In order to fully exploit the dynamic information of the time
course data sets, we inferred a probabilistic network based on all
consensus molecules. This network enables an identification of
important players in the cellular response to EGF as well as the
determination of inhibitory or activating regulation patterns.

The consensus proteins which are part of the dynamic
network are MAPK1 and STAT3, both being part of the
starting phosphoprotein data set. This indicates, that their
important role in EGF signaling can be confirmed as such via
the transcriptomic data set. STAT3 is a transcription factor,
which is phosphorylated upon growth factor stimulation of
the cell and builds homo- or heterodimers, which can then
translocate to the nucleus and activate transcription (Park et al.,
1996). It has multiple target genes with its protein products
being involved in proliferative processes. MAPK1 is associated
with cellular processes such as proliferation, differentiation and
transcriptional regulation. Both show a self-activation as well as a
mutual activation, which illustrates their functional relevance in
EGF signaling. This regulatory interaction between MAPK1, also
known as ERK2, and STAT3 is triggered via the activation of the
MAPK/ERK cascade upon EGF stimulation, leading to MAPK1
phosphorylation by upstream kinases. STAT3 transcriptional
activation by phosphorylation of STAT3 pS727 is then performed
by the serine/threonine kinase ERK (Zhang and Liu, 2002),
leading to activation of STAT3, which then acts as transcription
factor and initiates the expression of downstream target genes.
Target genes of STAT3 that might lead to further activation of
MAPK1 are e.g., downstream transcription factors, multiplying
indirectly the effective activation, or EGFR allowing for binding
of more EGF. Furthermore, JAK2 is a target gene of STAT3,
which can contribute to positive auto-feedback of STAT3 via the
JAK-STAT pathway (Dauer et al., 2005).

Beside the already discussed early regulation processes and the
protein phosphorylation changes of STAT3, the other identified
groups are particularly interesting for further interpretation:
The regulation of CTGF, the connective growth tissue factor,
is activated by MAPK1, FKBP5, GADD45A and by itself.
Interestingly, we observe auto-feedback regulation here, as
already suspected from the static consensus profiles. CTGF
is a hub gene in the consensus-based dynamic network, so
the activation of its downregulation upon EGF stimulation is
associated with downregulation of other genes in this cluster,
such as FKBP5, or genes of the “intermediate gene expression
changes” group. One of these isGADD45A, the growth arrest and
DNA-damage-inducible alpha, which activates the regulation of
PCNA. It is known to comprise increased transcript levels when
cells are subjected to arrest conditions, treatment with DNA-
damaging agents and environmental stresses (Hollander et al.,
1993), thus we suspect the experimental design of the experiment
with the chosen growth arrest time to be of no direct harm

to the cells. PCNA, the proliferating cell nuclear antigen, is a
cofactor of DNA polymerase delta and plays a central role during
DNA replication. In DNA damage response it is positioned at
the replication fork coordinating replication with DNA repair
and DNA damage tolerance pathways (Cazzalini et al., 2014).
Thus, its function is intensely needed in the phase of cellular
remodeling and proliferation. The link between GADD45A and
PCNA, that we determined with our integrative analysis, was
previously reported (Chen et al., 1995).

AREG is upregulated in the “late gene expression changes”
group as part of the regulatory pathway crosstalk loop via
metalloproteinases described above and presumably provides an
additional amplifying cellular way of an activation cascade after
initial EGF stimulation. Also ASPH, which is thought to play
an important role in calcium homeostasis (Treves et al., 2000),
is part of this group. With its diverse roles e.g., as a messenger
between cellular compartments calcium regulation is essential for
proliferating cells.

IL1A, as another hub in the network, has immediate and
late regulatory influence. In the “late gene expression changes”
group it activates SLC3A2, solute carrier family 3 member 2, and
inhibits LAMA3, proliferating cell nuclear antigen, laminin alpha
3. With their functions in regulating intracellular calcium levels,
amino acid transport, formation and function of the basement
membrane, cell migration and mechanical signal transduction
and DNA replication, this part of the network rather shows the
expression changes which represent the secondary (late) response
of the cells.

In summary, we identified MAPK1, IL1A and CTGF as
main players driving EGF stimulation response in the cell.
Interestingly, we could detect the link between GADD45A and
PCNA in two independent high-throughput time course data
sets measured on different platforms using our pathway-based
integration approach. As a matter of course, with a higher
temporal resolution of the coupled time course measurements
more accurate results can be identified by our approach, as less
intermediate time points need to be estimated. To gain insight
into the biological response after an external stimulation at least
four time points after the stimulation time point are necessary,
though there is a high information content in such coupled data
sets on the different cellular layers. The chosen time points and
the temporal resolution, however, need to be adjusted specifically
to the cellular signaling dynamics and the stimulation of choice
in order to reflect the crucial time points of regulation.

Time Profile Clustering Identifies Four
Dynamic Co-Regulation Patterns Ruling
EGF Signaling
With our time profile clustering approach we could identify
four co-regulation patterns with distinct functions in the cellular
response to EGF signaling. Cluster 1 contains many of the
directly upregulated immediate early genes. Most of these are
in fact downregulated again after their early response, which is
not reflected by this cluster, as it contains also a considerable
number of genes that are secondary response genes and are only
upregulated at later time points (such as MMP1 or MMP10)
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or immediate early genes which are upregulated again at later
time points (PLAU or IL1A). Our hypothesis, that cluster 2
includes mainly genes upregulated as secondary response genes,
responsible for the phenotype definition, holds true, when having
a closer look to the members: We observe CCND1, the cyclin
family protein, ANXA1 and ASPH, LAMA3 and AREG, which
were identified in the consensus-based dynamic analysis in
the group of late gene expression changes, VEGFC, a vascular
endothelial growth factor promoting angiogenesis, CCND2—
cyclin D2, NME1—nucleoside diphosphate kinase 1, which has
been associated with high tumor metastatic potential based
on different studies (MacDonald et al., 1996) and many more
genes which act during cellular proliferation and migration. As
cell cycle inhibitory protein coding genes we can observe the
membership of CDKN1A, the cyclin-dependent kinase inhibitor
1A, which is tightly controlled by transcription factor p53 (He
et al., 2005). Its membership in cluster 2 might be due to the
high importance of balancing proliferation processes against
growth stimulating processes in physiological tissue. Further we
observe PTHLH, the parathyroid hormone-like hormone, to be
part of this cluster, which regulates the epithelial-mesenchymal
interactions during formation of mammary glands and teeth
(Wysolmerski, 2012). Additionally the protein PRKAR2B is part
of this cluster, indicating its late activation, which we already
observe in the phosphoproteome data individually. However,
here we see the confirmation that it is part of the consensus
data from the two independent data sets generated on different
platforms. Also MMP2 is part of cluster 2 as well its regulatory
counterpart, TIMP1, a metallopeptidase inhibitor. As the other
metalloproteinases identified in the static consensus graphs
(MMP1 and MMP10) are not members of cluster 2, but of the
immediately positively regulated cluster 1, it can be assumed,
that TIMP1 activation might also have a negative regulatory
impact on these late after EGF stimulation. In the delayed
downregulated cluster 3 we observe RARRES3, the retinoic acid
receptor responder 3, which is known for its growth inhibitory
effects (Hsu and Chang, 2015). A late downregulation thus
can have the function of preventing contrasting growth signals.
SLC3A2, the solute carrier family 3 member 2, encodes a subunit
of a cell surface transmembrane protein complex responsible
for regulation of L-type amino acid transport, which is essential
for cellular growth and proliferation (Yanagida et al., 2001).
Cluster 4, the early negatively regulated cluster, comprises CTGF,
the connective tissue growth factor, whose downregulation might
enhance proliferation of cells upon EGF stimulation. A further
member is IGFBP3, the insulin-like growth factor binding protein
3, which potentiates insulin-like growth factor action and thereby
also stimulates growth promoting effects (Cubbage et al., 1990).
Supposedly, the cells do need less proliferating activation via IGF,
when there is the growth-promoting stimulation of EGF. This
underlines again that signaling patterns are tightly regulated in
regard to their dynamics.

Time Course Integration of Consensus
Graphs with Proteome Data
Wewere interested in how far our approach reveals the dynamics
of elements in the regulatory cascade of a stimulation induced

phosphorylation cascade triggering a specific gene expression,
which then leads to the generation of proteins needed in the
cellular response to that particular stimulation. Therefore, after
integrating the phosphoproteome data in the first pathway
layer based integration, we integrated in a second step also the
proteome data with the results of our pathway-based integrative
analysis dynamically. The delay between consensus transcript
generation and their corresponding protein generation reflects
the time the cell needs for the complete translational and post-
translational process. However, it is known that differences
in protein abundance are only attributable to mRNA levels
by about 20–40% (Brockmann et al., 2007). This underlines
the importance of post-translational modification and is the
reason why we assumed the correlation between increasing
and decreasing transcript expression and corresponding protein
generation to be rather marginal.

For the interpretation of these results we need to be aware of
the different ranges of the expression ratios in the data sets of
different platforms. Thus, a direct comparison of the expression
levels between transcripts and proteins is not possible, however,
a dynamic interpretation is feasible.

Dynamically, we observe both correlating and non-correlating
expression level patterns between transcripts and corresponding
proteins. Based on the time resolution of the measurements
we assume the time delay reflecting the translational and post-
translational processes to be not necessarily observable in the
data, as they can lie in a wide time range. Indeed, correlating
behavior seems not to be shifted in time in our analysis for certain
transcripts (e.g., for CYR61 up to 4 h after EGF stimulation
or THBS1 up to 13 h after EGF stimulation), however, when
performed on a time-series data set with higher resolution, such
time shifts might be observable. Non-correlating expression level
patterns indicate post-translational modifications or a possibly
very rapid degradation of mRNA or the protein product, which
is not captured in the low resolution time measurements. Of the
identified pairs CYR61 is a growth factor inducible protein which
promotes the adhesion of endothelial cells (Brigstock, 2002),
CCND1 is a protein contributing to coordination of mitosis.
High levels of SERPINB2 have been observed to exhibit an anti-
proliferative effect (Croucher et al., 2008). In the time courses
we see an intermediate increase of its protein levels, but an
overall anti-correlating pattern between protein and transcript
levels. THBS1, thrombospondin 1, is known as angiogenesis
regulator (Chandrasekaran et al., 2000). Its protein levels are
similar to that of SERPINB2, however, here we observe rather
correlating expression levels, indicating less post-transcriptional
modification. Also changes in the correlation behavior can be
observed, indicative for a secondary regulatory influence. This
could be induced by variations in mRNA degradation, protein
degradation rates or post-translational modifications.

From the transcript/protein pairs that are observed as part
of the regulatory loops CYR61, THBS1, and CCND1 clearly
have a high influence on EGF stimulated cells during cellular
proliferation, differentiation and survival, while the detection of
SERPINB2 is more intriguing. It is known to inhibit urokinase
plasminogen activators (PLAUs), but its physiological function
has not been characterized comprehensively, although activity

Frontiers in Genetics | www.frontiersin.org 12 January 2016 | Volume 6 | Article 351

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Wachter and Beißbarth Pathway-Based Integration of Proteomics and Transcriptomics Data

in the adaptive immune response has been reported (Schroder
et al., 2011). As we based the time-course integration on the
consensus analysis the discussed time-courses are supported by
both transcriptome and proteome data set. Thus, we hypothesize
the interaction of SERPINB2 and PLAU, its inhibition target, to
be of high relevance for proliferative processes. Our hypothesis is
supported also by literature in the context of cancer: SERPINB2
has been associated with increased survival in breast cancer
patients (Duffy, 2004).

With the integrated time-courses of phosphoproteins,
downstream consensus-graph transcripts and their
corresponding proteins the data implies an extensive post-
translational modification of a number of proteins. This we see
in the transcript/protein pairs investigated in detail here, but also
in the downstream transcripts depicted in gray in Figure 8, with
no corresponding proteins in the list of significantly differentially
abundant proteins. Therefore, our results correspond to what
is known about the low percentage of protein concentration
variations that are affected by mRNA abundances directly (Vogel
and Marcotte, 2012). However, our approach not only enables
a general overall classification of correlating or anti-correlating
transcript/protein pairs, but in addition a time-resolved
interpretation of consensus-based regulatory processes.

Comparison of Separate Data Set Analysis
with Integrated Consensus-Based Analysis
To comprehensively assess the advantage of our data integration
approach based on public pathway knowledge we compared
its results with the ones gained by a separate analysis of the
individual proteomic and transcriptomic data sets. Waters et al.
(2012) performed a separate pathway analysis and reported
network statistics, such as the number of nodes in the largest
cluster, the number of edges in the network and the two primary
hub nodes, however, this analysis was limited to datameasured 0–
4 h after EGF stimulation. Interestingly, the hub genes identified
in the microarray based network were the transcription factors
FOS and EGR1, while the hub proteins identified in the proteome
data were EGFR and ITGB1. Comparing these results to our
results from the pathway-based integrative analysis, we likewise
observe FOS and EGR1 to be highly important regarding
regulatory mechanisms during the initial cellular response. Yet,
we additionally derived further information than what is given
by the separate analysis: We evaluated these genes to play a
significant role in the immediate early cellular reaction based
on static consensus profiles. Furthermore, we saw that these are
mainly influenced by IL1A and the phosphorylation of MAPK1
directly as well as indirectly. Based on the time profile clustering
we saw on top that they belong to the early positively regulated
cluster. The protein hubs that are identified via the separate
analysis, however, cannot be found in our consensus analysis,
as the consensus is confined to the small set of measured
phosphoproteins.

In a second separate analysis of the proteomic and
transcriptomic data sets Waters et al. (2012) performed separate
gene set enrichment on the basis of differentially expressed
proteins and transcripts. The three most significant biological
processes identified for the transcriptomic data set were “cell

cycle,” “mitosis,” and “protein folding,” while for the proteomic
data set the most significant process was “protein synthesis.” In
a comparison the authors found considerable differences in the
gene set enrichment results. Although this type of analysis is
widely used for gene expression data it is arguable in how far
“gene set” and “protein set” enrichment should be compared
directly due to the different biological layers the data and
possibly also network knowledge originates from. Thus, we see an
inherent problem in the simplified layer-unspecific comparison
with subsequent interpretation. Additionally, the results allow no
conclusions or hypothesis generation on the molecular level.

In summary, we conclude that the integrated analysis of
the two data sets moves the focus to the dynamic interplay
of regulatory mechanisms and enables a layer specific and
detailed regulatory analysis of the cellular response to external
stimulation.

Comparison of Data Integration
Approaches in Coupled High-Throughput
Data Sets
The data integration approaches applied by Waters et al. (2012)
were based on RNA/protein pairs cross-referenced between the
platforms. However, no layer-specific analysis was performed.
In a canonical correlation analysis the 199 RNA/protein pairs
comprising all measurement time points were investigated with
the result of intense post-transcriptional regulation on the
protein layer. The benefit compared to a simple correlation
analysis is that it captures also concordance or disconcordance of
pairs when a temporal delay is observed. With our time-course
integration we could also observe this effect, individually for
specific phosphoprotein initiated signaling cascades. With our
approach it is additionally possible to analyze transcriptional and
translational dynamics of each cascade individually.

In the integrative analysis of Waters et al. (2012) major cell
processes of the combined data were then ranked to early (0–
4 h), intermediate (8–13 h) and late (18–24 h) time domains after
EGF stimulation. A general shift from categories “cytoskeletal
organization” and “regulation of cell cycle” (0–4 h) toward anti-
apoptotic and cell adhesion pathways (8–13 h) was observed.
An increased representation of the “mitosis” category between
18 and 24 h after stimulation corresponded to an increase of
mitotic cells monitored by flow cytometry in parallel. A direct
comparison of the analyses results is not possible here, though
the results we found in the consensus-based dynamic analysis of
the data agree roughly with the results of Waters et al. (2012),
when comparing the function of individual consensus molecules
with the GO biological process category names. Although having
category names enables in general a better overview of the
data, it does not allow individual identification of regulatory
interactions. Therefore, we consider our approach as valuable
additional method in order to get a better understanding of the
dynamic biological processes.

Furthermore, integrated signaling networks from all data sets
were investigated in Waters et al. (2012). Not surprisingly, the
microarray data set contributed the highest number of nodes in
the merged network. Compared to the signaling networks from
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single data sets, the integrated network comprised increasingly
linked nodes, reflected in the number of edges and the degree of
the largest cluster reported. The two primary hub nodes of the
integrated network were FOS and SRC, while the hub nodes in the
network generated from exclusively microarray data were FOS
and EGR1, generated exclusively from proteome data EGFR and
ITGB1 and exclusively from phosphoproteome data STAT3 and
MAPK1. Interestingly, we also found FOS and EGR1, as well as
STAT3 and MAPK1 as consensus molecules in our consensus-
based dynamic analysis with considerable regulatory influence
during the cellular response after EGF stimulation. The proteome
hub nodes EGFR and ITGB1, as well as the hub node SRC from
the integrated network were not part of our results due to the
low number of phosphoproteinsmeasured in the study. However,
we found already considerable amount of regulatory mechanisms
when including only the phosphoproteome data set as initial data
set in our analysis. TheMMP cascades identified in the integrated
analysis fromWaters et al. (2012) as most robust response to EGF
stimulation were identified as consensus molecule based process
by our approach as well.

Unfortunately, in the integrated analysis of Waters et al.
(2012) only time domains were considered in contrast to our
individual time point analysis. This enables a rough summarized
view on the signaling process, yet it does not fully exploit the
information encoded in the dynamics. Likewise, the GO term
analysis performed is based on a subset of RNA/protein pairs and
results in a summarized interpretation, but it does not enable
an individual regulatory mechanistic interpretation. Thus, we
consider our approach as valuable complement in the analysis of
coupled high-throughput data sets.

CONCLUSION

The presented data integration approach shows a way to gain
a much deeper understanding of biological processes if time-
course measurements and data from different high-throughput
platforms representing the different functional layers of the cell
are combined. Our approach enables a functional linking of
regulatory processes over the transcriptional and translational
cycle, even if the temporal resolution of the example data set is
quite low, data has only beenmeasured on two functional cellular
layers and the phosphoproteome data set is very limited. This sets
the basis for the integration of further cellular layers, as following
regulation upon external perturbation in a detailed way provides
a much deeper understanding of biological processing.

Bioinformatic tools like the R package pwOmics promote
the generation of coupled data sets as they offer the possibility
of an integrated analysis and help to sort the vast data
sets in a biologically interpretable manner. By applying the
different analysis steps implemented in pwOmics we showed that
biological interpretation is facilitated and the results correspond
to current biological knowledge about EGF stimulation generated
in low and high-throughput experiments. Furthermore, we
identified interesting regulatory relationships that were not
observed yet in physiological EGF signaling. As our approach
considers data from the different functional cellular layers
individually, it enables to identify the regulatory interplay

between these layers.We have demonstrated this in the consensus
analysis, which is able to identify the molecular response minutes
to hours after stimulation as feedback mechanism with a wave-
like regulatory pattern generated by IEGs, DEGs, and SRGs and
their corresponding proteins. We could also identify previously
published pathway crosstalk via activation of MMPs (Yarden
and Sliwkowski, 2001). Furthermore, we could ascertain the
link in EGF signaling between the two molecules GADD45A
and PCNA, in the investigated data sets, which was previously
reported (Chen et al., 1995). Interestingly, we also found PTHLH
in the consensus molecules as part of the secondary cellular
response, which is involved in the formation of mammary
glands (Wysolmerski, 2012). Furthermore, we could identify the
regulatory interaction of PLAU and SERPINB2 to be also of
high relevance in physiological EGF signaling. Compared with
the previously performed integrative analysis on the coupled
data set we gain a complementary, and much more detailed
view on cellular signaling processes, enabling the generation of
biological hypothesis about individual regulatory mechanisms
involved in the dynamic interplay of signaling pathways and
feedback responses. With the examples stated above we could
show, that our integrative approach is able to identify regulatory
patterns, molecular interactions and dynamically orchestrated
cellular response mechanisms.

In order to link the different functional cellular layers it is
beneficial and necessary to integrate knowledge from public
databases which builds a frame for placing and linking the
individual analysis results. This has the advantage of utilizing a
vast amount of collected and curated information, which stays
unused otherwise and can add an additional information layer
for interpretation of the data. On the other hand this prior
knowledge also directs the results in a certain extent, thus the
quality of the databases used has to be taken into consideration
when interpreting the overall results. A further caveat is that the
public database knowledge available in most databases is not cell
type or tissue specific resulting in a generalized analysis. However,
as more cell type or tissue specific knowledge is collected such
databases can be build up and integrated in the presented analysis
workflow.

In the consensus-based dynamic analysis we make the
simplifying assumption of a gradual change of signaling over
time. Clearly, this does not hold true for individual cells and
still is a rough assumption for a set of cells as there have been
found oscillatory mechanisms which work at high frequencies
(Avraham and Yarden, 2011), for example, and which are purely
not identifiable via such a time resolution. However, we can
still gain a lot of knowledge about the regulatory processes
that are encoded in the comparably slow dynamic processes.
Of course, there can be even more biologically functional layers
measured in high-throughput experiments in a parallel manner
over time, such as siRNA, epigenetic influences etc. At the
moment such data sets are still rare, but we expect them
to be generated increasingly. It will be interesting for future
projects to include such additional layers into an integrative
analysis.

We showed that the hypotheses on regulatory mechanisms
generated via our integrative approach could be confirmed with
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independent low-throughput data sets. Although such time-
course data sets measured in parallel enable a detailed analysis, it
is not yet possible to infer from these data sets every regulatory
aspect in detail. Nevertheless, our approach is a step toward
portraying the whole picture of regulatory influences on the
molecular level.
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Figure S1 | Static consensus profiles of all members of the static

consensus graphs. Color coding corresponds to the one used in the static

consensus graphs (red, consensus proteins; yellow, steiner node proteins;

lightblue, consensus transcription factors; green, consensus genes).

Figure S2 | Static consensus graphs for time points 1h after EGF

stimulation.

Figure S3 | Static consensus graphs for time points 4h after EGF

stimulation.

Figure S4 | Static consensus graphs for time points 8h after EGF

stimulation.

Figure S5 | Static consensus graphs for time points 13h after EGF

stimulation.

Figure S6 | Static consensus graphs for time points 18h after EGF

stimulation.

Figure S7 | Static consensus graphs for time points 24h after EGF

stimulation.

Figure S8 | Time course integration for phosphoproteins MAPK14 and

PRKAR2B. Downstream consensus transcripts identified for MAPK14 and

PRKAR2B were mapped to differentially abundant proteins. Note that the

measurement range of the expression profiles across platforms can vary.

Phosphoprotein time course data is shown in solid, black lines, non-matching

transcript data in solid, gray lines and matching transcript and proteome data in

rainbow color palette with proteins depicted as solid lines and transcripts depicted

as dotted lines.

Table S1 | List of molecule cluster membership in the time profile analysis.

Data origin is encoded in the abbreviation after each protein/gene name (_g,

microarray data; _p, proteome data).

Table S2 | Lists of pathways identified in the downstream analysis based

on the phosphoprotein data for time points 0.25, 1, 4, 8, 13, 18, and 24h

after EGF stimulation. Table includes information about the pathway database

used for pathway identification (as part of their ID) and the corresponding pathway

names.

Table S3 | Lists of pathways identified in the upstream analysis based on

the differentially expressed transcripts for time points 1, 4, 8, 13, 18, and

24h after EGF stimulation.
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