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Abstract: Protein–peptide interactions (PpIs) are a subset of the overall protein–protein interaction
(PPI) network in the living cell and are pivotal for the majority of cell processes and functions.
High-throughput methods to detect PpIs and PPIs usually require time and costs that are not always
affordable. Therefore, reliable in silico predictions represent a valid and effective alternative. In this
work, a new algorithm is described, implemented in a freely available tool, i.e., “PepThreader”, to
carry out PPIs and PpIs prediction and analysis. PepThreader threads multiple fragments derived
from a full-length protein sequence (or from a peptide library) onto a second template peptide,
in complex with a protein target, “spotting” the potential binding peptides and ranking them
according to a sequence-based and structure-based threading score. The threading algorithm first
makes use of a scoring function that is based on peptides sequence similarity. Then, a rerank
of the initial hits is performed, according to structure-based scoring functions. PepThreader has
been benchmarked on a dataset of 292 protein–peptide complexes that were collected from existing
databases of experimentally determined protein–peptide interactions. An accuracy of 80%, when
considering the top predicted 25 hits, was achieved, which performs in a comparable way with the
other state-of-art tools in PPIs and PpIs modeling. Nonetheless, PepThreader is unique in that it is
able at the same time to spot a binding peptide within a full-length sequence involved in PPI and
model its structure within the receptor. Therefore, PepThreader adds to the already-available tools
supporting the experimental PPIs and PpIs identification and characterization.

Keywords: PepThreader; protein–protein interactions; protein–peptide interactions; template-based
modeling

1. Introduction

Protein functions are primarily based on their ability to establish interactions both
with other proteins and other biomolecules [1–4]. Since protein–protein interactions (PPIs)
play a key role in cell complexity and functionality, there is considerable interest in this field
and, as a consequence, an ever-increasing availability of different methods and approaches
for such studies. In parallel, experimental methods used to investigate protein–peptide
interactions (PpIs) are similar to those used in PPIs studies and can be divided into three
main classes: atomic-resolution approaches (crystallography [5,6], NMR [7], cryo-EM [8]),
mass spectrometry [9,10], and other biochemical/biophysical methods [11–14]. Large-
scale analysis, which is possible thanks to the synthesis of stabilized peptides [15–17]
and the use of peptide arrays [18], has boosted peptide-based studies. Such information,
in turn, can be used for drug design purposes, e.g., to design peptide derivatives able
to hamper the interactions of therapeutic targets, also known as peptidomimetics [19].
However, the rate limiting step of in vitro PPIs and PpIs characterization is often the
expression and purification of proteins involved in the interaction: many are insoluble
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or toxic when expressed in hosts, or they cannot be obtained in a great amount. For this
reason, computational predictions represent a valid and effective strategy supporting the
characterization of PPIs/PpIs by experimental means.

The high-resolution prediction of PpIs always requires the modeling of complex
structures. Ab initio computational docking is often used for this purpose. Among the
different docking methods developed so far [20–22], Rosetta FlexPepDock [23] and HAD-
DOCK [24,25] predict complexes from an extended peptide and a given binding site, using
local docking algorithms and optimization. An alternative, template-based approach, e.g.,
GalaxyPepDock [26], exploits the information derived from the increasing number of PpIs
deposited in the Protein Data Bank (PDB; [27]), to generate high-resolution PpI complex
models. When applicable (that is, when a structural template is highly similar to the inves-
tigated complex), the accuracy of template-based approaches, as assessed by the CAPRI
(Critical Assessment of Predicted Interactions) project [28], often outperforms ab initio PpI
prediction methods [29–31].

However, it must be noted that in all the mentioned cases, the identity (i.e., its se-
quence) of the peptide involved in the interaction must be known. Indeed, traditionally the
main challenges lying ahead of a successful PpIs prediction are represented by the so-called
“flexibility” and “scoring” problems [32]. The former is related to the huge number of
possible conformations that the protein and peptide can have upon binding and induced
fit. The latter is due to the difficulty of correctly ranking the possible solutions. On the
other hand, a third related issue, perhaps overlooked to date and hereinafter named the
“spotting” problem, is the ability to identify (“spot”) the peptide fragment of a full-length
protein binding to a second receptor, and at the same time simulate its conformation and in-
teraction. This challenging issue can be considered at the crossroads between PPIs and PpIs
prediction and modeling. In an attempt to fill this structural gap, a computational tool is
presented that is able to cope with the “spotting” problem, using an efficient template-based
approach that requires short times of analysis. This program, called PepThreader, receives
as input a full-length target sequence and gives as output a pool of peptide fragments that
could possibly bind a receptor partner, providing also 3D models of the predicted protein–
peptide complexes. To this end, the template-based approach of PepThreader makes use of
a 3D structure containing the same receptor protein, in complex with a peptide similar to
the target.

2. Methodology

The overall flow chart of PepThreader is described in Figure 1. PepThreader receives
as input a library of peptides derived from a protein sequence provided by the user, or a
library derived from putative binding peptides selected by the user, and it gives as output
a pool of peptides that could possibly bind a target protein, providing also 3D models of
the predicted protein–peptide complexes.

The software is entirely written in Python [33] and freely available. It makes use of
widespread Python libraries for data analysis, such as Biopython [34] and Pandas [35]. The
code can be found at https://github.com/cgasb/PepThreader.git (accessed on
20 January 2022).

https://github.com/cgasb/PepThreader.git
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Figure 1. Workflow of the PepThreader algorithm. PepThreader receives as input a protein sequence 
or a library of peptides in FASTA format and a template protein–peptide complex in PDB format. 
The sequence is divided into multiple peptides and the latter are ranked according to an alignment 
matrix score. The best ranking peptides are then modeled on the template protein and 3D structure 
models are generated for these peptides. A second structure-based ranking is then calculated by 
energy scoring functions. The output consists of a series of peptides in complex with their receptor, 
ranked by sequence-based and energy-based scores. 
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January 2022). 
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different inputs are required to carry out the analysis: a PDB structure (hereinafter the 
“receptor”) in complex with a cognate peptide; the sequence of a protein that is known to 
interact with the receptor, in FASTA format; the number of models (“decoys”) built for 
each peptide fragment, extracted from the input sequence; if multiprocessing is required, 
the number of cores used for the analysis; and an output directory where 3D models 
should be stored. Every fragment of the query sequence will be associated to a specific 
subdirectory containing the peptide sequence, 3D models, and scoring results. 

2.2. Multiple Peptides Fragments Generation and Scoring by Alignment Matrices 
Once the input files are loaded, the sequence of the protein is divided into multiple 

fragments (“k-mers”), based on the length k of the template peptide. The algorithm makes 
use of a “sliding window” across the input sequence and divides it into multiple 
fragments. Optionally, fragments of different length k can be generated. The obtained 
peptide k-mers are then ranked according to a score that is computed making use of 
sequence matrices. This step of the algorithm, which is mainly sequence-based (see 
below), requires low computational costs, thus resulting in an extremely fast process. 

At the moment, six different sequence scoring matrices are implemented in 
PepThreader: BLOSUM62 [36], QU3 [37], their “GALAXY” versions (BLOSUM62-
GALAXY and QU3-GALAXY, similarly as described in the GalaxyPepDock algorithm 
[26]), and “Modified” versions (BLOSUM62-M and QU3-M; see below). This modification 
allows for the adding of binding site characteristics (derived from the template complex) 
to the simple alignment matrix, and to obtain a score that does not depend exclusively on 
sequence similarity. Indeed, a major flaw of sequence scoring matrices is the lack of 

Figure 1. Workflow of the PepThreader algorithm. PepThreader receives as input a protein sequence
or a library of peptides in FASTA format and a template protein–peptide complex in PDB format.
The sequence is divided into multiple peptides and the latter are ranked according to an alignment
matrix score. The best ranking peptides are then modeled on the template protein and 3D structure
models are generated for these peptides. A second structure-based ranking is then calculated by
energy scoring functions. The output consists of a series of peptides in complex with their receptor,
ranked by sequence-based and energy-based scores.

2.1. Required Inputs

The first release of PepThreader provides at the moment a command-line usage only
(in future releases, a graphical interface and a web server are foreseen). As described next,
different inputs are required to carry out the analysis: a PDB structure (hereinafter the
“receptor”) in complex with a cognate peptide; the sequence of a protein that is known to
interact with the receptor, in FASTA format; the number of models (“decoys”) built for each
peptide fragment, extracted from the input sequence; if multiprocessing is required, the
number of cores used for the analysis; and an output directory where 3D models should be
stored. Every fragment of the query sequence will be associated to a specific subdirectory
containing the peptide sequence, 3D models, and scoring results.

2.2. Multiple Peptides Fragments Generation and Scoring by Alignment Matrices

Once the input files are loaded, the sequence of the protein is divided into multiple
fragments (“k-mers”), based on the length k of the template peptide. The algorithm makes
use of a “sliding window” across the input sequence and divides it into multiple fragments.
Optionally, fragments of different length k can be generated. The obtained peptide k-mers
are then ranked according to a score that is computed making use of sequence matrices.
This step of the algorithm, which is mainly sequence-based (see below), requires low
computational costs, thus resulting in an extremely fast process.

At the moment, six different sequence scoring matrices are implemented in PepThreader:
BLOSUM62 [36], QU3 [37], their “GALAXY” versions (BLOSUM62-GALAXY and QU3-
GALAXY, similarly as described in the GalaxyPepDock algorithm [26]), and “Modified”
versions (BLOSUM62-M and QU3-M; see below). This modification allows for the adding
of binding site characteristics (derived from the template complex) to the simple alignment
matrix, and to obtain a score that does not depend exclusively on sequence similarity.
Indeed, a major flaw of sequence scoring matrices is the lack of information regarding
the biochemical and biophysical properties of the chemical environment of each amino
acid residue in its folded protein chain [36]. Therefore, the original BLOSUM62 and QU3
matrix scores are modified by a weight that multiplies the number of hydrophobic or ionic
protein residues contacting the given peptide residue in the template complex structure
by the scoring matrix components with scores > 0. In this way, more emphasis is put on



Biomolecules 2022, 12, 201 4 of 14

the peptide residues contributing to interactions with the receptor, than on other residues
during peptide alignment.

This concept can be expressed in mathematical terms as follows:

Galaxy B(j,j′) = {1 + [Ninter(j) × ΘB(j,j′)]} × B(j,j′) (1)

where B(j,j′) is the original value of the scoring matrix, Ninter is the number of interacting
hydrophobic or ionic protein residues with the peptide residue j in the template complex
structure, and Θ is a modifier that assume a value of 0 if B(j,j′) is ≤0, and 1 if B(j,j′) is >0.
Hydrophobic (or ionic) contacts are defined when at least two heavy atoms of protein–
peptide residue pairs are within a certain distance threshold (default is 5.0 Å; [26]). In
“GALAXY” matrices [26], the modification is applied only on evolutionary conserved
residue pairs (B(j,j′) is >0). On the other hand, we also tested the performance of these
modified matrices by setting Θ always to 1. In this way, we also considered those cases
where the two residue pairs are not well conserved during evolution (B(j,j′) ≤ 0). To
discriminate these two conditions in PepThreader, they are hereinafter named “GALAXY”
and “Modified” matrices, respectively.

As a result, the algorithm ranks all the peptides and returns a list of k-mers that could
possibly bind the receptor. Optionally (see below), another structure-based ranking of the
output peptides can be carried out, using scoring functions derived from the obtained 3D
models, with the aim of obtaining a more accurate prediction.

2.3. Template Based 3D Modeling of Protein–Peptide Complexes

3D structures of protein–peptide complexes are then modeled making use of the
MODELLER [38] package. For every protein–peptide complex, the algorithm generates
a number of alternative decoys, each of which is scored according to different scoring
functions (described below). In order to accelerate the process, the modeling part can be
parallelized in multiple cores whose number is set by the user.

2.4. Scoring and Ranking of Protein–Peptide Complexes with 3D Scoring Functions

After the first sequence-based ranking, a protein–peptide complex can be optionally
subjected to a reranking based on 3D scoring functions. Only the top-scoring peptides
coming from the first ranking (with a threshold score decided by the user) are considered
for the second ranking. In this way, the time spent in model generation and assessment
is reduced. Indeed, though computationally much more expensive, such structure-based
reranking is particularly accurate at discriminating binding from non-binding peptides.
The aim of the reranking procedure is therefore to improve the ranking accuracy to spot
the true-positive binding peptides. At the moment, three different structure-based scoring
functions are implemented in PepThreader: Soap potentials [39]; DOPE score [40]; and
Voronoi-derived scores, such as the voromqa and voromqa interaction score [41]. This class
of statistical potentials can be described as particular functions that associate a score
(also defined as “statistical potential energy”) to a distance between an atom pair in a
molecule. The value of this score is proportional to the frequency of these distances
observed in a training set of experimentally determined structures. In this way, the different
types of interactions (polar, hydrophobic, and electrostatic) are implicitly computed before
measuring the peptide–protein docking score.

2.5. Benchmark Dataset

PepThreader has been tested using a dataset of protein–peptide complexes derived
from different databases: PixelDB [42], LEAD PEP [43], PEP-PRO [44], PEPTIDB [32],
and ACCLUSTER [45]. Each entry of the dataset is composed of pairs of protein–peptide
complexes, with a single protein receptor and two different peptides. While the first
protein–peptide complex is used as template and is needed to carry out the analysis, the
other is used to verify the ability of PepThreader to spot the true-positive peptide among
the set of fragments generated from the full-length sequence. In assembling the final
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dataset, composed of 292 entries (Supplementary File S1), different requirements were
taken into consideration: peptides length should be between 4 and 14 residues; sequence
identity between peptide pairs should be ≤80% (this filter was applied to remove pairs
with highly similar sequences); the ratio of the length of the shortest peptide in the pair over
the length of the longer one should be >0.6 (because peptides should have similar length);
and the binding site of the receptor should be the same for both peptides. With those
filters, most entries were composed by structures derived from MHC complexes, which are
the most common protein–peptide complexes stored in the PDB. This observation led us
to reduce the number of pairs in the dataset by randomly selecting a maximum number
of pairs (in this case five) for every receptor. To highlight a possible correlation between
the performance of PepThreader and the physico-chemical properties of the peptides, the
values of the hydrophobicity index of each peptide in our dataset were computed and
correlated to the rank of each peptide obtained with the SOAP-PEP scoring function. This
analysis does not show any type of correlation (Pearson correlation coefficient = −0.07;
data not shown).

The accuracy tests were carried out considering the number of times PepThreader
could spot the experimentally determined peptide among the 50 top-scoring peptides only
with sequence scoring matrices, or also with structure-based scoring functions (top 25).

2.6. Comparison of Target and Template Peptide–Receptor Complexes

In order to evaluate the level of structural divergence between target and template
peptides bound to the same receptor, we used the root mean square deviation (RMSD)
metric. When we considered a pair of target and template peptide–receptor structures, we
first rigidly superimposed the receptor chains of the two structures. We then computed
the RMSD between the Cα atoms of the equivalent residues of the peptides (equivalences
are attributed according to a sequence-based alignment between the peptides). The RMSD
value is computed as follows:

RMSD =

√√√√ 1
N

N

∑
i=1

di
2 (2)

where N is the number of equivalent Cα atom pairs and di is the distance in space of the
i—the pair after the superimposition of the receptor chains. The lower the RMSD value
is, the higher is the level of structural similarity between the conformations of the two
peptides when bound to the receptor.

3. Results and Discussion
3.1. Overview of PepThreader

Given a protein sequence (or library of peptides), PepThreader predicts (“spots”)
which fragments are able to bind to a given protein receptor. In order to identify the
binding peptide(s), PepThreader integrates two different ranking schemes, a sequence-
similarity-based score, and a structure-based forcefield. The first ranking method is used
to filter out peptides that, according to their sequences, are unlikely to bind to the protein
target. This preliminary step helps to reduce the number of potential binders to be tested,
saving the high computational time that would be required to 3D model hundreds of
fragments for a protein complex. Optionally, the top-scoring peptide sequences can be then
3D modeled in complex with the protein target and used to compute an interaction score
that is derived from a structure-based metric (see the section named “Scoring and Ranking
of protein–peptide complexes with 3D scoring functions”). At the end of both schemes, the
algorithm returns a ranked list of peptides that could possibly bind the template protein.

3.2. Properties of Query Sequences and Target–Template Pairs

The right-skewed distribution of the full-length query sequences shows that most
of the queries have a length that is between 100 and 1500 amino acids, with an average
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length of 742. Only seven sequences are over 2500 amino acids long. Regarding the query
peptides, which were selected for having a length between 4 and 14 residues (Figure 2b), a
sequence length of nine residues are the most frequently found.
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The target–template complexes were analyzed by comparing the template and the
query peptides for their sequence identity and structural similarity. The two classes of
peptides are in most cases quite different and their sequence identity is usually between
0% and 30% (Figure 3a). Highly similar peptide sequences would be easily top-ranked
only according to sequence similarity-based scores. Therefore, peptides with a sequence
identity higher than 80% were excluded from the dataset to avoid an overestimation of the
PepThreader performance.
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Figure 3. Distribution of sequence identity and RMSD in complex pairs: (a) Sequence identity in
protein–peptide pairs. As shown in the histogram, the identity goes from 0.0% to a maximum value
of 77.8% (n = 146, mean = 18.2%, std = 19.6%); (b) distribution of the Cα RMSD between the peptides
in the protein–peptide complex pairs, expressed in Angstroms (Å). Values are between 0.4 Å and
6.8 Å (n = 146, mean = 1.8 Å, std = 1.3 Å).

The distribution of the Cα RMSDs (Figure 3b), computed between the target and
template peptides once superposed on the binding pocket of their receptor, showed values
with a mean of 1.82 Å, and a maximum value of 6.79 Å. This distribution is consistent with
the idea that different peptides are bound to the receptor protein with a similar binding
mode (e.g., occupying the same binding pocket and having the same N- to C-terminal
orientation along the pocket).
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3.3. Sequence Similarity-Based Score

Regarding the sequence similarity-based score, we relied on different evolutionary
matrices (Table 1) for benchmarking purposes. In this phase, an output of 50 peptides was
chosen as it seemed an appropriate compromise between the number of peptides to be
evaluated in the next structure-based phase, and the computational time required to 3D
model them. Matrices without any specific modification did not generally perform well
on our benchmark dataset. For example, the unmodified QU3 and BLOSUM62 matrices
spotted the true binder peptides in the top 50 predicted peptide sequences with an accuracy
of 66% and 63%, respectively. On the other hand, the “GALAXY”-modified versions of
the BLOSUM62 and QU3 matrices slightly increased the accuracy of the predictions. The
modified BLOSUM62 matrix (“BLOSUM62-M”; see “Methodology” section) resulted in
being the more efficient alignment matrix in recognizing the experimental binding peptide
as the best ranking (top one in the 24% of the total cases). This percentage reasonably
increases when the output is not limited to the top-ranking peptide, but to a list of best
ranking ones. For example, the accuracy increases from 24% to 49.0%, 62.0%, 69.9%, and to
71.6%, when considering as output 10, 25, 50, and 75 peptides, respectively. According to
these results, we decided to choose the BLOSUM62-M as the default for sequence scoring
purposes in PepThreader.

Table 1. The table shows the performance of several alignment matrices in PepThreader in terms of
percentages of true binders identified in several ranking ranges.

Matrix Top 1 Top 10 Top 25 Top 50 Top 75

BLOSUM62 57/292
(19.5%)

143/292
(49.0%)

165/292
(56.5%)

194/292
(66.4%)

209/292
(71.6%)

BLOSUM62-M 70/292
(24.0%)

143/292
(49.0%)

181/292
(62.0%)

204/292
(69.9%)

209/292
(71.6%)

BLOSUM62
GALAXY

69/292
(23.6%)

143/292
(49.0%)

185/292
(63.3%)

200/292
(69.8%)

217/292
(74.3%)

QU3 48/292
(16.4%)

117/292
(40.0%)

154/292
(52.7%)

183/292
(62.7%)

211/292
(72.2%)

QU3-M 65/292
(22.2%)

138/292
(47.3%)

177/292
(60.6%)

200/292
(68.4%)

214/292
(73.3%)

QU3 GALAXY 61/292
(20.9%)

139/292
(47.6%)

178/292
(61.0%)

201/292
(68.8%)

214/292
(73.3%)

The relationship between the length of the query sequence and the performance
of the BLOSUM62-M is reported in Table 2. This analysis showed that the algorithm
performs worst in query sequences with a length between 500 and 1000 residues, while,
surprisingly, it seems to perform better on those sequences that have an extremely long
length (2000–5000). This result was somewhat unexpected, as the number of fragments
is lower in the case of shorter sequences. Likely, the nature of the peptide sequence and
the possible presence of consensus sites positively influence the results. Furthermore, as
expected, an improvement of the performance is observed with an increase of sequence
identity (Table 3).

Table 2. Relationship between the query sequence length and the efficiency of BLOSUM62-M. The
table reports the algorithm efficiency in terms of percentage of true binders identified.

Matrix Top 10 Top 25 Top 50 Top 75

Length 0–500 69/138
(50.0%)

92/138
(66.6%)

101/138
(73.2%)

106/138
(76.8%)

Length 500–1000 30/79
(38.0%)

38/79
(48.1%)

45/79
(57.0%)

49/79
(62.0%)
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Table 2. Cont.

Matrix Top 10 Top 25 Top 50 Top 75

Length 1000–2000 32/58
(55.2%)

39/58
(67.2%)

42/58
(72.4%)

44/58
(75.9%)

Length 2000–5000 12/17
(70.6%)

12/17
(70.6%)

16/17
(94.1%)

16/17
(94.1%)

Table 3. Relationship between sequence identity of template–query peptides and efficiency of
modified BLOSUM62. The table reports the algorithm efficiency in terms of percentage of true
binders identified.

Matrix Top 1 Top 10 Top 25 Top 50

SeqId 0–25 37/162
(22.8%)

56/162
(34.6%)

75/162
(46.3%)

86/162
(53.1%)

SeqId 25–50 79/102
(77.4%)

98/102
(96.1%)

101/102
(99.0%)

101/102
(99.0%)

SeqId 50–75 18/19
(94.7%)

18/19
(94.7%)

19/19
(100%)

19/19
(100%)

SeqId 75–100 9/9
(100%)

9/9
(100%)

9/9
(100%)

9/9
(100%)

3.4. Structure-Based Score

The top 25 peptide sequences, identified after the initial sequence similarity-based
scoring scheme, were then used to generate 3D models that were subsequently ranked
based on their interaction energy computed with four different scoring functions.

To compute only rank improvements over the first sequence-based scoring scheme,
the total number of protein–peptide complexes was reduced by removing from the analysis
the experimental peptides already ranked among the top 25 by BLOSUM62. As reported in
Table 4, among the tested scoring functions, SOAP-PPI showed the best ability to recognize
the true binders (top 10; 55.9%) on the entire benchmark dataset. This value further
increased when considering the top 25 peptides (80.0%). SOAP-PPI was also the scoring
function with the highest percentage of rank improvements (53.5%) and the only one to
have a positive average rank change. It is important to mention that those changes are
greatly conditioned by the gap between the rankings of the two scoring schemes, e.g., a
significant negative result can highly influence the average value. Indeed, if considering
only the positive ranking improvements, the use of scoring functions increased on average
the rank value of the experimental binding peptides of 12 positions for the SOAP-PEP
scoring function, and 15 positions for the voromqa scoring function. Therefore, the mean
positive improvement in ranking obtained with structure-based scoring functions justifies
their use in refining the predictions of PepThreader.

To get additional insights into the second structure-based scoring scheme of PepThreader,
the performance of all the scoring functions was compared to the RMSD of each target–
template complex. To this purpose, the dataset was divided into three different classes,
according to the RMSD value between the pairs of protein–peptide complexes: “Low”
(L; RMSD from 0.0 Å to 1.5 Å); “Mid” (M; RMSD from 1.5 Å to 3.0 Å); and “High” (H;
RMSD above 3.0 Å). Low values in RMSD between templates can be partially related to
the sequence identity percentage of the peptides, which is 0.32, 0.23, and 0.12 for “Low”,
“Mid”, and “High” RMSD values, respectively.

Since the structure-based score depends on the modeled peptide conformation, a high
performance for the algorithm in top-ranking queries with low RMSD values is expected.
The change in the performance when the structure-based score is computed, rather than
the sequence-based only, showed, for all scoring functions, a performance increment when
queries with high RMSD values were analyzed (Table 5). Therefore, the usage of a structure-
based score can be of utmost importance in the identification of the true binders, even
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when the analyzed peptides have a different binding mode with respect to the one used as
a template. It is likely that the low amelioration of the efficiency when analyzing queries
with low RMSD values underlies the ability of the algorithm in identifying the true binders
already in the sequence-based ranking, due a correlation between high sequence identity
and low RMSD values.

Table 4. Ranking improvements and efficiency of the scoring functions. In brackets are shown the
percentages of the ratios and the average rank change calculated on positive results.

Scoring
Function

Number of
Improved

Average Rank
Change

Top 10 after
Reranking

Top 25 after
Reranking

DOPE 42/127
(33.1%)

−5.9
(13)

42/127
(33.1%)

87/127
(68.5%)

SOAP-PPI 68/127
(53.5%)

0.5
(13)

71/127
(55.9%)

102/127
(80.0%)

SOAP-PEP 62/127
(48.8%)

−0.1
(12)

69/127
(54.3%)

102/127
(80.0%)

voromqa 51/127
(40.2%)

−1.6
(15)

57/127
(44.8%)

96/127
(75.6%)

voromqa-int 50/127
(39.4%)

−2.2
(13)

56/127
(44.1%)

97/127
(76.4%)

Table 5. Ranking improvements and performance of the scoring functions. In brackets are shown
the percentages of the ratios and the average rank change calculated in positive results. The results
for each scoring function are divided in groups according to RMSD values (L; RMSD from 0.0 Å to
1.5 Å); “Mid” (M; RMSD from 1.5 Å to 3.0 Å); and “High” (H; RMSD above 3.0 Å).

Scoring
Function

N.
Improved

Average
SeqId

Average Rank
Change

Top 10 after
Reranking

Top 25 after
Reranking

DOPE (L) 23/77
(29.9%) 0.23 −6.5

(13.4)
42/127
(33.1%)

87/127
(68.5%)

DOPE (M) 11/36
(30.6%) 0.16 −5.9

(16.6)
71/127
(55.9%)

102/127
(80.0%)

DOPE (H) 8/14
(57.1%) 0.13 −1.6

(8.2)
69/127
(54.3%)

102/127
(80.0%)

SOAP-PPI (L) 43/77
(55.8%) 0.27 0.13

(9.9)
57/127
(44.8%)

96/127
(75.6%)

SOAP-PPI (M) 17/36
(47.2%) 0.22 1.1

(15.5)
56/127
(44.1%)

97/127
(76.4%)

SOAP-PPI (H) 8/14
(57.1%) 0.09 1.1

(9.0)
7/14

(50.0%)
11/14

(78.6%)

SOAP-PEP (L) 36/77
(46.8%) 0.27 −0.8

(10.5)
44/77

(57.1%)
62/77

(80.5%)

SOAP-PEP (M) 18/36
(50.0%) 0.20 1.0

(15.2)
16/36

(44.4%)
29/36

(80.6%)

SOAP-PEP (H) 8/14
(57.1%) 0.10 1.0

(8.4)
9/14

(64.3%)
11/14

(78.6%)

voromqa (L) 31/77
(40.3%) 0.22 −1.7

(12.6)
39/77

(50.6%)
61/77

(79.2%)

voromqa (M) 13/36
(36.1%) 0.19 −2.3

(18.2)
13/36

(36.1%)
24/36

(66.7%)

voromqa (H) 7/14
(50.0%) 0.11 0.71

(13.6)
5/14

(35.7%)
11/14

(78.6%)

voromqa-int (L) 28/77
(36.4%) 0.22 −2.2

(13.6)
37/77

(48.1%)
60/77

(77.9%)

voromqa-int (M) 15/36
(41.6%) 0.19 −3.2

(13.8)
12/36

(33.3%)
25/36

(69.4%)

voromqa-int (H) 7/14
(50.0%) 0.11 2.92

(16.1)
7/14

(50.0%)
12/14

(85.7%)
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3.5. An Application of PepThreader: The ESCRT-I Interacting Peptides

As a practical application of the use of PepThreader, in this section we illustrate its
ability to spot a HRS (a mammalian master molecule in vesicular transport and protein
sorting)-derived peptide that binds the TSG101 subunit of ESCRT (Human Endosomal
Sorting Complex Required for Transport), and for which the tridimensional structure of the
complex was solved (PDB: 3OBQ; [46]; Figure 4a). This interaction is a promising potential
therapeutic target for protein–peptide interactions inhibitors, since ESCRT is also required
for HIV-1 budding [47]. The crystal structure of TSG101 in complex with a HIV-1 peptide
“PEATAPPEE” was used as template (PDB: 3OBX; [46]).
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APPEE” highlighted in light blue); (b) the same 3D model of (a) superimposed to the corresponding
crystal structure (PDB code: 3OBQ).

The query HRS protein sequence (UniProt code: O14964; sequence length: 777 residues),
which contains the peptide of interest (“PTPSAPVPL”), was fragmented into 776 short
nonapeptides. According to the sequence-based score of PepThreader (BLOSUM62-M), the
true binder was initially ranked in position 20. Continuing the analysis with the reranking,
thus applying the structure-based score (SOAP-PEP), the true binder was the top ranked
(position 1). Therefore, PepThreader was able to spot the correct peptide and rank it
first out of 776 potential hits. The final RMSD between the obtained 3D model and the
corresponding crystal structure was 0.89 Å (Figure 4b).

3.6. An Application of PepThreader: Identifying the Critical Site of Bora to Bind and
Activate Aurora-A

As a second application of the use of PepThreader, in this section we illustrate its
ability to identify and model the key determinants of human Bora (Protein Aurora Borealis)
required for the activation of the kinase Aurora-A at the onset of mitosis, as recently
described by reference [48]. In the latter, it has been demonstrated that a minimal fragment
of Bora, encompassing residues 18–120, supports the Aurora-dependent phosphorylation
of Plk1 in vitro. Within this region, using mutagenesis on Bora18–120, a motif described
as “M1” (residues 25–34 in Bora) has been pinpointed as a key determinant of Aurora-A
binding and activation [48]. Therefore, we relied on the crystal structure of Aurora-A in
complex with the first 43 residues of TPX2 (a well-characterized allosteric activator of
Aurora-A; PDB: 1OL5 [49]) to assess the ability of PepThreader to spot the M1 motif within
the Bora18–120 region given as input. According to both scores of PepThreader, i.e., sequence-
based BLOSUM62-M and structure-based SOAP-PEP, the M1 motif was first ranked out
of 92 generated peptide fragments. The obtained 3D model highlighted key “hot-spots”
of binding between Aurora-A and Bora that resemble the same interactions observed for
the Aurora-A/TPX2 complex (Figure 5). In particular, the hydrophobic (Tyr10, Phe16, and
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Phe19) and polar (Asp15, Asn18) interactions of TPX2 with Aurora-A are conserved in Bora
(Phe25, Phe31, Leu34, Asp30, and Asn33).
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4. Conclusions

PepThreader is a novel algorithm that has the potential to “spot” peptides binding to
a given target from a full-length sequence or a library of peptides given as input. At the
state of the art, only few software can do this kind of analysis, often requiring long times
and high computational power. Therefore, developing a tool that can recognize binding
peptides, and also generate a 3D structure model of the interaction with the target protein,
can give researchers great help on studying PPIs and PpIs.

The algorithm has an ambitious goal, because discriminating the true binding pep-
tide(s) over a library of hundreds of potential binders on average can be challenging. In the
current release, PepThreader is not always capable of reaching this goal, but it can predict
within a high probability that the true binding peptide(s) could be within a limited subset.
On the other hand, PepThreader comes also with the ability to model the 3D structure of
the protein–peptide complex, and this feature can be used to overcome the simple sequence
similarity criterion and predict whether a single point mutation is sufficient to prevent the
binding of a peptide (e.g., a bulky sidechain replacing a small one would result in steric
clashes that hamper the binding).

In any case, the future development prospects of PepThreader foresee several strategies
to improve its performance. For example, regarding the sequence-based ranking, the
alignment matrices could be modified to take into account the secondary structures of
both template and query peptides. Indeed, if the template and the target peptides have a
similar secondary structure, the alignment score could be rewarded, leading to a higher
rank for these peptides. Moreover, it is reasonable to consider that recent machine learning
approaches for protein structure prediction (e.g., AlphaFold2 [50]) will be tailored for
modeling protein–peptide interactions. Though MODELLER, the current modeling engine
implemented into PepThreader, is sufficiently accurate to this purpose, using advanced
statistical modeling approaches could produce even more accurate predictions.

In conclusion, PepThreader is a unique tool that is able at the same time to spot a
binding peptide within a full-length sequence involved in PPI and model its structure
within the receptor. Currently, there are no other tools able to perform these kinds of
predictions with such a simple approach and short times of analysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom12020201/s1, File S1: Dataset of 292 entries used to benchmark PepThreader.
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