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Abstract: In this paper, a dynamic color-variable solar absorber is designed based on the phase
change material Sb2Se3. High absorption is maintained under both amorphous Sb2Se3 (aSb2Se3) and
crystalline Sb2Se3 (cSb2Se3). Before and after the phase transition leading to the peak change, the
structure shows a clear color contrast. Due to peak displacement, the color change is also evident
for different crystalline fractions during the phase transition. Different incident angles irradiate the
structure, which can also cause the structure to show rich color variations. The structure is insensitive
to the polarization angle because of the high symmetry. At the same time, different geometric
parameters enable different color displays, so the structure can have good application prospects.

Keywords: dynamic color-variable solar absorber; phase change material Sb2Se3

1. Introduction

As the most widely used and abundant clean energy, solar energy has always been the
most popular among clean energy sources, and the utilization of solar energy has always
been a hotspot for scientific research. Photovoltaic conversion [1–4] and photothermal
conversion [5–8] are currently the main approaches for solar energy utilization. Currently,
the conversion efficiency of photovoltaic systems is low, and the photoelectric conversion
efficiency of one-dimensional structured solar cells is only around 30%. Solar cells with
higher conversion efficiency can reach 47.1% by the combined action of multiple semi-
conductor materials with different band gaps [9], but they require near-perfect materials
and multiple absorption band gaps. Solar photothermal conversion can be applied to
thermophotovoltaic [10–13] and thermoelectric power generation [14–16], and catalytic
hydrolysis [17–20]. At the same time, the utilization of light energy is higher, the material
requirements are lower, and the equipment structure is simpler and has a low failure
rate. A broadband solar absorber [21,22] is the key to solar thermal conversion, which
directly affects the efficiency of solar thermal conversion systems and thermophotovoltaic
systems. There are two main ways to improve the absorption capacity of solar absorbers:
(1) increasing the absorption bandwidth, (2) increasing the absorption rate in the region
of higher solar radiation capacity. At present, broadband absorbers still have problems,
such as a narrow absorption bandwidth and single application. Therefore, it is necessary to
design efficient and multifunctional broadband absorbers.

If only solar absorption is studied in the visible band, it would be rather limited. The
addition of structural color studies can enrich the visible spectral studies. In general, the
color does not change as long as the structure and dimensions of the microstructure and the
optical properties of the constituent material do not change [23]. However, the color change
of the conventional structural color requires changing the size of the structure to achieve
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the shift in the spectrum to cause the color change, which is a very challenging task. The
emergence of phase change materials has changed this situation. Phase change materials
have enormous potential for dynamic display [24] because they can change the internal
atomic arrangement structure and thus switch between different phase states under optical,
electrical, or thermal stimulation. During the phase transition, the physical properties of
the material, such as force, heat, light, and electricity, are changed due to the change in
the arrangement of atoms inside the material. Ge2Sb2Te5 (GST) has been widely studied
as a representative of phase change materials [25,26]. The internal structure of GST is
stable before and after the complete phase transformation. The phase transition of GST
can change the optical properties of GST, and GST can be easily compounded with other
materials. Recently, related studies have been proposed about GST nano-grating [27]. There
are also related studies using ITO inserted into GST thin film layers to achieve a dynamic
color display through ITO thickness modulation [28].

Recently, Sb2Se3 has attracted the attention of related researchers as a new phase
change material due to its ultra-low loss characteristics [29,30]. Sb2Se3 was first studied as
a thermoelectric semiconductor in the 1960s [29]. In recent years, it has been explored as an
absorber material for solar cells due to its good photovoltaic property [31–38]. However,
very little attention has been paid to Sb2Se3 as a phase change material. Matthew Delaney
et al. studied the physical properties of Sb2Se3 phase change material and compared it with
GST, and found that the refractive indices of the Sb2Se3 amorphous and crystalline states
are closer to silicon, which is more favorable for integrated devices and better for achieving
ultra-low loss in photonic integrated circuits [29]. The following year, Matthew Delaney
et al. used Sb2Se3 integrated on a silicon-based surface to achieve low-loss programmable
optical phase control in both the amorphous and crystalline states. This amply demonstrates
the potential of Sb2Se3 as a phase change material in silicon-based integrated photonics [30].
Due to being a relatively new phase change material, there are almost no studies on the
Sb2Se3 structure color. Therefore, relevant studies targeting the structural color of Sb2Se3
are very necessary.

In this paper, we propose the Ag/Sb2Se3/Al structure based on Sb2Se3 to achieve
broadband absorption and dynamic color display in the visible. The transition between
the amorphous and crystalline states brings dynamic color display to the structure. At
the same time, the structure maintains high absorption under both the amorphous and
crystalline states. The transition between amorphous and crystalline states is a process, and
different crystalline components also present different color displays. For different incident
angles, the structure can be made to show different color changes. Since the structure is
highly symmetric, they are insensitive to the polarization angle. In addition, the different
geometric parameters support different color displays. Therefore, the designed structure
can achieve multifunctional compatibility in the visible band, i.e., it is compatible with
solar absorption and color camouflage, and has great practical prospects.

2. Material and Structure

Figure 1 represents the structure designed based on the phase change material Sb2Se3.
The structure from bottom to top is Al, phase change material Sb2Se3, Ag, and its structural
parameters are t1 = 50 nm, t2 = 20 nm, H = 80 nm, length (L) = width (W) = 100 nm, period
(P) = 300 nm. The underlying metal can act as a reflector so that the transmittance is 0. We
use Lumerical software for finite-difference time-domain simulation. In the simulation, the
x-axis and y-axis are set to periodic boundary conditions and the z-axis is set to perfect
matching boundary conditions. Moreover, the light source is set as a plane wave light
source with vertical incidence. This structure can be practically fabricated by conventional
real-world processes such as magnetron sputtering and electron beam exposure. Structures
of Ag and Al thin films deposited by magnetron sputtering are all very common. We can
consider depositing an Al thin film by DC magnetron sputtering first, and then depositing
a Sb2Se3 thin film by RF magnetron sputtering. Se is lost during the deposition of Sb2Se3
thin film, so co-sputtering of Sb2Se3 and Se is used in the sputtering process. Then, the Ag
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thin film is also deposited by DC magnetron sputtering, and the desired pattern needs to be
etched by electron beam exposure technology. After the device is fabricated, the reversible
transition between the crystalline and amorphous states of Sb2Se3 can be achieved by a
low-energy laser pulse. The laser setting power is 90 mw, the pulse time from amorphous
to crystalline is 100 ns, and the pulse time from crystalline to amorphous is 400 ns [29].
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Figure 1. (a) Schematic diagram of the Sb2Se3-based metamaterial absorber; (b) unit periodic
structure parameters.

3. Results

Figure 2a shows the refractive index parameter of the Sb2Se3 amorphous and crys-
talline states in the visible band. We observe that the refractive index and extinction
coefficient of the amorphous state are both smaller than those of the crystalline state. There-
fore, the simulation calculation is carried out based on this refractive index parameter [29].
We use material parameters for metals Ag and Al from Palik [39]. Figure 2b shows the
absorptivity and reflectivity spectrum in the visible (380 nm–780 nm). We find that the
absorptivity of the amorphous state is higher than that of the crystalline state. The av-
erage absorptivity of the amorphous state is 85.43%, and the average absorptivity of the
crystalline state is 75.25%.
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To understand the optical properties of this structure, we explore its electromagnetic
field distribution under the illumination of the light source at wavelength 380 nm–780 nm.
As shown in Figure 3, we observe that the structure resonates at the same location regard-
less of the electromagnetic field under the amorphous and crystalline states. The magnetic
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field energy is mainly localized in the top Ag layer and the electric field energy is mainly
localized around the top Ag layer. This is due to the incident light irradiating the surfaces
of the structures Ag and Sb2Se3, and the free electrons absorbing energy, causing plasmon
resonance and thus forming a strong electromagnetic field. We note that the electromag-
netic intensity of the amorphous and crystalline states is almost the same. However, by
calculating the average electric field under the amorphous and crystalline states, we find
that the average electric field under the amorphous state, namely 0.63, is slightly higher
than the average electric field under the crystalline state, which is 0.61. This also confirms
that the absorption under the amorphous state is slightly higher than the absorption under
the crystalline state, as shown in Figure 2. We also note that the refractive index under the
crystalline state is higher than that under the amorphous state, but the average absorption
under the crystalline state is smaller than that under the amorphous state, which is a
phenomenon caused by the absorption edge effect [36].
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In order to show that the structure absorbs sunlight energy, Figure 4a shows the
sunlight energy absorption spectrum under standard AM1.5, for aSb2Se3 and cSb2Se3
states. We have observed that both aSb2Se3 and cSb2Se3 states can absorb most of the solar
energy. Since the transition from the amorphous state to the crystalline state brings about a
change in wavelength shift, this also causes a change in color display. Figure 4b represents
the coordinates of the structure on the chromaticity diagram under the amorphous and
crystalline states. Under the amorphous state, the structure appears blue, and the chro-
maticity coordinate is (0.2371, 0.3129). Under the crystalline state, the structure appears
pink, and the chromaticity coordinate is (0.3374, 0.3645). Through the transformation from
the amorphous state to the crystalline state, the structure can realize a transition from a
cool tone to a warm tone.

The phase transition from aSb2Se3 to cSb2Se3 is a dynamic change process, which
means that Sb2Se3 has different crystalline compositions. To further show the physical prop-
erties of Sb2Se3, we investigated the states with different Sb2Se3 crystalline compositions.
The material parameters of Sb2Se3 with different crystalline fractions can be calculated
by Equation (1) [40–43], where εeff(λ) represents the dielectric constants of Sb2Se3 with
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different crystalline fractions, and εc(λ) and εa(λ) represent the dielectric constants of Sb2Se3
under the crystalline and amorphous states.

εe f f (λ)− 1
εe f f (λ) + 2

= m × εc(λ)− 1
εc(λ) + 2

+ (1 − m)× εa(λ)− 1
εa(λ) + 2

(1)

As the crystallization fraction increases, we find that the two peak wavelengths are
shifted separately. Figure 5b shows the coordinate positions of Sb2Se3 with different
crystalline fractions on the chromaticity diagram. The crystallization fraction ranges from
0% to 100%, and the corresponding chromaticity coordinates are (0.2371, 0.3129), (0.2588,
0.338), (0.2926, 0.3507), (0.319, 0.3588), (0.3374, 0.3645). Through Figure 5c, we can observe
the color display of different crystalline fractions very intuitively, which also makes the
color change more dynamic and flexible.
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To explore the adaptability of the structure, we change the angle of incident light
based on the thin-film interference principle to achieve rich color responses. Figure 6a
shows the reflectivity spectra and corresponding colors of different incidence angles under
the aSb2Se3 state. As the incident angle changes, the trough is red-shifted and the peak
is blue-shifted. Through calculation, we find that as the incident angle increases, the
absorptivity first increases and then decreases. When the incident angle is lower than 50◦,
the absorptivity increases as the incident angle increases. When the incident angle is higher
than 50◦, the absorptivity decreases as the incident angle increases. Figure 6b represents the
color coordinates corresponding to different incidence angles on the chromaticity diagram
under the aSb2Se3 state. As the incident angle increases, the corresponding chromaticity
diagram coordinates are (0.2371, 0.3129), (0.244, 0.3227), (0.2651, 0.3509), (0.2987, 0.3924),
(0.3373, 0.4336), (0.3683, 0.4581), (0.3833, 0.4594), (0.3825, 0.443). We observe that as the
incident angle increases, the color changes from a cool tone to a warm tone. Figure 7a shows
the reflectivity spectra with different incident angles under the crystalline state. As the
incident angle changes, the trough and peak are red-shifted. By calculation, as the incident
angle increases, the absorptivity under the crystalline state changes in the same manner
as under the amorphous state. Figure 7b represents the color coordinates corresponding
to different incidence angles on the chromaticity diagram under the cSb2Se3 state. As the
incident angle increases, the corresponding chromaticity diagram coordinates are (0.3374,
0.3645), (0.3405, 0.3685), (0.3497, 0.3801), (0.3642, 0.3985), (0.3825, 0.4211), (0.401, 0.4433),
(0.4149, 0.459), (0.419, 0.4626). We find that as the angle of incidence increases, the warmer
colors gradually deepen. Figure 8 shows the polarization spectra under the amorphous and
crystalline states. The maximum and minimum values correspond to the extreme values
of reflectivity, respectively. Due to the perfect symmetry of the structure, the designed
structure is insensitive to any polarization of the incident light wave, which is crucial in
practical applications.
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The geometrical parameters of the structure are critical to the performance. Different
functions can be realized by changing the geometric parameters. Therefore, we conduct
further research on the geometric parameters. Figure 9a,c show the absorptivity spectra
of different height (H) parameters under the amorphous and the crystalline states, respec-
tively. We notice that under different height (H) parameters, the absorptivity changes
significantly. Figure 9b,d show the structure colors of different height (H) parameters under
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the amorphous and crystalline states, respectively. Under the amorphous state, the height
(H) is from 30 nm to 130 nm, and the chromaticity coordinates are (0.2373, 0.2622), (0.253,
0.3207), (0.2371, 0.3129), (0.1756, 0.10), (0.1862, 0.1433). Under the amorphous state, we
observe that the color changes of the structure are all cool tones. Under the crystalline state,
the height (H) ranges from 30 nm to 130 nm, and the chromaticity coordinates are (0.3078,
0.3257), (0.3621, 0.4086), (0.3374, 0.3645), (0.3035, 0.307), (0.2685, 0.2749), respectively. Under
the crystalline state, we observe that the color change of the structure transitions between
cool and warm tones. We have observed that the color changes are very obvious, regardless
of whether the material is in the amorphous or crystalline state.
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As shown in Figure 10a,c, we examine the absorptivity spectra of different length (L)
parameters under amorphous and crystalline states. By calculating the absorption rate,
we find that changing the length parameter has little effect on the long-wave absorption
rate, while the short-wave absorption rate changes more significantly whether under the
amorphous or crystalline state. As shown in Figure 10b, under the amorphous state, the
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colors displayed by the structure are all cool colors. Under the amorphous state, the length
(L) is from 80 nm to 140 nm, and the chromaticity coordinates are (0.2125, 0.2373), (0.2182,
0.2606), (0.2371, 0.3129), (0.2473, 0.2946), (0.2259, 0.1635). As shown in Figure 10d, under
the crystalline state, the colors displayed by the structure are all warm colors. Under the
crystalline state, the length (L) is from 80 nm to 140 nm, and the chromaticity coordinates
are (0.3081, 0.327), (0.3184, 0.3398), (0.3374, 0.3645), (0.3559, 0.3716), (0.352, 0.3261). In
general, different geometric parameters can achieve rich colors.
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4. Conclusions

In this paper, we design a solar absorber with variable color based on the phase change
material Sb2Se3. In the visible band, the structure is able to absorb sunlight effectively.
The average absorption under the amorphous state is slightly higher than that under the
crystalline state through the combined effect of multiple resonance modes. The amorphous
Sb2Se3 structure exhibits a cool color and the crystalline Sb2Se3 structure exhibits a warm
color. The color changes significantly during the phase transition from the amorphous to
the crystalline state. Therefore, the absorptivity can be judged by the color. Adjusting the
geometrical parameters of the structure enables rich color variation to be achieved. The
incident angle and polarization angle have positive feedback on the absorptivity and allow
for rich color variation. Therefore, the structure has good prospects for application.
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of the manuscript.
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