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Abstract

We reported that complement (C) becomes activated and cleaved in bone marrow (BM) during 

preconditioning for hematopoietic transplantation and the third C component (C3) cleavage 

fragments C3a and desArgC3a increase responsiveness of hematopoietic stem/progenitor cells 

(HSPCs) to stromal derived factor-1 (SDF-1). We also demonstrated that this homing promoting 

effect is not C3a receptor (C3aR) dependent. Herein, we report our new observation that 

transplantation of C3aR-/- HSPCs into lethally irradiated recipients results in: 1) ∼5-7 day delay in 

recovery of platelets and leukocytes; 2) decrease in formation of day 12 colony-forming units-

spleen (CFU-S); and 3) decrease in the number of donor-derived CFU-granulocyte-macrophage 

(GM) progenitors detectable in the BM cavities at day 16 after transplantation. In agreement with 

the murine data, blockage of C3aR on human umbilical cord blood CD34+ cells by C3aR 

antagonist SB290157 impairs their engraftment in non-obese diabetic/severe combined 

immunodeficient (NOD/SCID) mice. However, HSPCs from C3aR-/- mice stimulated by C3a still 

better responded to SDF-1 gradient, after exposure to C3a, they secrete less matrix 

metalloprotease-9 (MMP-9) and show impaired adhesion to stroma cells. We conclude that C3a, 

in addition to enhancing responsiveness of HSPCs to SDF-1 gradient in a C3aR independent 

manner, may also directly modulate HSPC homing by augmenting C3aR-mediated secretion of 

MMP-9 and cell adhesion.
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Introduction

The collective term “homing” refers to the early stages of bone marrow (BM) seeding by 

hematopoietic stem/progenitor cells (HSPCs) after transplantation, which precedes 
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engraftment, proliferation, and differentiation of these cells. In general, homing, 

engraftment, and expansion of HSPCs after transplantation are closely related processes, 

although all the factors involved have not been identified (1, 2). However, it is well 

demonstrated that α-chemokine stromal-derived factor-1 (SDF-1) - chemokine receptor 

CXCR4 axis and vascular cell adhesion molecule 1 (VCAM-1) - very late antigen-4 

(VLA-4) interactions play important roles in these processes. While SDF-1 secreted by BM 

stroma chemoattracts intravenously infused CXCR4+ HSPCs, VCAM-1 expressed on BM 

endothelium interacts with and tethers VLA-4 (α4/β1 integrin)+ HSPCs (3-11).

It is well known that conditioning for transplantation by chemo/radiotherapy destroys old 

hematopoiesis and by emptying hematopoietic niches, makes space available for 

transplanted cells and highly upregulates expression of SDF-1 in the BM microenvironment, 

which creates a proper chemoattracting gradient for HSPCs (12-14). In addition, SDF-1 

activates adhesion molecules on HSPCs (e.g., VLA-4), which promotes their adhesion and 

upregulates secretion of metaloproteinases (e.g., matrix metalloprotease-9 [MMP-9]) by 

these cells. All these processes orchestrate transendothelial migration of HSPCs into the BM 

microenvironment (3, 5, 6, 9-11, 15-17).

We have recently reported that myeloablative conditioning for transplants by radio/

chemotherapy activates complement (C) cascade in BM as well (18-19). The protein 

components of C including the third C component (C3) are activated through proteolysis in 

a cascade-like fashion leading to the generation of “liquid phase” activation peptides with 

potent pro-inflammatory properties termed anaphylatoxins (C3a and desArgC3a) as well as 

activated/cleaved “solid phase” proteins that bind to the surface of C-activating cells (e.g., 

iC3b). C3 cleavage fragments bind to specific C3 receptors that are expressed on several 

types of cells including HSPCs (18-22) . While C3a binds to G-protein coupled, seven 

transmembrane-spanning C3a receptor (C3aR) and C5L2, C3adesArg binds to C5L2 only. 

The receptor for iC3b is CR3 and is the αMβ2-integrin, which is also known as CD11b/

CD18 or Mac-1 (22-27).

We previously reported that C3 liquid phase cleavage fragments (C3a and desArgC3a) 

enhance responsiveness of HSPCs to SDF-1 gradient. The molecular explanation of this 

phenomenon is based on our observation that both C3a and desArgC3a increase incorporation 

of CXCR4 into membrane lipid rafts, thus facilitating its more effective assembly with down 

stream signaling molecules (18, 22, 23, 28). In addition, C3a, but not desArgC3a, enhances 

secretion of MMP-9 in HSPCs and increases adhesion of these cells to VCAM-1. As a 

result, HSPCs primed before transplantation by C3a but not desArgC3a home and engraft 

better (23). On the other hand, iC3b deposited on cells in the BM microenvironment tethers 

HSPCs via CR3. To support this, we found that C3 deficient mice engraft poorly with 

HSPCs (18, 22, 29).

Because C3aR-/- cells show normal priming effect after C3a stimulation (18, 22, 29), we 

hypothesized that this phenomenon does not involve C3aR. However, to better address 

whether C3aR is also directly involved in engraftment,we employed HSPCs from C3aR-/- 

mice and compared their homing and engraftment characteristics to wildtype (WT) 

counterparts. Our data provides the first evidence that C3a increases homing responses of 
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HSPCs by direct interaction with C3aR and that another C3a binding receptor (C5L2 

receptor) cannot compensate for C3aR deficiency. We conclude that C3a plays an important 

but underappreciated role in engraftment of HSPCs by increasing non-C3aR-dependent 

responsiveness of HSPCs to SDF-1 gradient and by C3aR-mediated increase in MMP-9 

secretion and cell adhesion.

Materials and Methods

Murine BM-derived cells

Animal studies were approved by the Institutional Animal Care and Use Committee of the 

University of Louisville. Murine BM mononuclear cells (BMMNCs) were flushed from the 

femora of BALB/c C3aR+/+ (The Jackson Laboratory, Bar Harbor, ME) and BALB/c 

C3aR-/- (kind gift from Dr. Rick A Wetzel, University of Texas, Houston). The protocols 

used were approved by the appropriate institutional ethics review boards. MNCs were 

depleted of adherent cells (A-) and then enriched for light-density MNCs by Ficoll-Paque 

centrifugation. Sca-1+ cells were isolated using paramagnetic mini-beads (Miltenyi Biotec, 

Auburn, CA). The purity of isolated BM Sca-1+ cells was >95%, as determined by 

fluorescein-activated cell sorting (FACS). For some of transplant experiments, 

Sca-1+kit+lin- (SKL) cells were purified by employing MoFlo sorter as described (18).

Human umbilical cord blood (UCB)—derived cells

Human light-density UCB cells were obtained after informed consent; the protocols used 

were approved by the appropriate institutional ethics review boards. Light-density cells were 

depleted of adherent cells and T lymphocytes (A-T- MNCs) and enriched for CD34+ cells 

by immunoaffinity selection with MiniMACS paramagnetic beads (Miltenyi Biotec). The 

purity of isolated BM CD34+ cells was >95%, as determined by FACS analysis using a 

FACscan (Becton Dickinson, San Jose, CA). Human BM CD34+ transplants were 

performed on non-obese diabetic/severe combined immunodeficient (NOD/SCID) inbred 

mice (The Jackson Laboratory).

Adhesion Assay

WT BM stroma was grown to confluence and WT or C3aR-/- Sca-1+ cells were non-

stimulated or stimulated by C3a (1μg/ml) or desArgC3a (1μg/ml) and added to the cultures for 

either 1 or 3 hours. Non-adhered cells were washed off. Subsequently, the entire cultures 

were trypsinized and plated in methylcellulose cultures and stimulated to grow colony-

forming units-granulocyte-macrophage (CFU-GM) colonies as described (18). The number 

of colonies was scored under an inverted microscope.

Zymography

To evaluate MMP-9 secretion by Sca-1+, 2 × 106 cells/mL were incubated (for 24 h at 37°C 

in 5% CO2) in the absence or presence of C3a or desArg C3a (1 μg/ml), and cell-were 

isolated for RT-PCR analysis of mRNA expression for MMP-2 and MMP-9 and cell-

conditioned media were analyzed immediately by zymography as previously described by us 

(23). The intensity of the bands was quantified using the NIH ScionImage for Windows 

software (Scion Corp., Frederick, MD).
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Short term homing assays

Mice were irradiated with a lethal dose of γ-irradiation (900 cGy). After 24 hours, the mice 

were transplanted (by tail vein injection) with 2×105 BM Sca-1+ cells. At 6 or 24 hours post 

transplant, BM was harvested from the femurs and plated in serum-free methylcellulose 

cultures and stimulated to grow CFU-GM colonies by stimulation with granulocyte 

macrophage-colony stimulating factor (GM-CSF) (25ng/mL) + Interleukin (IL)-3 (10 ng/

ml).

BM transplantation

For transplant experiments, mice were irradiated with a lethal dose of γ-irradiation (900 

cGy). After 24 hours, mice were transplanted with 105 BM Sca-1+ cells or 104 Sca-1+kit+lin- 

(SKL) cells by tail vein injection. Anesthetized transplanted mice were bled at various 

intervals from the retro-orbital plexus to obtain samples for leukocytes and platelets.

Evaluation of engraftment

CFU-spleen (S) assay—For the CFU-S assays, mice were transplanted with 5 × 104 

Sca-1+ marrow cells. At day 12, spleens were removed, fixed in Telesyniczky’s solution, 

and CFU-S colonies were counted on the surface of the spleen as described (18).

Number of CFU-GM/femur—Femora of transplanted mice were flushed with phosphate-

buffered saline (PBS) at day 16 post-transplant. Subsequently, Sca-1+ cells were purified 

and plated in serum-free methylcellulose cultures and stimulated to grow CFU-GM colonies 

by granulocyte-colony stimulating factor (G-CSF; 25 ng/ml) + IL-3 (10 ng/ml).

Statistical analysis

Arithmetic means and standard deviations were calculated using Instat 1.14 software 

(Graphpad, San Diego, CA). Statistical significance was defined as p<0.05. Data were 

analyzed using Student’s t-test for unpaired samples.

Results

Delayed engraftment after transplantation of C3aR-/- HSPCs

We reported that C3aR-/- mice or WT mice in which C3aR is blocked by small molecular 

antagonist SB 290157 are easy mobilizers in response to G-CSF (30, 31). This could 

indicate that C3aR plays an important role in retention of HSPCs in the BM 

microenvironment.

To better address this question, we performed hematopoietic transplantation experiments 

using HSPCs from C3aR-/- and WT mice to both WT and C3aR-/- animals. As shown in 

Figure 1 panel A, the kinetics of white blood cell (WBC) and platelet counts revealed 

delayed engraftment of C3aR-/- HSPCs. Next, to exclude a potential contribution of C3aR 

deficiency on cells in the hematopoietic environment, we performed transplants into C3aR-/- 

recipients (Fig. 1 panel B) and noticed that C3aR-/- HSPCs also show delayed engraftment 

as compared to WT HSPCs. Thus, regardless of the genetic background of the recipient 

animal, C3aR-/- HSPCs do not engraft as well as their WT counterparts.
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Our WBC and platelet counts recovery kinetic data were subsequently confirmed by 

evaluating the number of: a) day 11 CFU-S (Fig. 2 panel A) and b) cells able to grow CFU-

GM colonies that were recovered at day 16 from the femora of transplanted mice (Fig. 2 

panel B) or in WT mice transplanted either with C3aR-/- or WT HSPCs. Next, similar 

results were obtained after transplantation of HSPCs from C3aR-/- or WT mice to C3aR-/- 

deficient animals (not shown). Thus, our data revealed an engraftment defect of C3aR-/- 

HSPCs and show that this defect does not depend on C3aR expression in the BM 

microenvironment. Therefore, these data clearly demonstrate that C3a modulates 

engraftment and that some of its effects are mediated by its direct interaction with C3aR on 

HSPCs.

C3aR-/- cells show defective homing to BM

Homing is the first step of BM seeding by HSPCs after transplantation, which precedes their 

engraftment, proliferation, and differentiation. Because we demonstrated that the C3a-C3aR 

axis is not involved in proliferation of HSPCs (23), we asked if delayed recovery of 

hematopoiesis in mice transplanted with C3aR-/- cells could be explained by their defective 

homing and lodgment to the BM microenvironment.

To address this issue, we employed short-homing assay to evaluate lodging of HSPCs to 

BM. Accordingly, WT mice were lethally irradiated and, 24 hours later, they were 

transplanted with C3aR-/- or WT HSPCs. Subsequently, animals were sacrificed 6 or 24 

hours after transplantation, the femora were removed, and BM cells were isolated and plated 

in methylocelluose cultures to grow CFU-GM colonies (Fig. 2 panel A). By employing this 

assay, we found that C3aR-/- HSPCs show defective homing and lodging to the BM 

microenvironment. This defective lodging could be the result of defective transendothelial 

migration of HSPCs to cells in the BM microenvironment.

To further address this question, we performed in vitro adhesion studies with sorted Sca-1+ 

cells. Accordingly, Sca-1+ cells isolated from the BM of C3aR-/- or WT mice were non-

exposed, or exposed for 30 minutes to C3a or desArgC3a and subsequently plated over BM-

derived irradiated stroma feeder layers established in well plates. Subsequently, at 1 and 3 

hours later, plates were gently shaken and non-adherent cells were discarded. Finally, cells 

remaining in the wells were trypsinized and plated in methylcellulose to grow CFU-GM 

colonies. We noticed that C3a, but not desArgC3a, increased adhesion in WT but not C3aR-/- 

HSPCs (Table 1). Based on this, the C3a-C3aR axis seems to be involved in increasing 

adhesion of HSPCs. Because stimulation by desArgC3a was ineffective to compensate the 

C3aR deficiency in C3aR-/- cells that express C3a and desArgC3a binding C5L2 receptor, we 

excluded the potential involvement of C5L2 in this phenomenon.

C3a-C3aR axis regulates secretion of MMP9 by HSPCs

Following adhesion to endothelium, HSPCs have to migrate through the endothelial 

basement membrane in a process that involves secretion of proteolytic enzymes. MMP-9 

was shown to play a pivotal role here. In our previous studies, we demonstrated that C3a 

stimulates secretion of MMP-9 by HSPCs (23). To address the importance of C3aR in this 

phenomenon, we exposed BM-derived Sca-1+ cells isolated from C3aR-/- and WT to C3a 
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or desArgC3a and evaluated MMP-9 expression at the mRNA (Fig. 4 panel A) and protein 

(Fig. 4 panel B) levels. We noticed that C3a, but not desArgC3a, upregulates expression of 

MMP-9 in WT but not C3aR-/- cells. Again, because stimulation by desArgC3a was 

ineffective to compensate the C3aR deficiency in C3aR-/- cells that express C3a 

and desArgC3a binding C5L2 receptor, we excluded the potential involvement of C5L2 in 

this phenomenon.

C3aR also plays a role in engraftment of human HSPCs

Finally, to address the role of C3aR in homing of human HSPCs, we performed 

xenotransplants in NOD/SCID mice (Fig. 5). Human UCB purified human CD34+ cells 

were pre-incubated or not exposed to C3aR antagonist SB 290157 and transplanted into 

lethally irradiated NOD/SCID mice 24 hours after an irradiation that eliminated murine 

endogenous HSPCs. Subsequently, 24 hours after transplantation of human UCBs, we 

recovered cells from the femora of transplanted mice and plated them in methylcellulose 

cultures to growth colonies in the presence of human hematopoietic factors. We noticed that 

the number of human CFU-GM progenitors recovered from murine femora was significantly 

lower in animals transplanted with UCB CD34+ cells in which C3aR was blocked by SB 

290157 (Fig. 5), which also implicates a role of C3aR in homing of human HSPCs. Of note, 

in control experiments, no CFU-GM colonies were grown from BM cells recovered from 

lethally irradiated NOD/SCID mice that did not receive human UCB cells (not shown).

Discussion

The α-chemokine SDF-1 is upregulated in the BM microenvironment after conditioning for 

transplantation by radio-chemotherapy, which is a crucial chemoattractant for intravenously 

infused (1, 2, 4, 12, 13). However, the biological activity of the SDF-1-CXCR4 axis is 

modulated by several factors. For example, data from our laboratory demonstrated that 

during conditioning for transplantation, C cascade is activated. While C3 liquid phase 

cleavage fragments (C3a and desArgC3a) prime and enhance responsiveness of HSPCs to 

SDF-1 gradient (22, 23, 28, 29), solid phase iC3b tethers HSPCs to BM stroma (18).

In agreement with this, we have previously shown that HSPCs poorly engraft after 

transplantation into C3-/- mice (18). We have explained this defective engraftment in C3-/- 

mice as a lack of generated C3a and desArgC3a, which enhance responsiveness of HSPCs to 

SDF-1 gradient (18, 28). To our surprise, however, we noticed that C3 cleavage fragments 

increase responsiveness of HSPCs to SDF-1 gradient in vitro and that this effect does not 

seem to be C3aR dependent. In support of this, we demonstrated that cells from WT and 

C3aR-/- mice respond equally to priming effect to both C3a and desArgC3a (18).

On the other hand, we have also previously shown that C3aR-/- mice as well as WT animals 

exposed to C3aR antagonist SB290157 are easy G-CSF mobilizers (30, 31). This latter 

observation prompted us to investigate whether C3a-C3aR may play a role in the retention 

of HSPCs in BM, which could be a potentially novel role of C3a independent of its priming 

effect on HSPCs.
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Here, we show for the first time that transplantation of murine C3aR-/- HSPCs results in 

delayed engraftment and hematopoietic recovery of lethally irradiated mice. Because 

C3aR-/- animals engraft normally with WT cells, this defect is intrinsic to HSPCs and does 

not depend on C3aR expressed on cells in the hematopoietic microenvironment. More 

importantly, our in vivo lodging experiments suggest that this defect is related to impaired 

homing of transplanted cells. Furthermore, our short-term lodging xenotransplants 

experiments in NOD/SCID mice revealed that this novel role for the C3aR-C3a axis also 

seems to be relevant for homing of human CD34+ cells. Thus, the C3a-C3aR axis plays an 

underappreciated role in homing of both human and murine HSPCs.

Based on these data, we postulate that activation of C cascade and release of C3a in BM 

after conditioning for transplantation not only primes responsiveness of HSPCs to SDF-1 

gradient by a C3aR independent lipid raft formation-dependent mechanism (18, 22, 23, 29), 

but in addition, C3a directly engages C3aR on the surface of HSPCs and thus enhances 

homing of these cells to BM.

To better address the role of the C3aR-C3a axis in the early steps of homing and 

engraftment, we report here that murine HSPCs stimulated by C3a, but not desArgC3a, 

secrete more MMP-9 and adhere better to BM stroma. Thus, C3a-C3aR plays an important 

role in increasing secretion of MMP-9, which facilitates transmigration of HSPCs through 

the endothelial barrier as well as by increasing the interaction of HSPCs with cells in the 

hematopoietic microenvironment. Furthermore, because desArgC3a was not able to 

compensate for the C3aR deficiency, we excluded that another C3aR, the C5L2 receptor, is 

not involved in these phenomena.

In our previous work, we have also shown that another C3 cleavage fragment, iC3b, which 

is deposited during activation of C on the surface of damaged stroma cells in BM, increases 

tethering of HSPCs via the CR3 (CD11b/CD18) receptor. This dual role of C3 cleavage 

fragments, i.e., liquid phase C3a and solid phase iC3B, may explain why the engraftment 

defect in C3-/- mice was somehow slightly more pronounced than that observed after 

transplantation of WT cells into C3aR-/- mice. It is obvious that C3aR-/- mice still express 

and activate C3 and thus iC3b is normally deposited on BM stroma cells, providing a proper 

tethering for transplanted HSPCs via CR3 (CD11b/CD18) receptor (18).

Our data also explain our previous priming studies in vivo (22, 23, 29) showing that 

stimulation of HSPCs before transplantation with C3a, but not desArgC3a, accelerated 

engraftment of HSPCs into lethally irradiated WT mice. Because desArgC3a does not activate 

C3aR, the short exposure of HSPCs before transplantation to C3a accelerates engraftment by 

activating the homing function of C3aR. To support this and as we have demonstrated in this 

work, C3a, but not desArgC3a, increased MMP-9 secretion and enhanced adhesion of HSPCs 

to BM stroma cells. By employing C3aR-/- mice in this study, we clearly demonstrate that 

this effect is related to C3aR and another C3a binding receptor, C5L2, which also 

binds desArgC3a, cannot compensate for the C3aR deficiency. However, further research is 

required to identify if other proteases are released from HSPCs in addition to MMP-9 and to 

identify which adhesion molecules are directly affected by the C3a-C3aR axis.
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In conclusion, we show for the first time that the C3a-C3aR axis plays an underappreciated 

role in homing of HSPCs to BM. By employing C3aR-/- mice, we excluded the involvement 

of the C5L2 receptor. Our data show that defective homing and engraftment of C3aR-/- 

HSPCs could be explained by the C3a-C3aR axis modulating secretion of MMP-9 by 

HSPCs as well as their adhesion. Thus, C3a plays a dual role in homing and engraftment 

(Figure 6). As reported previously, the first is by enhanced responsiveness of HSPCs to 

SDF-1 gradient through a C3aR independent mechanism (18, 22, 28, 29). Secondly and as 

shown here by engaging C3aR, it modulates several functions pertinent to transendothelial 

migration and homing (e.g., secretion of proteases and adhesion).
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Figure 1. HSPCs from C3aR-/- mice show defective engraftment
This is demonstrated by a delayed recovery of platelets and leukocytes. Panel A. Lethally 

irradiated WT mice were transplanted with SKL cells (104/mouse) isolated from C3aR-/- 

and WT animals. Recovery of platelet and leukocyte counts was evaluated at days 0, 5, 7, 

11, 16, and 28. Panel B. Lethally irradiated C3aR-/- mice were transplanted with SKL cells 

isolated from C3aR-/- and WT animals. Recovery of platelet and leukocyte counts was 

evaluated at days 0, 5, 7, 11, 16, and 28. The data shown represent the combined results 

from three independent experiments performed with 10 mice/group. *p<0.0001. All mice in 

irradiation control (non-transplanted) died before day 14 (not shown).
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Figure 2. HSPCs from C3aR-/- mice show decrease in day 11 CFU-S formation and content of 
day 16 CFU-GM/femur
Panel A. Lethally irradiated WT mice were transplanted with Sca-1+ cells isolated from 

C3aR-/- and WT animals. CFU-S colonies were counted 11 days after transplantation. Inset. 
Examples of spleens with CFU-S colonies. The data shown represent the combined results 

from three independent experiments performed with 10 mice/group. *p<0.0001. All mice in 

irradiation control (non-transplanted) did not have any endogenous CFU-S colonies and died 

before day 14. Panel B. Lethally irradiated WT mice were transplanted with Sca-1+ cells 

isolated from C3aR-/- and WT animals. BM from femora of transplanted mice were isolated 

and the contents of CFU-GM and femurs was evaluated in secondary in vitro cultures. The 

data shown represent the combined results from three independent experiments performed 

with 6 mice/group. *p<0.003. All mice in irradiation control (non-transplanted) died before 

day 14.
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Figure 3. HSPCs from C3aR-/- mice show defective homing in vivo
Panel A. Lethally irradiated WT mice were transplanted with Sca-1+ cells isolated from 

C3aR-/- or WT animals. At 6 and 24 hours later, BM from femora of transplanted mice were 

isolated and the contents of CFU-GM and femurs were evaluated in secondary in vitro 

cultures. The data shown represent the combined results from three independent experiments 

performed with 6 mice/group. *p<0.0237 for 6 hours and *p<0.0016 for 24 hours. No 

colonies grew from lethally irradiated and non-transplanted animals.
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Figure 4. C3a-C3aR axis enhances expression of MMP-9 by HSPC
Sca-1+ BM cells from C3aR-/- or WT mice were non-stimulated or stimulated overnight by 

C3a (1 μg/ml) or desArgC3a (1 μg/ml) and mRNA was isolated for reverse transcriptase-

polymerase chain reaction (RT-PCR) analysis of MMP-9 and MMP-2 expression (Panel A). 

Supernatants were collected for MMP-9 analysis by zymography (Panel B). The data shown 

represent the combined results from three independent experiments. *p<0.0001 for real-time 

quantitative (RQ)-PCR. One representative zymography study is shown.
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Figure 5. Blocking of C3aR on human UCB CD34+ cells impairs homing in NOD/SCID mice 
model
Human UCB CD34+ cells were exposed or not exposed to C3aR antagonist SB 290157 and 

transplanted into lethally irradiated NOD/SCID mice. At 24 hours later, BM from femora of 

transplanted mice was isolated and the contents of human CFU-GM and femurs were 

evaluated in secondary in vitro cultures. The data shown represent the combined results 

from three independent experiments performed with 6 mice/group each. *p<0.001. No 

colonies grew from lethally irradiated and control animals not transplanted with UCB cells 

(n=5).
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Figure 6. SDF-1 and C3 cleavage fragments create “super-gradient” for HSPC
Conditioning for transplantation by radio-chemotherapy upregulates in BM i) expression of 

SDF-1 (12) and ii) activates complement cascade (18, 22, 23, 28, 29). While SDF-1 directly 

chemoattracts HSPCs by interacting with CXCR4 receptor, our work revealed that the 

homing function of the SDF-1-CXCR4 axis is modulated by C3 cleavage fragments 

(C3a and desArgC3a) — both in C3aR-dependent and C3aR-independent manner. In a first 

mechanism, C3a (but not desArgC3a) activates C3aR and increases adhesiveness of HSPCs 

as well as secretion of MMP-9 by these cells. In a second one (C3aR independent) both C3a 

and desArgC3a enhance/prime responsiveness of HSPCs to SDF-1 gradient by increasing 

incorporation of CXCR4 into membrane lipid rafts. CXCR4 incorporated in lipid rafts is 

better connected with signal transduction proteins what explains why CXCR4+ HSPCs 

respond more robust to SDF-1. However, the identification of receptor/receptors? involved 

in this C3a and desArgC3s mediated “priming” effect requires further studies.
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Table 1

The C3a-C3aR axis enhances adhesion of BM-derived Sca-1+ cells to BM stroma

The number of CFU-GM from Sca-1+ cells from WT mice that adhered to WT strom a stimulated for 30 m in 

by C3a was arbitrarily assumed to be 100% in 1 hour and 3 hour adhesion assays. Data are pooled from 

quadruplicate samples from three independent experiments (n=12).

Source of Sca-1+

cells
[adhesion time]

Non-stimulated Stimulated by C3a
(1μg/ml, 30 min)

Stimulated by desArgC3a
(1μg/ml, 30 min)

WT [1 hr] 58+/-11* 100+/-21 67+/-15*

C3aR-/- [1 hr] 62+/-19* 64+/-17* 62+/-17*

WT [3 hrs] 49+/-11* 100+/-8 46+/-13*

C3aR-/- [3 hrs] 53+/-16* 49+/-20* 51+/-7*

*
p<0.00001
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