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Abstract

Background: Chronic kidney disease (CKD) is a major and increasing constituent of disease burdens worldwide.
Early identification of patients at increased risk of developing CKD can guide interventions to slow disease
progression, initiate timely referral to appropriate kidney care services, and support targeting of care resources. Risk
prediction models can extend laboratory-based CKD screening to earlier stages of disease; however, to date, only a
few of them have been externally validated or directly compared outside development populations. Our objective
was to validate published CKD prediction models applicable in primary care.

Methods: We synthesised two recent systematic reviews of CKD risk prediction models and externally validated
selected models for a 5-year horizon of disease onset. We used linked, anonymised, structured (coded) primary and
secondary care data from patients resident in Salford (population ~234 k), UK. All adult patients with at least one
record in 2009 were followed-up until the end of 2014, death, or CKD onset (n = 178,399). CKD onset was defined
as repeated impaired eGFR measures over a period of at least 3 months, or physician diagnosis of CKD Stage 3–5.
For each model, we assessed discrimination, calibration, and decision curve analysis.

Results: Seven relevant CKD risk prediction models were identified. Five models also had an associated simplified
scoring system. All models discriminated well between patients developing CKD or not, with c-statistics around 0.90.
Most of the models were poorly calibrated to our population, substantially over-predicting risk. The two models that
did not require recalibration were also the ones that had the best performance in the decision curve analysis.

Conclusions: Included CKD prediction models showed good discriminative ability but over-predicted the actual 5-year
CKD risk in English primary care patients. QKidney, the only UK-developed model, outperformed the others. Clinical
prediction models should be (re)calibrated for their intended uses.
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validation, Model calibration
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Background
Chronic kidney disease (CKD) presents a substantial bur-
den of disease worldwide [1–4], with an increasing num-
ber of people being diagnosed [5, 6]. A 2010 study of 2.8
UK adults reported a 5.9 % prevalence of stage 3–5 CKD
[7]. In the UK, costs related to CKD care in 2009–2010
were estimated around £1.45 billion (1.3 % of the National
Health Service (NHS) budget) [8] – costs that are set to
rise steeply [6, 8].
Early detection of CKD, and identification of patients

at increased risk of developing CKD, can improve care
by guiding preventive measures to slow disease progres-
sion, initiating timely referral to nephrology care, and
supporting better allocation of resources [9]. Yet, despite
worldwide efforts to improve detection [10], CKD often
remains undiagnosed in its early stages [5]. Currently, most
CKD clinical surveillance relies on estimated Glomerular
Filtration Rate (eGFR) from serum creatinine testing [10].
In the UK, national clinical practice guidelines recommend
systematic monitoring, in the primary care setting, of eGFR
in patients with CKD risk factors (i.e. diabetes, hyperten-
sion, cardiovascular diseases, or use of particular medica-
tions) [11]. In addition, eGFR has been calculated routinely
in UK NHS laboratories since 2006, where at least age, sex
and creatinine variables are available – so CKD may be
picked up in a variety of clinical contexts. Nevertheless, the
value of universal clinical/opportunistic screening for CKD
remains unclear [12].
Risk prediction models can extend the clinical screening

toolkit from measured to predicted disease, affording
more timely intervention, for example, to reduce risk fac-
tors [13]. Several models have been developed to predict
CKD onset, but most have not been validated outside the
setting in which they were developed [14, 15]. Therefore,
the portability of these models to other populations, risk
environments and healthcare settings has yet to be
demonstrated. Furthermore, comprehensive head-to-head
comparisons of these purportedly alternative models are
lacking in the literature [14–16]. Only one comparison of
two CKD prediction models in a small cohort was pub-
lished to date [17].
The aim of this study was to externally validate and

compare the performance of previously published models
for predicting 5-year CKD risk using routine healthcare
records from a UK population with well-studied, high
quality electronic health records.

Methods
Reporting
The reporting of this external validation study follows
the TRIPOD statement [18, 19], which is a set of rec-
ommendations for the reporting of studies describing
the development, validation, or updating of prediction
models [18, 19].

Literature review
Two recent systematic reviews identified prediction models
on CKD onset and CKD progression [14, 15]. From these
reviews, we selected models predicting CKD onset that
could be used in primary care. Models were excluded if (1)
they were developed for a specific subpopulation (e.g. HIV
patients [20]); (2) the covariate coefficients and regression
formula were not reported in the original study; or (3) they
had more than one predictor not routinely collected in
UK primary care (more than one predictor for which
we had > 70 % missing data in our dataset).
Where available, we included simplified scoring systems

accompanying the included prediction models. Such sys-
tems typically produce an integer score for each patient,
where higher scores represent higher predicted risk but
there is no relationship with absolute risk.

Validation cohort
Outcome
The outcome of interest was onset of CKD within 5
years. Existing models employ various definitions of
CKD [14, 15]. For our study, we followed international
guidelines [21] and considered a recent study [7] reporting
UK CKD prevalence based on primary care records. We
defined CKD as (1) the presence of at least two consecu-
tive eGFR values below 60 mL/min/1.73 m2, as calculated
with the Modification of Diet in Renal Disease (MDRD)
formula [22], over a period of 3 months or longer; or (2)
the presence of a CKD Stage 3–5 diagnostic code.
We were unable to incorporate albumin-creatinine

ratio (ACR, a predictor of kidney damage [23] noted in
international guidelines [21]) because ACR data are
available only for selected groups of patients at risk of
CKD, such as those on diabetes care pathways.

Data source
We used linked, anonymised data from the Salford In-
tegrated Record (SIR) up to the end of 2014. SIR is an
electronic health record (EHR) that has been overlain
on primary and secondary care clinical information sys-
tems for over 10 years in the city of Salford (population
234 k) – an early-adopter site of healthcare IT in the
UK. SIR includes patient records submitted by all 53
primary care providers and the one secondary care pro-
vider for this population, stored as Read codes versions 2
and 3 [24]. The data cover all primary care, some of
secondary care – focused on long-term conditions
management – and all results from biochemical testing
across primary and secondary care.

Study population
Salford is a relatively deprived population with a high
burden of disease, where the EHR data have been used
extensively to study the population’s health and care.
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Like all English localities, Salford’s primary care is mea-
sured and remunerated under the Quality and Outcomes
Framework, including counts of the mean number of
conditions per registered patient, where Salford falls in
61st centile [25].
We included all adults (aged 18 years or older) regis-

tered with a Salford practice with at least one record in
SIR between April 1, 2009, and March 31, 2010 – the
financial year. We looked at the financial rather than cal-
endar year to take account of the Quality and Outcomes
Framework, which might have influenced the quality of
data recorded by GPs [26, 27]. For all retrieved patients
the entry date was the date of the first record in the
financial year 2009. Included patients were followed
until December 31, 2014, or censored when they moved
outside of Salford or died.
We excluded patients with CKD stage 3–5 before

study entry, which was determined by diagnostic codes
and eGFR measurements (following our definition of CKD
onset).
We also defined a cohort of patients with complete

follow-up data, consisting of patients who either devel-
oped CKD in the study period or had at least 5 years of
follow-up. We used this cohort to validate models de-
rived with logistic regression, which requires complete
follow-up data.

Predictors and missing data
We used Read codes retrieved from clinicalcodes.org
[28] to extract clinical and laboratory variables from the
SIR database. Clinicalcodes.org is a repository of Read
codes used in previously published articles; we used
Read codes from five studies [29–33] (see Additional file
1 for full list of adopted Read codes). For comorbidities,
such as hypertension and peripheral vascular disease, we
identified any related diagnostic Read code before the
patient’s study entry date. If the type of diabetes was not
specified in the diagnostic code or contradicting codes
were present (i.e. diabetes type 1 and type 2 for the same
patient), we assigned ‘type 1’ to patients with the first
diabetes code before 35 years of age, and ‘type 2’ to all
other diabetes patients. For medications, such as non-
steroidal anti-inflammatory drugs or hypertensive med-
ications, we looked for at least two prescriptions in the
6 months prior to entry date. Finally, for laboratory
tests, we selected the most recent result within 12 months
before the entry date.
Since more than 90 % of the population in Salford is

of White British ethnicity [34], we considered patients
without a recorded ethnicity code as White British. We
imputed values for predictors using multiple imputation
by chained equations with 10 iterations to minimise the
effect of selectively ignoring those with any missing data
(using the mice package in R [35]).

Data analysis
We implemented models developed by logistic and Cox
proportional hazards (CPH) regression formulas using
published coefficients and intercept or baseline hazard
provided. For the QKidney models [36] we used the infor-
mation from svn.clinrisk.co.uk/opensource/qkidney – a
web-based calculator written in C (re-coded in R language
as per Additional file 2). For simplified scoring systems,
we computed the total simplified score for each patient in
our dataset. In addition, if the original model was a logistic
regression and the intercept was not reported, we esti-
mated it from information about CKD prevalence and
predictors summary measures (mean for continuous
variables and prevalence for binary variables) in the
development population.
We assessed the performance of the models and the

associated simplified scoring systems in terms of dis-
crimination and calibration. Discrimination is the ability
of a model to distinguish between patients who do or do
not develop CKD. Discrimination was assessed by calcu-
lating the area under receiving operating characteristic
curve (AUC) and Harrell’s c-index [37–39]; 95 % confi-
dence intervals (CIs) for the AUC and c-index were cal-
culated from 500 bootstrap iterations. We evaluated
calibration by calculating the mean absolute prediction
error (MAPE), calibration slope, and by calibration plots.
MAPE is the average difference in predicted and observed
onset of CKD, expressed by a number between 0 and 1,
with values closer to 0 indicating better performance [40]
(see Additional file 3 for details). Calibration slopes are re-
gression slopes of linear predictors fitted to the external
validation dataset [41]. The optimal value is 1, with values
smaller than 1 reflecting overfitting of the model. Calibra-
tion plots compare mean predicted risks with mean ob-
served outcomes for subgroups with similar predicted
risks. A model is considered to be well calibrated if the
plot follows the 45° line from the lower left corner to the
upper right corner of the plot. In our analysis, we created
calibration plots using the R package PredictABEL [42].
For the simplified scoring systems, we compared sensi-

tivity, specificity and positive predictive value (PPV) ob-
tained by using the decision-making threshold that was
reported in the original publications, as well as using the
optimal threshold for our study population as calculated
with Youden’s method [43]. If a study did not present
any risk score or we could not use the proposed simplified
score because of more than one missing predictor in our
dataset, sensitivity, specificity and PPV were evaluated for
the full model instead.
To interpret the performance of included models we

used the framework for external validation from Debray
et al. [44]. Therefore, we assessed the extent to which
the case-mix of the development datasets and our valid-
ation dataset were similar, by comparing the mean linear
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predictor of models in the two cohorts. Since individual
patient data of the development datasets were not pub-
licly available, the mean linear predictor was calculated
as the sum of the intercept and the product of model coef-
ficients and predictors’ prevalence (for binary variables) or
mean (for continuous variables) provided in the summary
statistics of original studies. In order to assess how accur-
ate the mean linear predictor calculation based on the
summary statistics was, in our validation dataset we also
calculated the mean linear predictor by calculating the
mean and standard deviation (SD) of the linear predictor
from the individual patient data.
Finally, to evaluate the clinical impact of implementing

the models in practice as screening tools, we performed
two analyses. First, we performed decision curve analysis
evaluating how different threshold probabilities alter the
false-positive and false-negative rate expressed in terms
of net benefit [45]. When carrying out a head-to-head
comparison of different prediction models on the same
population, the interpretation is straightforward – at
each clinically relevant probability threshold, the model
that has the highest net benefit is preferable. Models are
also compared to the extreme choices of designating all
and no patients at high risk of developing CKD. Second,
for each model, we evaluated the potential implementa-
tion of a CKD prevention high-risk approach [46] based
on the model’s prediction by calculating the proportion
of observed CKD cases in our dataset within the highest
tenth of predicted risk (i.e. the 10 % of patients with
highest predicted risks).
Data manipulation and statistical analyses were per-

formed using R software (www.r-project.org).

Sensitivity analyses
We performed several sensitivity analyses. First, since
the risk of developing CKD in the asymptomatic general
population is low [47], we also validated each of the
models in patients with established CKD risk factors at
entry date. Following the UK National Institute for Clin-
ical Excellence (NICE) guidelines on early detection of
CKD [11], these risk factors were use of calcineurin in-
hibitor drugs, lithium, or nonsteroidal anti-inflammatory
drugs; diabetes mellitus; hypertension; acute kidney in-
jury in the previous 2 years; history of cardiovascular
disease, renal calculi or prostatic hypertrophy, systemic
lupus erythematosus, or haematuria; and family history
of kidney disease. Second, as most models in our study
used a single measured renal impairment to define CKD,
we repeated the analysis while using a more inclusive
definition of CKD onset as the presence of a CKD 3–5
diagnostic code or a single eGFR measurement below 60
mL/min/1.73 m2. Third, we considered patients who
died during follow-up as if they developed CKD, because
mortality is frequently attributable to CKD and most risk

prediction models do not account for death as a compet-
ing risk. Fourth, we calculated eGFR by using the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI)
formula [48] and repeated our main analysis (e.g. CKD de-
fined as impaired eGFR for at least 3 months or CKD 3–5
diagnostic code). Fifth, we repeated our main analysis by
using a prediction horizon of 4 instead of 5 years. Finally,
we repeated the analyses omitting individuals with any
missing observation.

Results
CKD prediction models included for external validation
Figure 1 depicts the model inclusion process. Of the 29
models identified by Collins et al. [14] and Echouffo-
Tcheugui and Kengne [15], 18 were developed with the
aim of predicting CKD onset. We excluded three models
because of incomplete reporting of regression models
(regression coefficients not fully reported) in the original
paper [49] and one model because it was developed in a
specific sub-population (namely HIV patients) [20]. We
excluded a further seven models for which we had more
than one missing predictor in our dataset, including
missing data for eGFR, urinary excretion, and c-reactive
protein [50]; missing post-prandial glucose, proteinuria
and uric acid [51]; missing eGFR and quantitative albu-
minuria [52], and finally, we excluded two models be-
cause of missing eGFR and low levels of high-density
lipoprotein cholesterol [52, 53], respectively. The final set
consisted of seven models (five logistic regression models
and two CPH regression models) and five simplified
scoring systems [36, 51–56]. Table 1 describes the details
of the included models, and Additional file 3: Tables S1,
S2 and S3 provide the population characteristics of the de-
velopment datasets, the regression coefficients, and the
simplified scoring systems.
All models were developed outside the UK, with the

exception of QKidney® [36] (www.qkidney.org), which
was developed on a large population from England and
Wales selected from general practices using the EMIS
EHR. All included models used a different definition of
CKD, but the majority used an older definition based
only on one impaired eGFR measurement. Time horizons
in original papers were different to our 5-year definition,
with the exception of QKidney® [36], which, however,
allowed other time horizon options (1-, 2-, 3- and 4-year).
For three models, the prediction time horizon was not
specified [54–56]. However, we could derive from study
duration and data collection procedures in the original
publications that the time horizons were 1 [56], 2 [54]
and 9 [54] years, respectively. For the remaining models,
the reported time horizons were between 4 and 10 years
[51, 52, 54].
Predictors included in the models were largely based

on known CKD risk factors (hypertension, diabetes
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mellitus, or history of cardiovascular disease). The only
biomarkers included were systolic and diastolic blood
pressure, and body mass index. Multiple imputation of
missing values was applied to these variables, along with
deprivation, haemoglobin (i.e. to calculate presence of
anaemia) and smoking. In these predictors, missing
values ranged from 1.8 % to 70.0 %, with a median value
of 46.0 %. Conversely, we excluded proteinuria as a pre-
dictor from our analyses due to 94.6 % missing data
(Table 2); therefore, the models by Bang et al. [54] and
Kwon et al. [55] had one missing predictor. Finally, three
of the included models, which derived a simplified scor-
ing system [53, 55, 57], did not report the intercept of
their underpinning logistic regression model, and there-
fore we estimated the intercepts from the prevalence of
CKD and predictors’ summary statistics in the original
studies.

Study population characteristics
Figure 2 shows the cohort selection process. There were
187,533 adult patients with at least one record in the fi-
nancial year 2009 in our database, of which 178,399
remained after applying our exclusion criteria, with 6941
patients (3.9 %) that died before developing CKD. There
were 162,653 patients (91.2 %) who had complete
follow-up data. Overall, there were 6038 incident cases
of CKD during the study period. Tables 2 and 3 describe

the characteristics of cohorts with complete and incom-
plete follow-up.

External validation
Table 4 presents the results of the external validation,
namely discrimination and calibration. AUC values ranged
from 0.892 (95 % CI, 0.888–0.985) to 0.910 (95 % CI,
0.907–0.913) for patients with complete follow-up data,
and the c-index values for the two CPH models on the full
cohort were 0.888 (95 % CI, 0.885–0.892) [51] and 0.900
(95 % CI, 0.897–0.903) [36], respectively. Simplified scores
showed similar performance to the models from which
they were derived. MAPE was below 0.1 for all models,
with the only exception of Thakkinstian et al. [56], for
which the MAPE was 0.179 (standard deviation (SD),
0.161). Calibration plots (Fig. 3) and related calibration
slopes (Table 4) on the complete follow-up data showed
similar figures to the MAPE analysis. Thakkinstian et al.
[56] confirmed a tendency for over-predicting risk with a
calibration slope of 0.44 (95 % CI, 0.43–0.45). Conversely,
the only models that were well-calibrated to our popula-
tion were the ones by Bang et al. [54] and QKidney® [36]
with calibration slope values of 0.97 (95 % CI, 0.96–0.98)
and 1.02 (95 % CI, 1.01–1.04), respectively. All other
models over predicted risks (i.e. calibration slopes ranging
between 0.53 [ 95 % CI, 0.52–0.53] and 0.68 [ 95 % CI,
0.67–0.69] ), with the exception of the model by Kshirsagar

Fig. 1 Procedure to identify and select CKD prediction models
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Table 1 Details of studies developing CKD prediction models that were included for external validation

Authors [ref]
Publication year

Study design/Study
context
Study period

Ethnicity Age
range

Population size
Number (%) of
CKD cases

Type of
models
Time horizon

Handling of missing
values
Method of internal
validation

Definition of CKD Predictors in model

Bang et al. [54]
2007

Cross-sectional population-
based survey/Screening
programme
1999-2002

US, mixed
20–85 years

8530
601 (7.5 %)

Logistic
2 years

Excluded
Random split-sample

At least one eGFR
measurement < 60a

Age, sex, anaemia, proteinuriaa,
hypertension, diabetes mellitus,
history of cardiovascular disease,
history of heart failure, peripheral
vascular disease

Chien et al. [51]
2010

Prospective cohort study/
Secondary care
2003

Taiwan,
Chinese
51.2 years
(mean)

5168
190 (3.7)

Cox
4 years

NR
NR

At least one eGFR
measurement < 60a

Age, BMI, diastolic blood pressure,
type 2 diabetes, history of stroke

Hippisley-Cox and
Coupland (QKidney®) [36]
2010

Prospective cohort
population based/
Primary care
2002-2008

UK, mixed
35–74 years

1,591,884
23,786 (1.5 %)

Cox
5 years

Multiple imputation
Random split-sample

At least one eGFR
measurement < 45a,
kidney transplant; dialysis;
nephropathy diagnosis;
proteinuria

Age, ethnicity, deprivation, smoking,
BMI, systolic blood pressure, diabetes
mellitus, rheumatoid arthritis,
cardiovascular disease, treated
hypertension, congestive cardiac failure,
peripheral vascular disease, NSAID use,
and family history of kidney disease

Kshirsagar et al. [53]
2008

Prospective cohort study/

Community-based
1987-1989

US, white and
black
45–64 years

9470
1605 (16.9 %)

Logistic
9 years

NR
Random split sample

At least one eGFR
measurement < 60a

Age, sex, anaemia, hypertension, type 2
diabetes mellitus, history of cardiovascular
disease, history of heart failure,
peripheral vascular disease

Kwon et al. [55]
2012

Cross-sectional survey/
Population-based
2007-2009

Korean, Asian
≥19 years

6565
100 (1.5 %)

Logistic
1 year

Excluded
Split sample

At least one eGFR
measurement < 60a

Age, sex, anaemia, proteinuriaa,
hypertension, type 2 diabetes mellitus,
history of
cardiovascular disease

O’Seaghdha et al. [52]
2011

Prospective cohort study/
Population-based
1995-2008

US white
45–64 years

2490
229 (9.2 %)

Logistic
10 years

Excluded
Bootstrap

At least one eGFR
measurement < 60a

Age, hypertension, diabetes mellitus

Thakkinstian et al. [56]
2011

Cross-sectional survey/

Community-based
NR

Thailand-Asian
≥ 18 years

3459
606 (17.5 %)

Logistic
1 year

NR
Bootstrap

At least one eGFR
measurement < 90a

Age, hypertension, diabetes mellitus,
kidney stones

BMI, body mass index; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate, NR, not reported; NSAID, non-steroidal inflammatory drugs; US, United States
aPredictor not included in external validation due to missing data in our dataset
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et al. [53], which predicted lower risk and had a calibration
slope of 1.74 (95 % CI, 1.72–1.76).
Table 5 reports the PPV, sensitivity and specificity for

each of the simplified scoring systems. In this analysis
we included the full QKidney® [36] model as it does not
have an associated simplified scoring system. We also in-
cluded the full O’Seaghdha et al. [52] model because we
could not implement their scoring system: multiple predic-
tors had 70 % or more missing values in our dataset. For
two scoring systems (Chien et al. [51] and Thakkinstian et
al. [56]), the best threshold in our population was different
than the threshold proposed in the development study. For
QKidney® [36] and O’Seaghdha et al. [52], who did not re-
port a threshold in the development study, the optimal
threshold in our population was 0.017 (SD, 0.002) and
0.086 (SD, 0.010), respectively. In terms of performance,
models showed similar performance, with a PPV, sensitivity

and specificity of approximately 0.145, 0.86 and 0.80,
respectively.
The distributions of the linear predictors in the develop-

ment datasets and the validation dataset, calculated as pro-
posed by Debray et al. [44], are shown in Table 6. For all
models, the mean of the linear predictor in the validation
dataset was lower than in the development datasets: we
found mean differences between 0.2 and 0.6, except for the
model of Thakkinstian et al. [56], which had a difference of
1.5. There were few differences between the mean linear
predictors computed on our dataset using summary statis-
tics compared with individual patient data.
The threshold probability associated with the highest

tenth of predicted risk varied from 0.0692 for QKidney®
[36] to 0.4256 for the model developed by Thakkinstian
et al. [56]. When applying these thresholds to select the
10 % of patients with highest predicted risks, QKidney®

Table 2 Patients with complete and incomplete follow-up data stratified for CKD onset; values are numbers (%) unless indicated
otherwise

Parameters No CKD CKD

Patients with complete follow-up Patients with incomplete follow-up

Missing Missing Missing

Included patients 156,615 None 172,361 None 6038 None

Died before developing CKD 719 (0.5) None 6941 (4) None / None

Follow-up (mean, SD) 5.6 (0.2) None 5.4 (0.7) None 2.6 (1.7) None

Age (mean, SD) 42.1 (16.7) None 42.7 (17.3) None 70.3 (12.5) None

Female sex 82,883 (52.9) None 89,389 (51.9) None 3452 (57.2) None

Townsend index (mean, SD)e 1.6 (3.5) 2900 (1.9) 1.6 (3.4) 3244 (1.9) 1.4 (3.4) 47 (0.8)

Ethnicity Not recorded 55,586 (35.6) Not applicabled 61,220 (35.6) Not applicabled 2014 (33.4) Not applicabled

White 90,443 (57.8) 99,243 (57.7) 3889 (64.5)

Other 10,586 (6.8) 11,898 (6.9) 135 (2.2)

Smokinge Non-smoker 66,769 (48.8) 19,901 (12.7) 72,137 (48.4) 23,296 (13.5) 2167 (37.7) 292 (4.8)

Ex-smoker 29,980 (21.9) 33,097 (22.2) 2475 (43.1)

Light smoker (1–9 cg/day) 11,072 (8.1) 12,128 (8.1) 344 (6)

Moderate smoker (10–19 cg/day) 16,951 (12.4) 18,472 (12.4) 413 (7.2)

Heavy smoker (≥ 20 cg/day) 11,942 (8.7) 13,231 (8.9) 347 (6)

BMI, kg/m2 (mean, SD)e 26.6 (6) 33,717 (21.5) 28 (6.1) 38,628 (22.4) 28.4 (6) 518 (8.6)

Diastolic blood pressure, mmHg (mean, SD)e 76.9 (9.8) 75,616 (48.3) 78.9 (10.2) 85,075 (49.4) 75.8 (10.2) 1164 (19.3)

Systolic blood pressure, mmHg (mean, SD)e 128.2 (15.8) 75,602 (48.3) 130.5 (16.7) 85,058 (49.3) 136.3 (16.7) 1166 (19.3)

eGFR, mL/min/1.73 m2 (mean, SD) 83.7 (9.4) 118,912 (75.9) 82.5 (9.4) 131,103 (76.1) 69.4 (11.3) 1828 (30.3)

Hb, g/dLe 13.9 (1.6) 110,723 (70.7) 13.8 (1.6) 122,430 (71) 13.4 (1.7) 2530 (41.9)

Proteinuriaa,b 751 (0.5) 149,234 (95.3) 18 (0.2) 164,097 (95.2) 236 (3.9) 4665 (77.3)

Quantitative albuminuriab,c 129 (0.1) 152,266 (97.2) 4 (0) 167,482 (97.2) 62 (1) 5167 (85.6)

HDL cholesterol levelb, mg/dL (mean, SD) 25.9 (7.9) 122,477 (78.2) 26.7 (7.9) 135,066 (78.4) 25.7 (7.8) 2413 (40)

BMI, body mass index; cg, cigarettes; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; MDRD, modification of
diet in renal disease; SD, standard deviation
aAlbumin:creatinine ratio >30 mg/mmol or albumin concentration >200 mg/L, or diagnostic code
bVariable excluded as predictor from external validation due to >70 % missing values
cAlbumin:creatinine ratio >30 mg/mmol
dPatients without recorded ethnicity were considered as white (see Methodssection)
eMultiple imputation applied to missing values
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Fig. 2 Cohort selection

Table 3 Prevalence of CKD risk factors (as expressed in NICE guidelines) stratified for CKD onset; values are numbers (%) unless
indicated otherwise

CKD risk factors No CKD CKD (n = 6038)

Patients with complete follow-up (n = 156,615) Patients with incomplete follow-up (n = 172,361)

Hypertensiona 22,074 (14.1) 24,971 (14.5) 3554 (58.9)

Hypertensive treatmentb 22,122 (14.1) 24,769 (14.4) 3655 (60.5)

Type 1 diabetes mellitusa 703 (0.4) 740 (0.4) 36 (0.6)

Type 2 diabetes mellitusa 5574 (3.6) 6383 (3.7) 1221 (20.2)

History of cardiovascular diseasea 11,096 (7.1) 13,407 (7.8) 2182 (36.1)

History of heart failurea 743 (0.5) 1088 (0.6) 387 (6.4)

History of strokea 1875 (1.2) 2538 (1.5) 509 (8.4)

Peripheral vascular diseasea 2127 (1.4) 2532 (1.5) 331 (5.5)

Kidney stonesa 751 (0.5) 814 (0.5) 64 (1.1)

Rheumatoid arthritisa 1321 (0.8) 1512 (0.9) 142 (2.4)

Systemic lupus erythematosusa 99 (0.1) 104 (0.1) 8 (0.1)

Family history of kidney diseasea 25 (0) 28 (0) 3 (0)

NSAID useb 5101 (3.3) 5389 (3.1) 402 (6.7)

Acute kidney injury in the
last 2 years

1975 (1.3) 2633 (1.5) 413 (6.8)

Prostatic hypertrophya 967 (0.6) 1143 (0.7) 173 (2.9)

Haematuriaa 3176 (2) 3574 (2.1) 341 (5.6)

Lithium useb 150 (0.7) 219 (0.1) 52 (0.9)

Tacrolimus useb 4 (0) 5 (0) 2 (0)

Cyclosporin useb 12 (0.1) 20 (0) 6 (0.1)

NSAIDs, Non-steroidal anti-inflammatory drugs; SD, standard deviation
aBased on diagnostic Read codes
bAt least two prescriptions in the 6 months before entry date
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Table 4 Discrimination, MAPE and calibration slopes of included models in patients with complete follow-up data (all models and
risk scores) and in the full validation cohort (Cox proportional hazards regression models only)

Study Patients with complete follow-up (n = 162,653) Full validation cohort (n = 178,399)

AUC (95 % CI) MAPE (SD)a Calibration slope (CI) c-index (95 % CI) MAPE (SD)a

Models Bang et al. [54] 0.899 (0.895–0.903) 0.063 (0.162) 0.97 (0.96–0.98) NA NA

Chien et al. [51]b 0.898 (0.895–0.901) 0.081 (0.162) 0.65 (0.64–0.65) 0.888 (0.885–0.892) 0.085 (0.166)

QKidney® [36]b 0.910 (0.907–0.913) 0.05 (0.166) 1.02 (1.01–1.04) 0.900 (0.897–0.903) 0.052 (0.165)

Kshirsagar et al. [53] 0.896 (0.892–0.900) 0.068 (0.164) 1.74 (1.72–1.76) NA NA

Kwon et al. [55] 0.899 (0.895–0.902) 0.086 (0.158) 0.68 (0.67–0.69) NA NA

O’Seaghdha et al. [52] 0.907 (0.904–0.911) 0.089 (0.169) 0.53 (0.52–0.53) NA NA

Thakkinstian et al. [56] 0.892 (0.888–0.985) 0.179 (0.161) 0.44 (0.43–0.45) NA NA

Simplified Scores Bang et al. [54] 0.895 (0.891–0.899) NA NA NA NA

Chien et al. [51] 0.880 (0.876–0.883) NA NA NA NA

Kshirsagar et al. [53] 0.891 (0.887–0.895) NA NA NA NA

Kwon et al. [55] 0.895 (0.891–0.898) NA NA NA NA

Thakkinstian et al. [56] 0.869 (0.864–0.873) NA NA NA NA

AUC, area under receiver operating characteristic curve; eGFR, estimated glomerular filtration rate; NA, not applicable; SD, standard deviation; CI, confidence interval.
aCalculated as mean difference between observed and predicted CKD cases
bCox proportional hazard regression model

Fig. 3 Calibration plot of predicted and observed risk for the cohort of patients with complete follow-up. On the bottom a rug plot in the form
of histogram shows the distribution of the predicted values
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[36] identified 64.5 % of all patients that developed CKD
during the study period. Proportions for the other models
ranged from 48.0 % for the model from Thakkinstian et al.
[56] to 64.0 % for the model of O’Seaghdha et al. [52].
Decision curves for the cohort of patients with complete

follow-up are presented in Fig. 4. The models by Bang et
al. [54] and QKidney® [36] had the best performance. At
predicted probability thresholds lower than 0.5, their net
benefit was greater than all other models and greater than
strategies labelling all patients at high risk (black line) or
none at high risk (grey line). For predicted probability
thresholds greater than 0.5, Bang et al. [54] and QKidney®
[36] were equivalent to the choice of not labelling any pa-
tient as high CKD risk (grey line).

Sensitivity analyses
The sensitivity analysis conducted on patients with CKD
risk factors showed comparable calibration and MAPE
(Bang et al. [54] and QKidney® [36] were the only well-
calibrated models), with an overall decrease in discrimin-
ation of about 0.1 (Additional file 3: Table S4) compared
to our main analysis. Specifically, AUC values on patients
with complete follow-up ranged from 0.756 (95 % CI,
0.749–0.762) to 0.801 (95 % CI, 0.795–0.808), while the
c-index values for the two Cox regression models were
0.755 (95 % CI, 0.749–0.761) [51] and 0.775 (95 % CI,
0.769–0.781) [36], respectively. The performance of the
simplified scoring systems was worse compared to the
models from which they were derived.

Table 5 Positive predictive value, sensitivity and specificity for simplified scoring systems when applying to the threshold that was
proposed in the development study and best threshold on our dataset, calculated using the Youden’s method [43]

Study Threshold (SD) PPV (SD) Sensitivity (SD) Specificity (SD)

Bang et al. [54] Proposed 4 0.146 (0.002) 0.865 (0.004) 0.805 (0.001)

Best 4 0.146 (0.002) 0.865 (0.004) 0.805 (0.001)

Chien et al. [51] Proposed 7 0.106 (0.001) 0.916 (0.003) 0.701 (0.001)

Best 8 0.133 (0.002) 0.863 (0.004) 0.783 (0.001)

QKidney® [36] Proposed NR NA NA NA

Best 0.017 (0.002) 0.147 (0.006) 0.870 (0.012) 0.805 (0.012)

Kshirsagar et al. [53] Proposed 3 0.143 (0.002) 0.872 (0.004) 0.799 (0.001)

Best 3 0.143 (0.002) 0.872 (0.004) 0.799 (0.001)

Kwon et al. [55] Proposed 4 0.147 (0.002) 0.862 (0.004) 0.807 (0.001)

Best 4 0.147 (0.002) 0.862 (0.004) 0.807 (0.001)

O’Seaghdha et al. [52] Proposed NA NA NA NA

Best 0.086 (0.010) 0.138 (0.007) 0.885 (0.015) 0.786 (0.015)

Thakkinstian et al. [56] Proposed 5 0.071 (0.001) 0.936 (0.003) 0.529 (0.001)

Best 6 0.140 (0.002) 0.861 (0.004) 0.796 (0.001)

PPV, positive predictive value; NR, Not reported; NA, not applicable; SD, standard deviation
Note: As QKidney® does not have any associated score in the original publication, we reported results for the full model. O’Seaghdha et al. [52] reported a
simplified score system; however, this could not be used in our population because of missing predictors. Therefore, we calculated performance for the full
model instead

Table 6 Mean linear predictor, calculated in development datasets and in our validation dataset (patients with complete follow-up
data only)

Study Development dataset Validation dataset, patients with complete follow-up (n = 162,653)

Mean linear predictor
(from summary statistics)

Mean linear predictor
(from summary statistics)

Mean linear predictor (SD)
(from individual patient data)

Models Bang et al. [54] −3.9 −4.2 −4.2 (1.4)

Chien et al. [51] 0.1 −0.5 −0.5 (1.5)

QKidney® [36] −0.1 −0.3 −0.1 (1.9)

Kshirsagar et al. [53] −3.0 −3.5 −3.5 (0.8)

Kwon et al. [55] −3.0 −3.4 −3.3 (1.2)

O’Seaghdha et al. [52] −1.6 −1.8 −1.8 (0.9)

Thakkinstian et al. [56] −2.3 −3.8 −3.8 (1.9)
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The sensitivity analysis in which CKD was defined by
the presence of only one eGFR measurement lower than
60 mL/min/1.73 m2 or a diagnostic code for CKD 3–5 led
to a higher prevalence of CKD onset (5.2 %, n = 8854),
with an overall predictive model performance that slightly
decreased (Additional file 3: Table S5), especially in terms
of calibration. CKD onset prevalence was also higher
(3.9 %, n = 6988) when we calculated eGFR by using the
CKD-EPI formula, with an increase in absolute num-
bers of approximately 1000 cases and an average age in
this group of 76 years (SD, 8.1). Overall performance
was similar to our main analysis, and only the model by
Bang et al. [54] was well-calibrated in this sensitivity
analysis (Additional file 3: Table S8). As expected, we
witnessed an increase in CKD onset prevalence (7.6 %,
n = 13,652) when we counted patients that died during
follow-up as if they developed CKD; however, that did
not lead to changes in discriminative performance of
the models (Additional file 3: Table S6). Conversely,
calibration improved for all models that were over-
predicting CKD in our main analysis. In the analysis re-
stricted to patients with complete data on all predictors
we found an overall decrease in performance of about
0.08 for AUCs and c-index (Additional file 3: Table S7),
while the sensitivity analysis that used a 4-year time
horizon showed similar discriminative performance to
our main analysis, but worse calibration for all models
except QKidney® (Additional file 3: Table S9).

Discussion
We externally validated and compared seven published
models for the prediction of CKD onset [14, 15], using a
recent 5-year window with well-studied EHR data, typical
of UK NHS primary care and chronic disease manage-
ment. All models discriminated well between patients who

developed CKD compared with those who did not. Five
models had an associated simplified scoring system, each
of which had a similar performance to its parent model.
Only two models were well-calibrated to the risk levels in
our population [36, 54]. Among the 10 % of patients
with highest predicted risks, 48.0 % to 64.5 % actually
developed CKD.
Two key strengths of this study are (1) its large sample

size and (2) its cohort being based on a geographically-
defined population rather than tied to a particular EHR,
which minimizes selection bias at enrolment. In addition,
whilst five out of seven models had already been externally
validated [17, 36, 51, 54, 55, 58] and two had been mutu-
ally compared [17], our study is the first comprehensive
head-to-head comparison of multiple CKD prediction
models on a large independent population.
Three previous UK-based studies [36, 58, 59] have

externally validated QKidney® [36] and reported a c-
statistic of 0.87, good calibration and similar proportions
of identified CKD cases among the 10 % of patients with
highest predicted risks. Although each study externally
validated QKidney® [36] using UK primary care EHR data,
our study extended the validation. Collins et al. [59] and
Hippisley-Cox and Coupland [36, 58] adopted the same
inclusion criteria as in the original development study [36]
(i.e. patients aged between 35 and 74 years), CKD def-
inition (i.e. eGFR measurement <45 mL/min/1.73 m2,
kidney transplant, dialysis, nephropathy diagnosis and
proteinuria) and stratification by sex. However, the present
study included all adults (aged 18 years and over) and used
a more robust definition of the outcome.
A previous study compared the models from Chien et

al. [51] and Thakkinstian et al. [56] in mixed-ancestry
South Africans [17]. The present study found that these
models underestimated CKD risk in this population,

Fig. 4 Decision curve analysis for the cohort of patients with complete follow-up
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while in our external validation both models over-
predicted CKD risk. A likely explanation is the difference
in CKD onset prevalence between the development co-
horts, the cohort from the Mogue et al. [17] dataset, and
our cohort. Specifically, the study population from
Mogue et al. [17] had a much higher prevalence of CKD
cases than these development cohorts, while our study
population had a lower prevalence.
The included prediction models and simplified scoring

systems had remarkably good discriminative ability in
our dataset, with better performance than in most of the
original studies. This is, on the one hand, surprising
because models usually perform similarly or worse in
external validation. On the other hand, we used a more
robust definition of CKD, requiring impaired eGFR
(eGFR < 60 mL/min/1.73 m2) for at least 3 months, ra-
ther than the one used in most of the original studies
[51–55], which looks at CKD measurements in isolation.
The latter definition inflates incidence of CKD diagno-
sis [60] and therefore leads to a poorer signal-to-noise ra-
tio and a decrease in model performance [61], as shown in
our sensitivity analysis (Additional file 3: Table S5). An-
other advantage of our definition, which is based on the
international Kidney Disease: Improving Global Outcomes
(KDIGO) guidelines [62], is that it is closer to the defin-
ition of CKD currently used in UK clinical practice. Along
the same lines, we used the MDRD formula to calculate
eGFR, which is currently used in UK clinical practice. We
also performed a sensitivity analysis to investigate whether
using the CKD-EPI formula [48] would have led to dif-
ferent results, which confirmed the findings from Carter
et al. [63] that the CKD-EPI formula calculates lower
eGFR values than the MDRD formula for older patients.
In the complete case analysis, and in the analysis re-

stricted to patients with established CKD risk factors,
there was a marked decrease in discriminative perform-
ance. In both cases, further to the decrease in sample size,
a plausible explanation is that these analyses increased the
differences in case-mix between development and valid-
ation datasets. The complete case analysis considers only
patients without missing predictors, who are more likely
to have had healthcare contacts related to their disease. As
in the cohort with established CKD risk factors, this ex-
cludes a large group of healthy patients, and thus leads
a quite different population than the one for which the
models were developed. Based on our findings it seems
that a different model is needed for patients with estab-
lished CKD risk factors. Such a model could use other
information that is not routinely available in the major-
ity of the low-risk population, like creatinine levels.
We observed an over-prediction of CKD risk by the

majority of models, which can be explained largely by
differences in case-mix between our validation cohort
and the development populations. First, the incidence of

CKD in most development datasets was higher than in
our validation cohort. As a consequence, the baseline
CKD risks calculated (i.e. model intercepts) in the devel-
opment datasets were too high for our population. Fur-
thermore, as the mean linear predictor analysis showed,
our population appeared to be healthier (i.e. lower mean
predictor values) than the populations used in the develop-
ment studies. We also found, in some models, unexpectedly
large coefficients for some covariates. For example, three of
the included models [53–55] had coefficients for covariates
such as anaemia or peripheral vascular disease that were ei-
ther comparable or larger than more well-established CKD
risk factors like diabetes or hypertension. Finally, another
possible explanation of the models’ poor calibration is the
adoption of a slightly different definition for some predic-
tors in this study, in concordance to the ones used in the
NHS, when compared to the original studies.
No calibration problems were found for the models by

Bang et al. [54] and QKidney® [36]. However, we left out
an important predictor from the model by Bang et al.
[54], proteinuria, because it was missing from our data-
set. Because the model is well calibrated now, we expect
that it would have over-predicted risks if proteinuria had
been present. QKidney® [36] was originally developed in
the UK primary care (England and Wales), and it was the
only model for which the analysed time horizon (5 years)
was the same as in the development paper. Therefore, a
good calibration was expected. This was confirmed by the
fact that we obtained similar mean linear predictors in our
dataset to the ones reported in the original development
study (Table 6).
Overall, the only model that could conceivably be

applied in our population without recalibration was
QKidney® [36]. QKidney® consistently outperformed all
the other models in terms of both discrimination and
calibration, and its performance is comparable to exist-
ing validation studies [36, 58, 59]. The model could be
used via the web calculator (www.qkidney.org) or dir-
ectly integrated into EHRs.
From a methodological perspective, there is room for

improvement in CKD prediction modelling. First, future
studies should consider to use the CKD definition pro-
vided by the international KDIGO guidelines [62]. This
should also be used to re-estimate the CKD risk predic-
tion models already available. Second, none of the
models included in our analysis accounted for death as a
competing risk. We recommend that authors of future
models use methodologies [64, 65] to do so. Third, au-
thors should take advantage of the new opportunities of-
fered by EHR databases to develop and validate future
CKD prediction models [66]. Particularly, besides the
possibility of accessing larger sample sizes and to have
more predictors, EHRs give the opportunity of observing
repeated measurements and account for changes over
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time of patient’s relevant conditions and biomarkers
[66, 67]. This is particularly important in CKD, where co-
morbidities and biomarkers like creatinine play a key role.
Our study has several limitations. First, we excluded

11 models identified from the two reviews [14, 15] because
they included variables not present in our data. However,
these models were qualitatively less applicable to our pre-
diction population/context than those included. Second,
we removed proteinuria from the models by Bang et al.
[54] and Kwon et al. [55] because proteinuria was rarely
available for patients in our dataset, and this has likely
impaired the estimated performance of these models.
Third, we could not reproduce the exact KDIGO defin-
ition of CKD because ACR is not routinely collected in
UK primary care. Again these limitations are unlikely to
influence the implications of our findings for current
practice. Finally, we had missing values for ethnicity
and considered patients for which there was no ethnicity
information recorded as if they were of White British eth-
nicity. Poor recording of ethnicity is an acknowledged
issue in the NHS [68]. However, because of the regional
nature of our data, which covers only the city of Salford
(England, UK), where white prevalence is higher than
90 % [34], we believe that this did not affect our findings.

Conclusion
To conclude, we have provided an independent, external
validation of CKD prediction models with data that will
soon be available in most parts of the UK. All included
models had good discriminative performance, but most
of them were poorly calibrated. Although no model was
ideal, QKidney® [36] performed best, and could support
a high-risk approach to CKD prevention in primary care.
This study underlines the need for ongoing (re)calibration
of clinical prediction models in their contexts of use.
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