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Matrix metalloproteinases (MMPs) are physiologically expressed in the central nervous

system in neurons, astrocytes and microglia, and their aberrant elevation contributes to a

number of diseases. Amongst the MMP members, MMP−9 has generated considerable

attention because of its possible involvement in inflammatory responses, blood-brain

barrier permeability, the regulation of perineuronal nets, demyelination, and synaptic

long-term potentiation. Emerging evidence indicate an association between MMP−9

and the syndrome of depression. This review provides an updated and comprehensive

summary of the probable roles of MMP−9 in depression with an emphasis on the

mechanisms and potential of MMP−9 as a biomarker of depression.

Keywords: depression, matrix metalloproteinase 9 (MMP-9), neuroplasticity, minocycline, contributor

INTRODUCTION

The MMPs constitute a large group of zinc-dependent endopeptidases which have the capability
of cleaving protein constituents of the extracellular matrix; MMPs may also activate or inactivate
particular signaling molecules including adhesion molecules, receptors and growth factors (1, 2).
MMP family members are broadly categorized into the following groups of enzymes: collagenases,
stromelysins, gelatinases, and membrane-type metalloproteinases (3, 4). They normally exist in
an inactive pro-form and require conversion to their active forms (5, 6). The activity of MMPs
is also controlled by endogenous inhibitors, the tissue inhibitors of MMPs (TIMPs) (7, 8), and
an endogenous stimulator, extracellular matrix metalloproteinase inducer (EMMPRIN) (8, 9). In
addition, plasmin can activate MMPs to degrade a range of extracellular matrix molecules (10–12).
Reactive oxygen species (ROS) also contribute to MMP activity (13, 14) by activating the preforms
of MMPs, or inducing expression of their mRNA through signaling via NF-κB (5).

Activated MMPs are implicated in many processes such as cell survival, signaling, angiogenesis,
inflammation, and cell motility (4, 15). They may directly injure brain cells by means of
processing death molecules, disrupting myelin, and perpetuating neuroinflammation (4–6).
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AmongMMPmembers, the most important may beMMP−9.
It is implicated in the remodeling and stabilization of dendritic
spines, pre and post-synaptic receptor dynamics, consolidation of
long term potentiation, synaptic pruning and myelin formation
(16–18). MMP-9 is also involved in the sprouting, pathfinding
and regeneration of axons (4, 19). MMP-9 is normally expressed
in barely detectable level in the brain but after an injury, it is
strongly detected in many cell types including endothelial cells
and infiltrated neutrophils (20, 21). MMP-9 (Gelatinase B) is
induced after injury through factors such as the c-fos and c-
june, immediate early genes and by the cytokines, TNF-α and
interleukin-1β (4, 6).

Though the evidence on the deleterious effects of MMPs in
neurological diseases is substantial (5, 6, 20), the roles of MMPs
in depression remain limited. Recent studies have indeed linked
MMP-9 and the symptomatology of depression (22, 23). The aim
of this paper is to provide an updated and comprehensive review
regarding the role of MMP-9 in the pathology of depression with
an emphasis on the probablility that MMP-9 expression could be
a potential biomarker of depression.

MMP-9, Neural Structure/Function and
Depression
MMPs are important in the reaction of cells to their
microenvironment. Both secreted and membrane-bound forms
of MMPs are implicated in pericellular proteolysis (24). By the
proteolytic degradation or remodeling of extracellular matrix
proteins while simultaneously activating cell surface receptor
ligands, MMPs affect the differentiation, survival, migration and
proliferation of cells; axonal growth and pathfinding of axons are
also controlled (25, 26). Thus, MMPs have important functions
in wound healing and repair (5).

The extracellular matrix consists of three principal
compartments in the CNS: the basement membrane that
line blood vessels, perineuronal nets around certain population
of neurons, and the interstitial matrix between neural cells (26).
MMPs can determine the integrity of the basement membrane
and thus the blood-brain barrier (BBB) via degradation of
extracellular matrix and basement membrane components (7, 8).
As a hallmark of brain trauma/stress injury, the disruption of
the BBB is related to the increased permeability of damaged
endothelial cells (27), facilitating the entry of inflammatory
molecules into the brain. This increased neuroinflammation
is thought to mediate, at least in part, the brain abnormalities
as well as the cognitive decline in white and gray matter in
individuals with bipolar disorder (28). By integrating human and
animal data, Najjar et al. linked oxidative stress, endothelial nitric
oxide synthase uncoupling, low endothelial nitric oxide levels,

Abbreviations: CNS, central nervous system; MMP−9, Matrix metalloproteinase-

9; PNNs, perineuronal nets; MMPs, Matrix metalloproteinases; TIMPs,

tissue inhibitors of metalloproteinases; EMMPRIN, extracellular matrix

metalloproteinase inducer; ROS, Reactive oxygen species; LTP, long term

potentiation; BM, basement membrane; BDNF, brain derived neurotrophic factor;

BBB, Brain-blood barrier; TJPs, tight junction proteins; BD, bipolar disorder;

CSPG, chondroitin sulfate proteoglycans; PCR, polymerase chain reaction; NGF,

Nerve growth factor; MSCs, mesenchymal stem cells; FGFR, fibroblast growth
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and neuroinflammation to putative BBB and neurovascular
abnormalities in major depressive disorder (29).

The perineuronal nets around many neurons form a physical
structure enwrapping the cell soma and proximal processes,
particularly around parvalbumin-expressing GABAergic
neurons. The perineuronal net can constitute a barrier to
the formation of new synaptic contacts (30, 31). In postnatal
development, hyaluronan/chondroitin sulfate proteoglycans
(CSPG)-based extracellular matrix forms perineuronal nets
that compartmentalize the neuronal surface, and restricts the
surface mobility of integral membrane proteins, including
glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptors (32). Thus, perineuronal nets are involved in
synaptic stabilization and limits synaptic plasticity (33). Very
long-term memories such as fear conditioning are thought to be
stored as hole patterns in the perineuronal net (34). Aberrant
perineuronal signaling is proposed to induce CNS dysfunctions
such as stroke, epilepsy and Alzheimer’s disease (35).

Interestingly, some of the most effective treatments for mood
disorders affect extracellular matrix molecules in perineuronal
nets (32). In mice at postnatal 4–8 weeks, MMP-9 is inferred
to impact cerebellar synaptic plasticity and perineuronal net
remodeling, as MMP-9 activity is colocalized with synaptic
markers and perineuronal nets (36, 37). MMP-9 decreases
the integrity of perineuronal net around cortical neurons and
this is associated with increased branching of input excitatory
neurons while simultaneously lowering inhibitory input to
these cortical neurons (38). Similarly, perineuronal net density
around parvalbumin-expressing hippocampal interneurons is
elevated in mice with social defeat-induced persistent stress
disorder, which was abrogated by a 3-week antidepressant
treatment (39). However, whether MMP-9 activity participates
in the pathophysiology of depression through perineuronal net
remodeling still needs more investigations.

The extension of multiple oligodendroglial branched
processes toward axons is a significant event during the early
stages of myelination; this prominent output of processes by
oligodendrocytes likely requires remodeling of the extracellular
matrix and participation of MMPs (40). Larsen et al. showed that
an increase in MMP-12 and−9 in early postnatal development
was beneficial to regulate myelinogenesis (41). As well, the
involvement of MMPs in demyelination has been reported by
several groups (42–44). Demyelination has also been reported in
neuropsychiatric diseases such as depression and autism (45). If
there is subsequent attempt at remyelination, the involvement of
MMP-9 may be postulated.

Clinical studies report that cortical synaptic long-term
potentiation (LTP)-like plasticity is attenuated in major
depressive disorders patients, which recover after remission
(46). The enduring nature of LTP has been attributed, in part,
to long-term structural remodeling of synaptic contacts. For
example, growth of new dendritic spines, increased density or
formation of multi-synapse boutons, and enlargement of spine
heads have all been associated with enduring LTP (47, 48).
Activated MMP-9 partially localizes to synapses and has been
proposed to modulate hippocampal synapses through integrin
receptors; in this regard, blocking integrin function prevents
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an MMP-9-mediated potentiation of synaptic signal strength
(48, 49). Moreover, extracellular conversion of proBDNF to
active mBDNF is fundamental for late-phase LTP, and this
appears to be mediated by extracellular proteases including
plasmin/tissue plasminogen activator and/or MMP-9 (50).
These observations suggest strongly that MMP-9-related LTP
formation may be linked with depression (Figure 1).

MMP-9 Gene Polymorphisms and
Depression
MMP-9 gene functional polymorphisms may influence MMP-
9 concentration, and MMP-9 activity highly depends on its
expression level. The MMP-9 gene is located on chromosome
20q12.2–13.1, and it has three major polymorphisms in the
untranslated, coding and promoter regions. Among these, the
C-1562T (rs 3918242) polymorphism in the promoter region is
of interest (51), because the promoter activity in driving gene
expression is higher in the T-1562 allele than in the C-1562 allele
(52). Galal et al. indicated that MMP-9 levels associated with
CC genotype (C-1562T) polymorphism is significantly increased
compared with CT genotype (51). Rybakowski et al. analyzed
the functional-1562 C/T polymorphism genotype in a cohort of
416 patients with bipolar mood disorder and 558 healthy control
subjects. T allele of the −1562 C/T polymorphism in the MMP-
9 had a higher preponderance vs. the C allele in patients with
bipolar mood disorder compared to healthy control subjects.
Seventy five patients with bipolar disorder type II in a subgroup
has much higher frequency of the T allele compared to the
healthy group (53). In another study, Bobińska et al. examined
203 individuals suffering from depression and 99 healthy control
individuals (54). The presence of the T-1702A polymorphism
for MMP-9 elevates the risk of recurrent depression for the T
allele and T/T genotype, whereas the A allele and A/A genotype
decrease this recurrence. The C allele and C/C genotype of the
C1562T MMP-9 polymorphism increase the risk of depression
in midlife, while the T allele lowers this risk. In the case of a
set of T/T-G/C genotypes of the MMP-9 TIMP-2G-418C and T-
1702A polymorphisms, a higher incidence was also noted (54).
These evidence support MMP-9 as a pathological mediator in
depression. Further studies focusing on alterations of MMPs over
the course of depression are warranted and required.

MMP-9 as a Biomarker for Depression
Besides gene polymorphisms, alteration of MMP-9 levels has also
been reported in depressive patients (Table 1). Yoshida et al.
enrolled 69 patients with major depressive disorder and 78 age-
and gender-matched healthy individuals. Mature brain-derived
neurotrophic factor (BDNF) serum levels were significantly
lower in patients with major depressive disorders than those in
healthy individuals. In contrast, the serum levels of MMP-9 and
proBDNF did not differ between patients and healthy subjects.
Interestingly, these authors noted a positive correlation between
the severity of depression and serum MMP-9 levels in patients
with major depressive disorders. Increased MMP-9 expression

was considered to be as a compensatory response to reduction
of mature BDNF in patients with major depressive disorder (56).

In another study, Domenici et al. reported that MMP-9 in
serum was significantly higher in patients with major depressive
disorders (n= 245) vs. controls (60). Rybakowski et al. performed
a study on 54 in-patients with bipolar mood disorder and 29
control subjects. An increase of serum MMP-9 at the early stages
of bipolar illness is found to accompany only the depressive
episodes and not manic ones. Elevated levels of serum MMP-
9 during depression in young patients may indicate that this
phenomenon is a potential biochemical marker for the staging
of bipolar disorder. The reason for the change in MMP-9 only
at one stage of bipolar disorder is not known (61). Bobińska
et al. examined a population comprised of 142 individuals
suffering from depression and 100 control individuals. For
all measured MMPs (MMP-9, MMP-2, MMP-7) and TIMP-
2 in blood, increased gene expression was statistically more
significant at the mRNA level in patients with depression as
compared to control individuals (62). Domenici et al. conducted
multiple analyte profiling of plasma samples from 245 depression
patients and 254 controls. Increased MMP-9 levels, and to a
lesser extent decreased MMP-2 levels, were documented in the
depression group (55). In contrast, opposite observations have
also been noted. Bobińska et al. reported decreased expression of
transcripts and proteins ofMMP-9,MMP-2 and TIMP-2 in blood
in depression (63).

Some studies also reported no obvious correlation between
MMP-9 level and depression. Platelet immunomodulatory
and inflammatory properties are mediated through bioactive
molecules mainly stored in cytoplasm and platelet granules.
MMP-9 is found mainly in the cytosol of platelets. No group
differences betweenmajor depressive disorders and controls were
found for MMP-9 in platelets (58). Chiarani et al. recruited 20
patients with bipolar disorder and 20 control subjects that were
matched for age and sex. They measured MMP levels in blood
using real-time quantitative polymerase chain reaction. Pattern
of MMP-9 expression has no difference between patients with
bipolar disorder and control group (57). Large-scale multicenter
studies are still necessary to analyse the role of MMP-9 as a
contributor for depression.

Hemorrhagic transformation is exacerbated by thrombolytic
therapy, which is a common complication of ischemic stroke.
Jickling et al. proposed that early hemorrhagic transformation
(<18 to 24 hours after stroke onset) is related to brain-derived
MMP-2 and leukocyte-derivedMMP-9 promotes BBB disruption
and damage the neurovascular unit (64). It is proposed that
the combination of tissue plasminogen activator along with an
MMP-9 inhibitor can be beneficial in ischemic stroke (65). There
are constitutively expressedMMPs that initiate the injury cascade
early in the acute hypoxic/ischemic phase and inducible MMPs
that perpetuate the damage over h and days (66). Thus, MMP-
9 may be involved in the pathophysiologic process of stroke.
Interestingly, there is emerging evidence of a bi-directional
relationship between depression and cerebrovascular diseases,
both of which are common conditions in older humans. In the
first month after stroke, the frequency of post-stroke depression
is highest, and remains high even several years later (67).
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FIGURE 1 | The role of MMP-9 in the pathology of depression. MMP-9 is elevated in endothelial cells and neutrophils during inflammation. (A) Excessive MMP-9 is

thought to be involved in demyelination associated with depression. (B) MMP-9 disrupts BBB through tight junction proteins or basement membrane degradation,

which increases neuroinflammation and may be linked to depression or bipolar disorders with cognitive decline. (C) Activated MMP-9 localizes in part to synapses and

is involved in synaptic pruning essential for longterm potentiation (LTP), and attenuation of cortical synaptic LTP-like plasticity; collectively, these are thought to

contribute to depression. (D) MMP-9 remodels perineuronal nets that participate in synaptic stabilization and limit synaptic plasticity. Depression may occur when

perineuronal net signaling is aberrant.

Although MMP-9 may be involved in the pathophysiologic
process of stroke and depression, whether it plays an important
role in depression after stroke is uncertain. Furthermore, no
evidence has been found to support the use of a particular
biomarker for post-stroke depression (68).

Stress and MMP-9 Activity
Stress is a risk factor for the development of psychopathologies
characterized by deregulated social behaviors and cognitive
dysfunction. Using a blister chamber wound model on human
forearm skin exposed to UV-B, Yanga et al. found that depressive
symptoms were reliably related to modulation of either TIMP
or MMP expression. Moreover, activation of the sympathetic–
adrenal medullary and hypothalamic–pituitary–adrenal axes can
modulate levels of MMPs (69). In another depressive-like model,
chronic mild stress decreased the concentration of the mature
form of NGF and increased the active forms of MMP-2 and
MMP-9 in the rat hypothalamus. Activated MMP-9 and MMP-2
cleaved the mature but not the pro-form of NGF into biologically
inactive products (70).

Similarly, MMP-9-related gelatinase activity was elevated
in the hippocampal CA1 of chronic restraint-stressed rats.
Consistently, intra-CA1 administration of an MMP-9 inhibitor
during stress exposure prevented the development of stress-
induced deficits in social memory, social exploration and
CA1-dependent cognition (71). However, in prenatal stress
induced depressive-like rat model, gelatin zymography

showed no significant change of MMP-9 and MMP-2
activity of both sexes (72). Further studies are necessary to
determine the link between underlying mechanisms of stress
and MMP-9.

Antidepressants/Electro-Convulsive
Therapy and MMP-9 Activity
Accumulated studies suggest that antidepressants may influence
MMP-9 activity. For example, the antidepressant imipramine
is reported to elevate the expression of MMPs to cleave
perineuronal net proteins and affect inhibitory input to
parvalbumin neurons in the hippocampus (37). Many
antidepressants affect serotonergic neurotransmission and
it is reported that stimulation of serotonin 5-HT7 receptor
activated MMP-9 which cleaved the CD44 hyaluronan receptor
on neurons leading to activation of the GTPase Cdc42; the
authors proposed that this MMP-9-mediated pathway promoted
synaptic pruning and impaired LTP, and caused reversal learning
(73). Puscian et al. combined a study of neuronal plasticity
in the central and basolateral amygdala with an automated
assessment of motivation and learning in mice. They indicate
that chronic treatment with fluoxetine in unstressed mice
attenuated MMP-9-dependent plasticity in the central amygdala,
while increasing perineuronal net-dependent plasticity in the
basolateral amygdala (74). Alaiyed et al. reported that MMP-9
levels were elevated in prefrontal cortex of antidepressant-treated
patients with major depressive disorders (38).
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TABLE 1 | MMP-9 as a potential biomarker for depression—results from clinical studies.

References Study population Study design Main findings

Domenici et al. (55) 728 245 patients with depression, 229 patients

with schizophrenia, and 254 controls

subjects; patients met DSM criteria;

primary outcome: plasma levels of MMP-9

MMP-9 was higher in patients with

depression vs. control group

Yoshida et al. (56) 147 69 patients with major depressive

disorders, 78 control subjects; all patients

met DSM-IV criteria for major depressive

disorders and were outpatients; 65

patients were treated with

antidepressants, 2 patients were treated

with anxiolytics; primary outcome: serum

levels of MMP-9

MMP-9 serum levels were associated with

the severity of depression

Chiarani et al. (57) 40 20 patients with bipolar disorder, 20

control subjects; 50% patients were

treated with haloperidol or chlorpromazine,

and the others were treated with

risperidone, olanzapine or clozapine.

Primary outcome: MMP mRNA levels of

blood cells using PCR

MMP-9 and MMP-2 expression in blood

were not different between patients with

bipolar disorder and control group.

Hufner et al. (58) 26 Participants were assessed during two

separate research visits, one without and

the other with ongoing mental stress which

consisted of an average of 3 months

preparation for a major university exam.

Primary outcome: plasma levels of MMP-9

The interaction of acute physical and

persistent mental stress led to a significant

increase in plasma MMP-9.

Bobińska et al. (54) 242 142 patients with depression, 100 control

subjects; patients were treated with

antidepressants; primary outcome:

MMP-9 gene expression of blood at the

mRNA level

MMP-9 mRNA level was higher in patients

with depression than in the control group.

Bobińska et al. (54) 234 139 patients with recurrent depression, 95

control subjects; patients were treated

with antidepressants; primary outcome:

MMP-2, MMP-9 and TIMP-2 gene

expression of blood at the protein and

mRNA level

MMP-9, MMP-2 and TIMP-2 expression

was lower in depressive patients at both

protein and mRNA levels than in the

control group. Elevated expression of

MMP-9, MMP-2 and TIMP-2 positively

influences cognitive efficiency.

Chandrasekaran et al.

(59)

25 A cross-sectional pilot study, 25 patients

with bipolar disorder, primary outcome:

serum levels of MMP-9

MMP-9 serum levels were higher in

patients with a long history of suicidal

thoughts compared to those without.

The clinical effects of lithium are well-understood, as
it has been used in bipolar patients for over 60 years.
Treatment of mesenchymal stem cells (MSCs) with
lithium (2.5mM for 1 day) selectively increased the

protein/enzymatic and transcript levels of MMP-9. It was
further demonstrated that lithium promoted migration of MSCs

by up-regulation of MMP-9 through GSK-3β inhibition in

rodents (75).
The antidepressant amitriptyline is reported in astrocglial cells

to evoke glial-derived neurtotrophic factor production through
a mechanism that is independent of monoamines, via activation

of a pertussis toxin-sensitive Gi/o/MMP/fibroblast growth
factor receptor (FGFR)/FRS2α/ERK cascade (76). Whether

amitriptyline affects MMP expression or enzymatic activity
remains to be identified. Another study showed that treatment

with amitriptyline elevated zymographicMMP-9 activity without

changing MMP-9 transcripts in C6 cells, and that MMP-3 was

necessary to activate MMP-9 (77, 78).
Shibasaki et al. analyzed serum obtained from 21 patients

with major depressive disorders and 40 healthy controls.
Serum levels of TIMPs and MMPs were quantified by ELISA.

These levels did not significantly differ from those of the
control group before electro-convulsive therapy (ECT), but

MMP-9 level was significantly reduced after ECT. Moreover, a

significant positive correlation was observed between Hamilton

Rating Scale for Depression (HAMD) scores and MMP-9
level in the serum (79). Benekareddy et al. demonstrated that

chronic and acute ECT differentially regulated the transcript

levels of TIMPs 1-4 and MMP-2/9 in rodents, and that ECT
also increased activity of MMP-2/9 in the hippocampus.
Chronic and acute pharmacological antidepressants, on
the other hand, altered the expression of TIMPs without
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any observed impact on hippocampal MMP-2/9 activity or
expression (80).

MMP-9 Inhibitors and Depression
Based on it being an MMP-9 inhibitor and microglial activation
blocker (81), the tetracycline antibiotic minocycline has been
proposed for the treatment of depressive symptoms as well
as negative symptoms in schizophrenia (82–84). It has been
reported in rodents that minocycline reduced the effect of
stress on working memory and neuronal activation, as well
as microglial activation (37, 85). In the forced swimming test,
minocycline produced antidepressant-like actions; subthreshold
doses of both minocycline and desipramine in combination
produced antidepressant-like actions (84, 86). In the testicular
torsion/detorsion induced depression model and in the forced
swimming test in rats, 160 mg/kg minocycline showed high
antidepressant-like effect (84, 86). The nitric oxide/cGMP
pathway was implicated in testicular torsion/detorsion-induced
depressive-like behavior and minocycline had an antidepressant-
like activity in this model (87). Repeated exposure to malathion
leads to depressive-like behavior and minocycline significantly
decreased immobility times in the tail suspension test and
forced swimming test, associated with decreased hippocampal
nitrite concentration (87). These investigations suggest an
essential role for NO/cGMP pathway in antidepressant-like effect
of minocycline in malathion-induced depressive-like behavior
(88). Similarly, infusion of minocycline into the cerebral
ventricle of learned helplessness rats induced antidepressant-
like effects (89). Furthermore, in a rat model beginning 3
d before chronic unpredictable stress therapy and continuing
through the behavioral testing period, chronic treatment with
minocycline (120 mg/kg per day) prevented impairments of
LTP induction and spatial memory (90). In another study,
both chronic mild stressed rats or controls received twice
intracerebroventricular injection of minocycline (160 µg) or
vehicle. Minocycline was found to have neuroprotective effects
through regulating energy metabolism and reducing oxidative
damage in specific brain areas (91). In addition, chronic
but not acute minocycline administration attenuated olfactory
bulbectomized-induced depressive-like behavior (92, 93).

The above preclinical results are consistent with clinical
studies. Soczynska et al. provided the rationale for organizing
a randomized, controlled trial to examine the antidepressant
properties of minocycline (94). Nettis et al. conducted a 4-week,
placebo-controlled, randomized clinical trial of minocycline (200
mg/d) added to antidepressant therapy in 39 patients selected
for elevated levels of serum C-reactive protein (CRP ≥ 1 mg/L);
the authors found efficacy of add-on minocycline therapy in
patients with major depressive disorder, but only in those with
low grade inflammation defined as CRP ≥ 3 mg/L (95). In a 6-
week, open-label study, 150 mg/day minocycline in combination
with antidepressants (paroxetine, fluvoxamine, and sertraline)
produced improvement in depression scores (96).

However, there are contradictory results concerning the
antidepressant effects of minocycline. In C57BL/6 mice,
minocycline (20–40 mg/kg, i.p.) did not cause anxiolytic - or
antidepressant -like behavioral changes in contrast to mice
treated with imipramine (20 mg/kg, depressive-like behavior)
or diazepam (0.5 mg/kg, anxiety tests) (97). Furthermore,
266 patients were randomly assigned to receive celecoxib plus
minocycline (n = 68), placebo plus minocycline (n = 66),
placebo plus celecoxib (n = 66), or placebo plus placebo (n =

66). This double-blind, 12-week, randomized, placebo-controlled
trial indicated that decreases in HAMD-17 was not different for
patients treated with celecoxib or minocycline (98). Similarly,
Krynicki et al. conducted a randomized double-blind, placebo-
controlled trial of minocycline in 207 patients within 5 years
of onset of schizophrenia, and found that minocycline did not
affect any scores including depression and negative symptoms of
schizophrenia (99).

CONCLUDING REMARKS

MMP-9 plays important roles in BBB integrity, perineuronal net
remodeling, myelinogenesis, and synaptic physiology. Clinical
studies suggest that MMP-9 gene polymorphisms are related to
depressive symptoms, and altered MMP-9 levels are observed
in depressed patients and in depressive-like animal models
(51–54). It is to be noted that the literature on MMP-9 is
more established for bipolar disorder rather than depression.
Nonetheless, accumulated studies indicate that serum MMP-9
may be a novel therapeutic target and biomarker for depression
(55–57, 60–63), although a cautionary note is that blood level of
MMP-9 may not directly correlate with brain MMP-9 content.
MMP-9 appears to be a target for classical antidepressant
treatments and MMP-9 inhibitors possess potential therapeutic
effects for depression.

In summary, we suggest MMP-9 to be an important factor
in depression, not only as a therapeutic target but also as a
biomarker in the condition.
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