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Outbreaks of hand, foot and mouth disease have been documented in Japan

since 1963. This disease is primarily caused by the two closely related ser-

otypes of Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16).

Here, we analyse Japanese virologic and syndromic surveillance time-

series data from 1982 to 2015. As in some other countries in the Asia Pacific

region, EV-A71 in Japan has a 3 year cyclical component, whereas CV-A16

is predominantly annual. We observe empirical signatures of an inhibitory

interaction between the serotypes; virologic lines of evidence suggest they

may indeed interact immunologically. We fit the time series to mechanistic

epidemiological models: as a first-order effect, we find the data consistent

with single-serotype susceptible–infected–recovered dynamics. We then

extend the modelling to incorporate an inhibitory interaction between sero-

types. Our results suggest the existence of a transient cross-protection and

possible asymmetry in its strength such that CV-A16 serves as a stronger

forcing on EV-A71. Allowing for asymmetry yields accurate out-of-sample

predictions and the directionality of this effect is consistent with the viro-

logic literature. Confirmation of these hypothesized interactions would

have important implications for understanding enterovirus epidemiology

and informing vaccine development. Our results highlight the general

implication that even subtle interactions could have qualitative impacts

on epidemic dynamics and predictability.

1. Introduction
Hand, foot and mouth disease (HFMD) has been an important public health

issue in the Asia Pacific region since the late 1990s, during which outbreaks in

Japan and Malaysia in 1997 as well as Taiwan in 1998 [1] heralded the start of

recurring epidemics. HFMD is an acute viral illness characterized by symptoms

including fever and the eponymous blisters on the hands and feet and in the
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mouths of infected individuals. It is typically a childhood dis-

ease with a median age of infection of under 2 years [2–4].

There are now more than 1 million cases of HFMD reported

in the region each year, where it is monitored as a notifiable

(Malaysia, Singapore, Thailand, Taiwan, Vietnam and China)

or sentinel-based (Japan and South Korea) disease [5]. Our

focus is on Japan, where the first clinical cases of HFMD

were reported in 1963 [6] and detailed surveillance data are

uniquely available dating back to the 1980s.

A complication in understanding the population-level

dynamics of HFMD results from syndromic cases reflecting

the combined contributions of multiple, possibly interacting,

causative pathogens. The syndrome is caused by RNA viruses

(serotypes) of the Enterovirus A species in the Enterovirus genus

of the Picornaviridae family, which are close relatives of the

polioviruses (Enterovirus C species). The most common cau-

sative serotypes of HFMD are Enterovirus A71 (EV-A71)

and Coxsackievirus A16 (CV-A16), followed by less fre-

quently implicated serotypes such as Coxsackievirus A10

(CV-A10) and Coxsackievirus A6 (CV-A6) (though the

latter is recently emerging worldwide). The viruses are trans-

mitted between individuals both through a faecal–oral route

and by respiratory droplets.

Infection with a serotype is immunizing, but individuals

can get HFMD multiple times if infected with different sero-

types [7]. HFMD is usually mild and self-limiting, but a small

proportion of cases infected with EV-A71 experience neuro-

logical manifestations and sequelae (aseptic meningitis,

encephalitis or acute flaccid paralysis [8]). EV-A71 has thus

been the focus of ongoing vaccine development; monovalent

vaccines against this serotype do not protect against infection

with CV-A16 [9–11]. Each year EV-A71 causes hundreds of

thousands of hospitalizations of children, with an estimated

case–fatality ratio of around 0.1% [12]. By contrast, CV-A16

generally only causes mild HFMD (with rare exceptions,

e.g. [13]). A recent systematic review found the fraction of

asymptomatic enterovirus infections to be variable but poten-

tially quite high (an upper range of 90% of infections were

asymptomatic) [14].

EV-A71 was first identified in 1969 [15], and CV-A16 was

first identified in 1951 [16]. EV-A71 and CV-A16 are the most

genetically related to each other of the Enterovirus A species,

sharing approximately 80% similarity in amino acids [17] and

having overlapping viral receptor repertoires [18]. Molecular

epidemiology shows that EV-A71 evolved from CV-A16

around 1941 [19]. In Japan, the first reported cases of

HFMD caused by CV-A16 were in 1967 [6] and by EV-A71

in 1972 [20]. Both serotypes have since been detected in

many other parts of the world [21,22].

HFMD exhibits highly seasonal patterns with a latitudinal

gradient (reviewed in [14]). In Japan, case counts typically

peak in the summer. There is also between-year variation in

the observed counts of HFMD serotypes. In Japan, EV-A71

infection exhibits 3 year cycles, while CV-A16 is predomi-

nantly annual. EV-A71 also displays 3 year cycles in

Taiwan [23], Singapore [24], Malaysia [25], Hong Kong [26]

and Cambodia [27]. A study of EV-A71 sero-prevalence in

Malaysia found its 3 year cycles to be susceptibility limited

(i.e. driven by herd immunity) [28]. However, EV-A71 has

exhibited annual cycles in China [29] (though the sampling

period was relatively short) and in Vietnam [30]. Time-

series data on CV-A16 infection are less available in the

literature, but anecdotally CV-A16 occurred in Malaysia
during inter-epidemic years [31], exhibits annual cycles in

China [2] and displays an inverse relationship with EV-A71

in Taiwan [32]. A substantial number of HFMD cases each

year in Hong Kong being attributed to non-EV-A71 serotypes

of the Enterovirus A species [26] further suggests the annual

occurrence of CV-A16. Additionally, since 2010, CV-A6 has

emerged throughout the Asia Pacific region and beyond as

a major causative serotype of HFMD (emerging in 2011 in

Japan), and often features biennial cycles.

Cross-serotype interactions between enteroviruses have

been documented before [33]. There is historical evidence of

an interference of oral poliovirus vaccine (OPV) replication

by concurrent infection with other enteroviruses, leading to

lower poliovirus sero-conversion [34]. We previously mod-

elled time series of EV-A71 and CV-A16 in China by

province from 2008 to 2013 [29]: we found tentative evidence

of a transient cross-protective effect between the two, which

together accounted for 73% of HFMD cases.

Here, we analyse a uniquely long time-series dataset of

HFMD and its causative serotypes from sentinel surveillance

in Japan, from 1982 to 2015. The virologic data are relatively

under-sampled (see Methods), but sustained endemicity of

HFMD in the country permits the study of long-term

dynamics. We limit the scope of this analysis to EV-A71

and CV-A16, which are each other’s closest relatives and

have been the primary causes of HFMD. Our aim is to disen-

tangle the effects of intrinsic and extrinsic factors on observed

epidemic patterns [35]. Intrinsic refers to the empirical forcing

function of single-serotype nonlinear dynamics, or herd

immunity. Extrinsic refers to external forces, which may be

abiotic (meteorological or environmental) or biotic (commu-

nity interactions with other enterovirus serotypes); our

focus is on the latter. We model EV-A71 and CV-A16 in a

mechanistic epidemiological framework, as a case study on

the community ecology of these viruses. We provide empiri-

cal evidence suggesting an inhibitory interaction between the

serotypes where CV-A16 confers greater cross-protection

against EV-A71 than the reverse, and propose this as an

explanation for observed epidemic patterns. We then conduct

a search of studies to determine if this hypothesis is consist-

ent with the virologic literature. We conclude with future

directions to elucidate the natural history, strength and conse-

quences of cross-protection between the enterovirus serotypes,

and implications for the general question of predictability in

ecological and pathogen communities.
2. Methods
2.1. Time-series data
Case notifications of HFMD and its causative serotypes have

been collected in Japan through a sentinel surveillance system

called the National Epidemiological Surveillance for Infectious

Diseases (NESID). The NESID system has been maintained at

Japan’s National Institute of Infectious Diseases (NIID) since

July 1981, with a substantive upgrade to the system in April

1999 [36,37]. HFMD surveillance is conducted through a national

network of approximately 3000 paediatric medical sentinel sites

(either paediatric clinics or hospitals with a paediatric ward),

and the surveillance data are routinely fed back in two separate

formats: syndromic and virologic. Syndromic HFMD cases

(based on clinical diagnosis) from the sentinel sites are reported

in the NIID’s Infectious Diseases Weekly Report (IDWR) (http://

www.niid.go.jp/niid/ja/idwr.html). About 10% of these

http://www.niid.go.jp/niid/ja/idwr.html
http://www.niid.go.jp/niid/ja/idwr.html
http://www.niid.go.jp/niid/ja/idwr.html
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sentinel sites also serve as sentinels for laboratory surveillance,

from which specimens are collected via convenience sampling

(conducted on an ad hoc basis), tested for the infectious agent

and reported in the NIID’s Infectious Agents Surveillance Report

(IASR) (http://www.niid.go.jp/niid/ja/iasr.html). The IASR is

the source of the virologic (serotyped) data on the causative

enteroviruses of HFMD. The syndromic IDWR data (y-axis

of figure 1e) and virologic IASR data (y-axes of figure 1a,c,f )

vary by approximately three orders of magnitude.

Since 2000, following the NESID upgrade and the addition of

polymerase chain reaction as a reporting item for virus detection

[38] (virus culture was used initially), the IASR has been report-

ing virologic data on all serotypes causing HFMD (categorized

into EV-A71; CV-A16; CV-A10; ‘other Coxsackievirus A’, which

is presumed to be CV-A6; ‘Coxsackievirus B’ serotypes or ‘Echo-

viruses’). EV-A71 and CV-A16 accounted for 83.5% of serotyped

cases from 2000 to 2010 (2011 being the first major HFMD out-

break associated with CV-A6; see the electronic supplementary

material, Text S1). Demographic data on the weekly number of

births and population size in Japan were obtained from the Stat-

istics Bureau of the Japanese Ministry of Internal Affairs and

Communications (http://www.stat.go.jp).

2.2. Spatio-temporal data analysis
IDWR and IASR data (for the focal serotypes of EV-A71 and

CV-A16) are available from 1982 to 2015, totalling 1774 weeks.

We used the complete time series to assess empirical trends

and focused on the time series from 1997 to 2015 for the mechan-

istic modelling. Our rationale for selecting 1997 as the start year

is that this was the beginning of the current wave of HFMD out-

breaks in the Asia Pacific region and also where the wavelet

signal yields clearest multi-annual cycles of EV-A71 (see below).

We present results using 2000 as the start year in the electronic

supplementary material, Text S5–S7. Although surveillance data

are available by prefecture, the counts of the virologic observations

are quite low at this spatial resolution. As both the syndromic and

virologic time series are highly spatially synchronized across the

four main islands of Japan (electronic supplementary material,

Text S1), we aggregated the data to the national scale. All analyses

were conducted using the R statistical software, v. 3.2.3 (http://

cran.r-project.org).

To assess within-year temporal patterns, we calculated the

centre of gravity (first moment) and skewness (third moment) of

the probability density of each year’s epidemic (e.g. [39]) for the

raw virologic data of each serotype from 1982 to 2015, using the

moments package in R. To assess between-year temporal patterns,

we used wavelet analysis, a standard method for exploring how

the period component of a non-stationary time series varies over

time [40]. We calculated the Morlet wavelet power spectrum of

each square-root-transformed time series to highlight trough vari-

ation (for other transformations, see the electronic supplementary

material, Text S3 and S4), and estimated the periodicity of each

serotype over time using the Rwave package in R.

2.3. The time-series susceptible – infected – recovered
model

The time-series susceptible–infected–recovered (TSIR) model is

a discrete-time version of the continuous-time SIR model, where

individuals are born and enter the susceptible class, become

infected and infectious, and recover and are removed [41]. The

model has been widely used in the infectious disease modelling

literature: discrete-time models are particularly suitable for esti-

mating parameters (such as a seasonally varying transmission

rate) from time-series data [42]. A central assumption is that

every individual gets infected over the course of their life. This

is based on the high sero-prevalence levels of the three
poliovirus serotypes in the pre-vaccine era, from various

countries, including Japan [43–47]. Additionally, deaths are

not explicitly modelled because it is assumed that infection

precedes death for childhood diseases such as HFMD, in

developed settings such as Japan. We used a time step of one

week, representing the ‘effective’ infectious period (because

viral shedding could be longer for enteroviruses, but with

reduced infectiousness following the first week [3]). Increasing

the time step has been shown to preserve the estimated seasonal

pattern of transmission [48].

Weekly HFMD incidence due to each serotype from 1997 to

2015 was inferred by taking the product of the reported HFMD

cases per sentinel, the number of sentinels and the estimated pro-

portion of virologically tested samples that were attributable to

that serotype (electronic supplementary material, Text S2 and

S5). The TSIR model is characterized by the following equations.

Under-reporting in the observation process,

It ¼ Ct �
1

r
: ð2:1Þ

Susceptible host dynamics,

Stþ1 ¼ St þ Bt � Itþ1: ð2:2Þ

Transmission dynamics,

Itþ1 ¼ bs � Ia1
t �

Sa2
t

Nt
: ð2:3Þ

Ct is the inferred serotype counts (either EV-A71 or CV-A16) at

time t, r is the reporting rate of infection (as a probability of

being reported), It is the true number of infected individuals, St

is the number of susceptible individuals, Bt is the number of

births and Nt is the total population size. We performed suscep-

tible reconstruction as outlined in the electronic supplementary

material, Text S5. Weekly counts of It are relatively high with no

zeros in the data, enabling log-transformation of equation (2.3)

to estimate parameters using a simple linear regression (different

specifications can be used to model other error structures).

By aggregating case counts, we assume a well-mixed popu-

lation at the national spatial scale. The a1 and a2 are tuning

parameters which serve as corrections for non-seasonal heteroge-

neities in mixing and departures from mass action, as well as for

discretization of a continuous-time process [49]. Inferred values

of a from regression are not necessarily optimal from a dynami-

cal standpoint (where values for predictive purposes often

depend on the periodicity of the time series [42]), so in our

main analysis we fixed a1 at 0.975 [50] and fixed a2 at 1 [51],

with sensitivity analysis to a range of parameter values provided

in the electronic supplementary material, Text S5.

We included seasonal forcing in the model with a unique b

parameter for each week s of the year, between 1 and 53. Seasonal-

ity is likely to be related to a combination of environmental

correlates and contact patterns (see Discussion). We allowed for

the probability of a case being reported (r) to differ between sero-

types, but held it constant over the entire time period. This

assumption is likely to hold because the number of sentinel sites

in Japan, legally mandated to report through the NESID pro-

gramme by the Infectious Diseases Control Law, has remained

consistent over the past two decades. We assumed that HFMD is

endemic (no fade-out or immigration) and population size is suf-

ficiently large that the effect of demographic stochasticity is

negligible. The one-serotype TSIR model represents our null model.

2.4. The two-serotype time-series
susceptible – infected – recovered model

A version of the multi-serotype TSIR model, which allows for a

transient heterotypic cross-protection against other serotypes

http://www.niid.go.jp/niid/ja/iasr.html
http://www.niid.go.jp/niid/ja/iasr.html
http://www.stat.go.jp
http://www.stat.go.jp
http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
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Figure 1. Weekly time-series data and wavelet analysis, 1982 – 2015. (a) Raw virologic counts of EV-A71. (b) Wavelet power spectrum of square-root-transformed
EV-A71 (x-axis is time (year), y-axis is the period (in years), colour is the power spectrum, strong to weak (yellow – red gradient)). (c) Raw counts of virologic CV-
A16. (d ) Wavelet power spectrum of square-root-transformed CV-A16. (e) Raw counts of syndromic HFMD. ( f ) Raw counts of virologic CV-A6 (available from 2000).
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after infection and no homotypic re-infection, was developed in

[52]. We adapted a version of this model in [29] and again here

(figure 2), assuming that individuals acquire lifelong immunity

following recovery and omitting co-infection due to its relatively

rare occurrence. A modification is that we have removed the d

parameter (strength of cross-protection, between 0 and 1) for par-

simony, and we have allowed for asymmetry in the k parameter

between serotypes i and j (duration of cross-protection in weeks,

where ki is the duration of cross-protection against serotype j
following infection with serotype i). We allowed bs to vary

in shape and magnitude between serotypes (model estimates

with constraints are presented in the electronic supplementary

material, Text S6). The two-serotype TSIR model is characterized

by the following equations.

Under-reporting of serotype i in the observation process,

It,i ¼ Ct,i �
1

ri
: ð2:4Þ
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Figure 2. Two-serotype TSIR model compartments. (a) Each individual starts out susceptible (S class) to both serotypes i and j, and becomes infected at a seasonal
rate proportional to the transmission rate bs. (b) Upon infection (I class) with serotype i, the individual immediately becomes cross-protected (CP class) against
infection with serotype j. (c) The individual permanently recovers (R class) from infection with serotype i during the next time step (here, one week), and remains
cross-protected against infection with serotype j for duration ki . (d ) Cross-protection is lost after ki time steps, and the individual is once again susceptible to
infection with serotype j (but is permanently immune against serotype i).

Table 1. Epidemiological parameters from the one- and two-serotype models, 1997 – 2015. Reporting rate, mean proportion susceptible, mean transmission rate
and coefficient of variation in transmission rate, by model and by serotype. CV, coefficient of variation.

serotype model r �s �b CV of bs a1 (fixed) optimal k

EV-A71 1 0.0349 0.0935 13.9054 0.3886 0.975 n.a.

CV-A16 1 0.0525 0.1056 12.2532 0.2719 0.975 n.a.

EV-A71 2 0.0349 0.0838 15.3655 0.3814 0.975 8

CV-A16 2 0.0524 0.1001 12.9143 0.2690 0.975 39
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Susceptible host dynamics of serotype i,

Stþ1,i ¼ St,i þ Bt � Itþ1,i � CPt,i: ð2:5Þ

Cross-protection against serotype i following infection with

serotype j,

CPt,i ¼ It,j � It�kj ,j: ð2:6Þ

Transmission dynamics of serotype i,

Itþ1,i ¼ bs,i � Ia1

t,i �
Sa2

t,i

Nt
: ð2:7Þ

Parametrizing this model required a two-step process. We

first constructed a profile likelihood surface to obtain a plausible

range of k values (pairs of k, for the two serotypes) within the

95% bivariate confidence region (electronic supplementary

material, Text S6). For these plausible pairs of k, we then

extracted the deterministic two-serotype model prediction of It

for each serotype, calculated the R2 values comparing observed

against expected counts and took the k with the highest R2 value

to be the optimal pair, in terms of both likelihood and predicted

correlation in epidemic trajectory.

2.5. Model fit
We assessed model fit in multiple ways: first, internal predict-

ability, or how well the model predictions match the data, by

comparing the data to the model-predicted time series and by
inspecting their cross-wavelet spectra. Second, we assessed exter-

nal predictability, or the ability to predict incidence forward in

time. This was done with cross-validation studies, fitting to the

first half of the time series (training set: 1997–2006, inclusive)

and testing how well they predict the second half of the time

series out of sample (testing set: 2007–2015, inclusive).
3. Results
3.1. Periodicity and intrinsic transmission dynamics
Based on the wavelet spectra from 1982 to 2015, there is a

qualitative difference in dynamics between the two serotypes.

We found the epidemic patterns of CV-A16 to be largely

dominated by the annual signal (figure 1d ). For EV-A71,

we detected an underlying 3 year periodicity in the signal

that is especially clear in the last two decades (figure 1b).

Parametrizing the one-serotype TSIR models from 1997 to

2015 (table 1), we found the patterns of seasonality to be

similar but estimated a larger coefficient of variation of bs

for EV-A71, implying it is more strongly seasonally forced.

The mean proportion of the population susceptible to each

is around 10%. The reporting rates are quite low (3–5%), in

line with the expectation of many subclinical cases going

undetected, as well as our previous estimates from China

[29] and estimates for other childhood infections in similar
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settings [53]. From general agreement between data and

model predictions, the dynamics are consistent with SIR

(i.e. driven by herd immunity) and the model is able to cap-

ture key features of the time series, especially for CV-A16

(figure 3c,d). However, there are some mismatches between

data and predictions for EV-A71 (figure 3a,b) where the

model is unable to accurately capture its multi-annual epi-

demics, resulting in a worse fit in terms of internal and

external predictability (electronic supplementary material,

Text S5 and Text S7).

3.2. Empirical signatures of serotype interaction
In a previous analysis of HFMD serotypes in China on a

shorter dataset, we found weak but non-zero inhibitory inter-

actions [29]. Here, we further explored possible interactions

using the raw virologic counts in Japan from 1982 to 2015.

First, comparing the annual counts of EV-A71 against CV-

A16 revealed an L-shaped trend, suggesting the existence of

a negative feedback between the serotypes (figure 4a).

Second, we inspected the skewness of the yearly distribution

of each serotype, stratified by the epidemic size of the other

serotype that year (figure 4b–e). We found that:

— The shape of an EV-A71 epidemic is associated with the

magnitude of that year’s CV-A16 epidemic, consistent

with an inhibitory effect.
— Conversely, the shape of a CV-A16 epidemic is not

associated with the magnitude of that year’s EV-A71

epidemic.

In more detail: a large CV-A16 year (blue boxplots) leads to

an earlier centre of gravity (mean week) and a positive skew-

ness (mean week is after median week) of EV-A71’s epidemic

curve, such that a greater proportion of that year’s EV-A71

cases will have been accounted for earlier in the year. We

did not detect a relationship in the reverse direction. These

findings lend support for integration of (potentially asym-

metric) forcing effects between the two serotypes into our

modelling framework.

3.3. Dissecting intrinsic transmission dynamics
and extrinsic effects

In the two-serotype TSIR model, the best-fit estimates of

seasonal transmission were qualitatively and quantitatively

similar to those from the one-serotype models (figure 5a,c
versus figure 3a,c, and table 1). This implies that the first-order

effect here is serotype-specific immunity.

The best-fit values of the cross-protection parameters k sup-

port the existence of a transient, asymmetric cross-protection:

we estimated k ¼ 8 weeks of cross-protection against

CV-A16 after infection with EV-A71, and k ¼ 39 weeks of
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cross-protection against EV-A71 after infection with CV-A16

(see the electronic supplementary material, Text S6, for detailed

methods and results of this procedure). Further work using

dissimilarity matrices of wavelet power spectra (not shown)

corroborate these findings. We found that incorporating an

asymmetry leads to good visual fits that can capture the

multi-annual cycles of EV-A71 (figure 5b). Assessments of

internal and external predictability show that this parame-

trized model explains the observed epidemic patterns well

(figure 5e–h and electronic supplementary material, Text S7).
3.4. Simulation studies
We examined the elasticity of EV-A71 and CV-A16 period-

icities to cross-protection parameters by simulating a range

of time series from the two-serotype model. We calculated

the periodogram of the log-transform of each stationary
time series, and generated a white noise spectrum from

the periodogram of permutations of the log-transformed

series as a null model (electronic supplementary material,

Text S9). In this framework, relatively low levels of cross-

protection after CV-A16 infection could not produce multi-

annual cycles of EV-A71, and the periodicity of CV-A16

incidence was less sensitive to changes in cross-protection

after CV-A16 infection (figure 6). This supports our

hypothesis of an asymmetric interaction.

As the two-serotype TSIR model is agnostic to whether an

individual currently infected with one serotype has pre-

viously been infected with the other, we tested the validity

of our susceptible reconstruction methodology (electronic

supplementary material, Text S9). We were able to adequately

capture the key qualitative patterns with this approach: while

the model cannot reconstruct true or ‘immunological’ suscep-

tible individuals (those who have never been infected with a
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given serotype), it is able to reconstruct ‘effective’ susceptibles

(those who could become infected with a given serotype).

This implies the need for caution in interpretation of our

quantitative findings because susceptible reconstruction yields

a shadow of the true susceptibles, but that we are able to

adequately capture the qualitative patterns here.
4. Discussion
Mathematical modelling is an important tool to test mechanistic

understanding of disease dynamics [54]. Analysing time-

series data on EV-A71 and CV-A16 in Japan from 1982 to

2015, we found that, as a first-order effect, the observed epi-

demic series are consistent with SIR. Epidemic predictability

can be buffeted both by these intrinsic nonlinear dynamics

and by extrinsic ‘shocks’ [50]. We demonstrate an instance in

which knowledge of a potential biotic driver (arising from a

viral community interaction) could enhance predictive ability

over a single-serotype analysis. Unusually, our findings

suggest that this interaction is not reciprocal: the dynamics

of CV-A16 are relatively well predicted by a single-serotype

model and other information can be largely ignored. For the

dynamics of EV-A71, accurate predictions in our framework

rely on knowledge of CV-A16. This resulting asymmetry in

ecological forcing between the closely related serotypes is par-

ticularly clearly illustrated in figure 6. In these nonlinear

systems, even subtle interactions can generate marked differ-

ences in epidemic behaviour. Though we are simplifying
across immunological and ecological complexities and use

basic models that test feedbacks between incidence data

rather than a true mechanism, we find our model fits in the

two-serotype scenario to be compelling.

4.1. Immunological evidence of asymmetry
An interaction between our two focal serotypes would per-

haps not be surprising, given the literature on interactions

between the three poliovirus serotypes (see below) and

between polioviruses and other enterovirus serotypes [34].

Further investigation will necessitate different data types,

but in table 2 we provide (non-exhaustive) empirical evidence

based on a search of studies from the virologic literature,

which supports our proposed hypothesis of an asymmetric

cross-protection between EV-A71 and CV-A16 (electronic sup-

plementary material, Text S1). We could find no evidence

suggesting the reverse effect, so, to the best of our knowledge,

the directionality of this hypothesized relationship is consist-

ent. However, it should be highlighted that this synthesis is

of research outcomes from highly variable experimental sys-

tems and approaches. An analogue of potential asymmetric

cross-protection in multi-serotype viral infections is dengue,

for which it has been suggested that secondary infection

with dengue virus serotype 2 results in lower clinical burden

of antibody-dependent enhancement (where pre-existing

antibodies from primary infection help secondary dengue

infection to occur more efficiently) [62]. Although we limit

the scope of this analysis to negative interactions based on
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our empirical findings and the lack of clinical evidence

in patients suggesting otherwise, recent evidence of

antibody-dependent enhancement of EV-A71 based on

in vitro monocytes and mouse models [57,63,64] could have

implications for the pathogenicity of infection, which is an

additional consideration for future modelling work.
4.2. Caveats and complexities
As befits an ecological study, our work raises as many

hypotheses as it addresses. First, we emphasize that it will

be crucial to identify the biological mechanisms underlying

viral interference of non-polio enteroviruses, distinguishing
between differences in immunological protection (as pro-

posed), virus replication competency or otherwise. Polio is

likely to be a key point of reference because it has been

shown that, following immunization with the trivalent

OPV, type 2 OPV induces higher levels of mucosal immunity

than types 1 and 3, which is presumably due to higher virus

replication capability inside the intestine [65–67]. For EV-

A71 and CV-A16, differences in replication capability have

been noted in cells in vitro. The assumption of lifelong homo-

typic immunity against non-polio enteroviruses also needs to

be tested [68,69]. For polio, serum IgG neutralizing anti-

bodies (believed to be maintained for life) prevent infection

from progressing to viraemia, while IgA-mediated mucosal
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immunity prevents infection by limiting replication of the

virus inside the intestine.

Second, we did not include age structure. This is poten-

tially very important because differential ages of infection

between the serotypes, or rates of maternal immunity loss,

may produce dynamics that mimic the effects of asymmetric

cross-protection (i.e. if children were infected with CV-A16 at

a younger age than they were with EV-A71). Age at infection

was unavailable except for some statistics that do not suggest

a clear difference (e.g. fig. 4 in [70]). Additionally, a meta-

analysis found the kinetics of maternal immunity to be similar

between the two serotypes [71].

Third, it may be necessary to account for the molecular

epidemiology of these viruses. There are genetic variants of

EV-A71 (‘genogroups’ and ‘subgenogroups’) that circulate

with considerable spatio-temporal variability [25], and the

timing of genetic changes of EV-A71 has been suggested to

be associated with greater incidence of this serotype [19].

We assumed homotypic infection to be immunizing due to

suggested cross-antigenicity between genogroups of EV-

A71 in Japan [72] (and evidence of antigenic changes in

CV-A16, which has a lower substitution rate than EV-A71,

is less prevalent in the literature), but a future step is to

understand the functional consequences of this genetic

diversity for antigenic variation.

Fourth, because virologic specimens are collected based

on convenience sampling, these serotype samples may not

be representative of the underlying HFMD cases at a single

time point (e.g. if sampling was skewed towards more

severe syndromic cases, EV-A71 may be more likely to be

found during any given week than other serotypes). How-

ever, we would not expect this effect to be time-varying,

and any bias associated with sampling would not be differen-

tial by serotype because the causative serotype is known only

after virologic testing. As our analysis suggests that EV-A71

and CV-A16 had similar overall seasonalities and patterns

were relatively synchronized throughout the country, differ-

ential sampling by serotype is unlikely. Thus, convenience

sampling is unlikely to bias our results, and the relative

changes in the serotype distributions over time probably

reflect actual trends in the underlying HFMD cases.

Lastly, we cannot discount the potential effects of unmo-

delled enteroviruses. As a first pass, CV-A7 and CV-A14,

which are the next-nearest genetic neighbours of EV-A71 and

CV-A16 VP1 proteins and also have overlapping viral receptor

repertoires [18], are low-prevalence serotypes in Japan. Among

these co-circulating serotypes is the recent increase in CV-A6

infection, both within and outside the Asia Pacific region [21]

(CV-A6 is more genetically distinct from EV-A71 and CV-

A16). CV-A6 has been responsible for most of the HFMD in

Japan since 2011 [73]. This increase in CV-A6 infection and

the concomitant lack of a large EV-A71 outbreak from 2013

through mid-2017 [74] suggest that there could be interactions

between CV-A6 and our two focal serotypes, which would be

an area for further study.
4.3. Future work
Future work should include developing models that allow

more flexibility in characterizing cross-protection and incor-

porate various sources of stochasticity, which was not

explicitly addressed here. A tractable model for exploring

the full dynamics of multi-pathogen systems could be built
using partially observed Markov processes [75]. This could

potentially overcome outstanding issues regarding the a par-

ameters and susceptible reconstruction; however, we are

reassured that we are not introducing a bias or circularities

using the current framework (electronic supplementary

material, Text S9).

The TSIR model deployed here is simple in terms of both

implementation and interpretability, and various extensions

with detailed data would allow more epidemiological realism.

A metapopulation model (e.g. [76]), formally accounting for

spatial coupling and demographic stochasticity, is a more

nuanced alternative to our model. However, we note that pre-

vious work on spatially aggregated data on measles incidence

in pre-vaccination England and Wales suggests that aggrega-

tion can yield important insights as long as local epidemics

are strongly synchronized (e.g. [77,78]). In fact, the prefecture-

level case data for HFMD in Japan are more synchronized

than measles in pre-vaccination England and Wales (see elec-

tronic supplementary material, Text S1), which suggests that

aggregation provides a reasonable approximation to the

‘average’ behaviour here (even though widely separated

local epidemics are not necessarily coupled); a spatially

structured model would be crucial if that were not the

case. Another direction for further refinement is with an

age-structured model (e.g. [79]), formally accounting for age-

dependent contact rates and proportion susceptible by age.

However, 90% of the reported HFMD cases in Japan between

2002 and 2011 were in children under 5 years of age [70], and,

for other childhood infections, aggregating over age groups

has been shown to provide a reasonable approximation to

capturing the qualitative dynamics [80].

Answering the questions posed here will require links to

other data sources. Our assumption of all individuals becom-

ing infected is based on observed high sero-prevalence levels

of the polioviruses in the pre-vaccine era, which needs to be

validated (electronic supplementary material, Text S5). Relat-

edly, independent estimates of the underlying susceptible

proportion will require repeat cross-sectional sero-prevalence

data (as for EV-A71 in Malaysia [28]) or longitudinal serology.

Our data do not allow for distinguishing between primary

and secondary infection, a limitation elegantly discussed in

[52] that is an area for investigation with individual-level

data. We previously estimated the existence of non-zero

cross-protection between EV-A71 and CV-A16 in China

but did not allow for asymmetric interactions, as the time

series were short with annual periodicities [29]. While the

different data collection systems in China and Japan could

account for some discrepancies in observed epidemic patterns

(electronic supplementary material, Text S8), spatial heterogen-

eity may also factor in to the phylogeography and dynamics of

non-polio enteroviruses, as well as the subsequent impact of

public health responses. Phylodynamic models, which inte-

grate viral genetics and epidemiological dynamics [81], are

an important refinement. Environmental drivers have been

shown to be associated with HFMD [2,3], and the transmission

rate may be affected by these abiotic factors. Intriguing

patterns such as the biannual epidemics of HFMD in Oki-

nawa [82] warrant further investigation of the interplay

between environmental drivers, latitudinal gradients and

serotype-specific transmission, as well as their incorporation

into disease models.

Non-polio enteroviruses are rapidly becoming an important

public health issue [83] as we approach global eradication of
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the polioviruses. As there is currently no specific antiviral drug

for HFMD, and conventional control measures (including

school closure) have not been demonstrably effective in curbing

epidemics [84], vaccination will be a key public health tool to

reduce disease burden. Vaccination policy for this multi-strain

pathogen system would be better informed by an understand-

ing of factors including cross-protection, potential strain

replacement by non-vaccine strains (e.g. following pneumococ-

cal vaccination [85]) and antibody-dependent enhancement.

More broadly, recent public health concerns with disease due

to the global emergence of CV-A6, outbreaks of EV-D68 in

Japan, the USA and elsewhere [86–88], the purported asso-

ciation between Enterovirus B infection and type 1 diabetes

[89], and findings that suggest enteroviruses are responsible

for over 75% of viral meningitis cases [90] all increase the

urgency of better understanding the causes and consequences

of heterogeneity among the enteroviruses.

We have known for some time that enteroviruses are glob-

ally ubiquitous and diverse [91], yet their patterns of circulation

are seemingly unpredictable and there are many remaining ques-

tions. Major, sustained outbreaks of HFMD (including severe

disease and death caused by EV-A71) have, to date, been limited

to the Asia Pacific region; unravelling the reasons for this hetero-

geneity will require unifying data streams across spatial scales.

More broadly, our results underscore the importance of
considering viral community interactions when exploring

mechanisms driving the predictability of pathogen dynamics.
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