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Abstract: Calcium-enriched compounds have great potential in the treatment of heavy-metal con-
taminated wastewater. Preparing stable basic calcium carbonate (BCC), which is a calcium-enriched
compound, and applying it in practice is a great challenge. This work investigated the formation
process of hierarchical hydroxyapatite (HAP)/BCC nanocomposites and their adsorption behaviors
regarding lead ions (Pb2+). The morphology of the HAP/BCC nanocomposite was controlled by
the addition of monododecyl phosphate (MDP). The carnation-like HAP/BCC nanocomposite was
achieved with the addition of 30 g of MDP. The carnation-like HAP/BCC nanocomposite had a high
Pb2+ adsorption capacity of 860 mg g−1. The pseudo-second-order and Freundlich model simulation
results indicated that the adsorptions of Pb2+ on the nanocomposites belonged to the chemisorption
and multilayer adsorption processes. The main effective adsorption components for the nanocom-
posites were calcium-enriched HAP and BCC. Through the Ca2+ ions exchanging with Pb2+, the
HAP and BCC phases were converted to hydroxyl-pyromorphite (Pb-HAP) and hydrocerussite
(Pb3(CO3)2(OH)2), respectively. The carnation-like HAP/BCC nanocomposite has great potential in
the treatment of heavy metal ions. This facile method provides a new method for preparing a stable
HAP/BCC nanocomposite and applying it in practice.

Keywords: hydroxyapatite; basic calcium carbonate; hierarchical nanocomposite; adsorption; heavy
metal ions

1. Introduction

The treatment of wastewater polluted by heavy metal ions has become one of the
most onerous challenges for the sustainable development of human society because of
their detrimental effects on the environment and human health [1–4]. As one of the
major heavy metals in the natural environment, lead (Pb) is considered a serious threat
to the ecological environment and human health due to its high toxicity and persistent
characteristics [5]. Lead contaminants enter the food chain mainly through crop irrigation
and soil contamination [6]. According to the World Health Organization (WHO), inorganic
lead compounds have been placed in Group 2A (probable carcinogens) and are described as
probable human carcinogens, with a recommended maximum concentration of 10 µg L−1

in drinking water [7]. Exceedingly high lead exposure will cause bone degeneration, liver
damage, lung insufficiency, hypertension, and renal dysfunction in humans [8]. Because
of the high biological activity and its adverse influence on human health, even at low
concentrations, Pb2+ ions should be removed from aqueous solutions [9,10].

Calcium contained compounds, such as calcium alginate (C18H24CaO19) [11], calcium
carbonate (CaCO3) [12], calcium silicate hydrate (xCaO·SiO2·yH2O) [13,14], and hydrox-
yapatite (Ca10(PO4)6(OH)2) [15–17], are usually used as solid-phase extraction adsorbents
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for heavy metal ions. For these adsorbents, calcium ions play a key role in the solid-phase
extraction-adsorption process by replacing heavy metal ions of aqueous solutions. Since
these solid-phase extraction adsorbents come from calcium-enriched compounds, they can
provide more calcium ions to replace heavy metal ions of aqueous solutions, and then
they have higher adsorption efficiency for heavy metals [13,14,16]. Therefore, as a calcium-
enriched compound, hydroxyapatite (HAP) contains ten calcium atoms in a unit cell and
has excellent adsorption property for various heavy metal ions [15–19]. As a relevant phase
of calcium carbonate, basic calcium carbonate (BCC) (Ca3(CO3)2(OH)2·H2O), which has
three calcium atoms in a unit cell, is also a calcium-enriched compound. However, there
are only a few studies regarding the synthesis of BCC because it is a metastable transition
phase generated as a precursor when precipitated calcium carbonate is synthesized by a
carbonation process, and it is not easily synthesized [20–22]. To our knowledge, there are
no reports concerning the adsorption of heavy metal ions in regards to BCC due to the fact
that BCC is unstable, and making it stable for industrial use is a great challenge [21,22].
Moreover, steel slag is a hazardous solid waste derived from the steel-making process,
accounting for approximately 15–20% of the total crude steel output [23–25]. Most of steel
slags are landfilled or piled up, occupying precious land resources and causing environ-
mental risk of leaching heavy metal ions into the environment [26–29]. Tighter legislation
and increasingly strict environmental regulations provide incentives to develop alterna-
tive viable reuse and recycling options to turn hazardous steel slags into environmentally
friendly materials [29,30].

In this study, a magnetic carnation-like HAP/BCC nanocomposite was first synthe-
sized and then successfully utilized as the adsorbent for Pb2+ in an aqueous solution.
The morphology of the magnetic nanocomposite was controlled by the addition of mon-
ododecyl phosphate (MDP). Solid waste steel slag was used as the source of magnetism
and partial Ca2+. The adsorption behaviors of Pb2+ upon the magnetic nanocomposites
were investigated according to the adsorption kinetics and isotherms. The BCC phase,
complexed with HAP in the obtained nanocomposite, was stable and greatly improved
the adsorption property of Pb2+. The magnetic carnation-like HAP/BCC nanocomposite
had a high Pb2+ adsorption capacity of 860 mg g−1 and good magnetic recovery efficiency,
giving it great potential for the treatment of heavy-metal contaminated wastewater and
soil. More importantly, this facile method provides a prospective strategy for preparing a
stable HAP/BCC nanocomposite and applying it in practice.

2. Materials and Methods
2.1. Chemicals

The following chemicals were used in the study: calcium nitrate tetrahydrate (Ca(NO3)2·4H2O,
Chemical Purity, Sinopharm Chemical Co., Ltd., Shanghai, China), diammonium hydro-
gen phosphate ((NH4)2HPO4, Chemical Purity, Sinopharm Chemical Co., Ltd., Shanghai,
China), ammonia (NH3·H2O, Commercial Purity, Xilong Science Co., Ltd., Shantou, China),
monododecyl phosphate (Ester, C12H27OPO3, Commercial Purity, Jiangsu Haian petro-
chemical plant, Haian, China), ethanol (C2H6O, Chemical Purity, Sinopharm Chemical
Co., Ltd., Shanghai, China), and lead nitrate (Pb(NO3)2, Analytical purity, Sigma-Aldrich
(St. Louis, MO, USA)). Steel slag (Jiangxi PXSTEEL industrial Co., Ltd., Pingxiang, China)
was used as the source of magnetism and partial Ca2+ of the nanocomposite. After being
processed under ball milling for 24 h, the steel slag was put through a 320-mesh sieve and
then further selected using a neodymium magnet with a remanence of about 1.2 T. The
final selected powder was used as the raw steel slag powder (sample S0).

2.2. Preparation of Magnetic HAP/BCC Nanocomposites

Varying amounts (0 g, 10 g, and 30 g, respectively) of MDP was initially dissolved
in a solvent mixture composed of 45 mL water and 10 mL ethanol. After being stirred
and refluxed at 60 ◦C for 1 h, the MDP solution was mixed with 20 g of raw steel slag
powder. With additional mechanical stirring and refluxing at 60 ◦C for 1 h, a calcium nitrate
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tetrahydrate aqueous solution (0.167 mol of Ca(NO3)2·4H2O dissolved in 35 mL water)
was added to the mixture. The mixture underwent an additional stirring and refluxing
process at 60 ◦C for 1 h. Subsequently, diammonium hydrogen phosphate aqueous solution
(0.1 mol of (NH4)2HPO4 dissolved in 20 mL water) was added into the above mixture
solution until a Ca/P mol ratio of 1.67 was reached, and then the pH value of the mixture
solution was adjusted to 13 by adding aqueous ammonia. Then, the final mixture was
continuously stirred and refluxed at 60 ◦C for 48 h. The obtained products were centrifuged
and washed with water and ethanol three times to obtain a gel. Finally, the gel was dried
at 80 ◦C for 24 h and calcined at 300 ◦C for 3 h. The final three modified products were
labeled as S1 for the addition of 0 g of MDP, S2 for the addition of 10 g of MDP, and S3 for
the addition of 30 g MDP, respectively.

2.3. Batch Adsorption Experiments

Lead nitrate was used as the heavy metal ion source in the aqueous solution. The Pb2+

solution had a concentration of 100, 200, 300, 400, 500, 700, 1500, and 3000 mg L−1 (ppm),
respectively. At room temperature (24 ± 1 ◦C), a 100 mL plastic tube containing 50 mL of
heavy metal ion solution was added to 0.06 g of each sample (S0, S1, S2 and S3, respectively).
After different periods (10 min, 20 min, 40 min, 1 h, 3 h, 5 h, 12 h, and 24 h) of oscillation in
a gyro oscillator, the mixture was centrifuged at a speed of 5000 r min−1, and the upper
liquid was removed for measurement. The concentrations of the heavy metal ion solutions
before and after adsorption were measured separately. Three groups of parallel experiments
were conducted, and the average values were obtained. The adsorption capacity of the
heavy metal ions was calculated according to the concentration difference, the volume of
the heavy metal ion solution, and the addition of different sample powders [13,14,16].

2.4. Characterization Methods

The raw steel slag and the obtained nanocomposite samples were characterized by
X-ray diffraction (XRD, Bruker D8, Karlsruhe, Germany), transmission electron microscopy
(TEM) (Philips, EM20, Eindhoven, The Netherlands), and scanning electron microscopy
(SEM, Hitachi 8010, Tokyo, Japan), respectively. The Brunauer-Emmett-Teller (BET) spe-
cific surface area of all samples was analyzed using the nitrogen adsorption method
(Quantachrome Corporation, Tristar 3020, Boynton Beach, FL, America). The pore size
distribution was plotted using the Barrett-Joyner-Halenda (BJH) method. The mapping
data of the energy dispersive spectroscopy (EDS) for the samples were tested by TEM
QUANTAX EDS (Bruker, Karlsruhe, Germany). Atomic absorption spectrometry (PinAA-
cle 900H, PerKinElmer, Waltham, MA, America) was used to measure the concentration
of the heavy metal ion solutions before and after adsorption. The magnetic characteristics
were measured on a vibration sample magnetometer (VSM, Lake Shore 7410, Columbus,
OH, America).

3. Results and Discussion
3.1. Characterization of Magnetic HAP/BCC Nanocomposites

Figure 1 presents the XRD patterns of raw steel slag and the magnetic HAP/BCC
nanocomposite samples prepared with different additions of MDP. The raw steel slag
(S0) mainly contained Ca2SiO4 (JCPDS No. 00-024-0037), CaO (JCPDS No. 96-900-6740),
and Fe2.936O4 (JCPDS No. 01-086-1353). For sample S1, prepared without the addition
of MDP, the main phases were HAP (JCPDS No. 96-900-2214) and Fe2.936O4 of steel slag,
with a small amount of CaHPO4 (JCPDS No. 00-003-0423), whereas samples S2 (with 10 g
MDP) and S3 (with 30 g MDP) mainly contained HAP, Fe2.936O4, and a new phase—BCC
(Ca3(CO3)2(OH)2·H2O, JCPDS No.00-023-0107). Moreover, sample S3 had a higher number
of BCC diffraction peaks than S2, indicating that S3 had a greater BCC content than S2. The
BCC content of S3 was about 2.31 times that of S2, according to the EDS mapping data, as
shown in Figures S2 and S3 in the Supplementary Material (Conversely the HAP content of
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S2 was about 1.65 times than that of S3). After the reactions, the CaO phase of the raw steel
slag disappeared.
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Figure 1. The XRD patterns of raw steel slag and the nanocomposite samples prepared with different
additions of MDP.

Figure 2 shows the SEM micrographs of raw steel slag and the magnetic HAP/BCC
nanocomposite samples prepared with different additions of MDP. The raw steel slag (S0)
had an irregular morphology with a particle size of 2–10 µm, and the particles had dense
surfaces, without obvious pores or nanostructures. By contrast, the three nanocomposite
samples (S1, S2, and S3) had loose surfaces, with outstanding pores and interesting hi-
erarchical nanostructures: S1 demonstrated a lappa-like nanoflower morphology, which
was composed of nanoneedles; S3 illustrated a carnation-like nanoflower morphology,
which was composed of nanosheets; and S2 possessed both lappa-like and carnation-like
morphologies. According to the results of XRD (Figure 1), the composition of nanoneedles
for S1 was HAP, and that of the nanosheets for S3 belonged to the mixture of HAP and BCC.

In comparison with that of raw steel slag, the specific surface area of the nanocomposite
was greatly improved, from 3.31 m2 g−1 (S0) to 52.24 m2 g−1 (S1), 78.94 m2 g−1 (S2), and
46.67 m2 g−1 (S3), respectively (Figure 3). Moreover, the nanoflowers provided the three
nanocomposite samples many nanopores and multi pore size distributions, as shown in
Figure 4. Sample S1 had a pore size of 4 nm and 16 nm, with a total pore volume of
0.221 cm3 g−1. S2 showed a pore size of 4 nm, 24 nm, and 120 nm, with a total pore volume
of 0.355 cm3 g−1, and S3 had a pore diameter of 4 nm, 67 nm, and 120 nm, with a total pore
volume of 0.225 cm3 g−1. S0 possessed a low total pore volume of 0.014 cm3 g−1, as shown
in Figure S1 of the Supplementary Materials.
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3.2. Adsorption Analysis
3.2.1. Adsorption Kinetics

The kinetic adsorption data for Pb2+ on raw steel slag and the nanocomposite samples
prepared with different additions of MDP were described by the pseudo-first-order and
pseudo-second-order models. The pseudo-first-order model is presented as Equation (1):

qt = qe(1 − e−k1t) (1)
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The pseudo-second-order model equation is expressed as Equation (2):

qt = k2qe
2t/(1 + k2qet) (2)
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where qe (mg g−1) is the amount of Pb2+ adsorbed at equilibrium time, qt (mg g−1) is the
amount of Pb2+ adsorbed by sample at time t (min), and k1 and k2 (mg·(g·min)−1) are the
pseudo-first-order model rate and the pseudo-second-order rate, respectively.

Figure 5 gives the kinetic adsorption curves for different concentrations of Pb2+ in
raw steel slag and the nanocomposite samples prepared with different additions of MDP,
and the fitting parameters are shown in Table S1 of the Supplementary Materials. For
all the adsorption samples, the value of the correlation coefficient (R2) for the pseudo-
second-order model was above 0.97 and was higher than that of the pseudo-first-order
model, indicating that the pseudo-second-order model could better express the kinetic
adsorption processes. This result implied that the main interaction of Pb2+ with all the
adsorption samples was chemisorption, rather than mass transportation [9,31]. For all the
four samples (S0, S1, S2, and S3), the absorption of Pb2+ increased rapidly within the first
contact time of 60 min. While S0 and S1 achieved adsorption equilibrium after 720 min, S2
and S3 achieved adsorption equilibrium after 300 min, and all the four samples reached
the maximum equilibrium adsorption capacity when the initial concentration of Pb2+ was
3000 ppm. The calculated maximum equilibrium adsorption capacities of S0, S1, S2, and
S3 were 15.30 mg g−1, 641.5 mg g−1, 651.9 mg g−1, and 778.3 mg g−1, respectively (see
Table S1 in the Supplementary Materials).
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3.2.2. Adsorption Isotherms

With the purpose of understanding the interaction mechanism of Pb2+ on the four
absorbent samples, the Langmuir model and the Freundlich model were chosen to simulate
the experiment data.

The Langmuir isotherm model is expressed as Equation (3):

qe = qmaxkLanCe/(1 + kLanCe) (3)
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The Freundlich isotherm model is described using Equation (4):

qe = kFreCe
1/n (4)

where Ce (mg/L) is the equilibrium concentration of Pb2+ in aqueous solutions; qmax
(mg g−1) is the maximum monolayer capacity for Pb2+ uptake based using the Langmuir
model; kLan (L mg−1) is the Langmuir uptake constant, which represents the bond energy;
kFre (mg g−1(L/mg)−1/n) is the Freundlich model constant, representing the saturation
adsorption capability of the adsorbent [9]; and n is the heterogeneity factor. The value of n
represents the interactions between the adsorbent and the metal ion [32].

Figure 6 demonstrates the adsorption isotherms with different concentrations of Pb2+

in raw steel slag and the nanocomposite samples prepared with different additions of MDP,
and the fitting parameters are shown in Table 1.
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Table 1. Fitting parameters for the adsorption isotherms of Pb2+ for different concentrations of raw
steel slag and the nanocomposite samples prepared with different additions of MDP.

Sample
Langmuir Isotherm Freundlich Isotherm

qmax (mg g−1) kLan (L mg−1)
×10−1 R2 n kFre

(mg g−1(L/mg)−1/n) R2

S0(Raw steel slag) 15.66 0.014 0.989 2.278 0.396 0.972
S1(0 g-MDP) 623.7 0.010 0.974 1.960 8.151 0.989
S2(10 g-MDP) 753.4 0.013 0.982 2.228 17.43 0.993
S3(30 g-MDP) 859.7 0.023 0.951 2.856 48.43 0.971



Molecules 2022, 27, 5565 9 of 16

For raw steel slag (S0), the value of the correlation coefficient (R2) for the Langmuir
model was above 0.98, and was higher than that for the Freundlich model, indicating
that the Langmuir model could better describe the adsorption isotherm processes of Pb2+

in S0. In contrast, the R2 for the Freundlich model was more than 0.97, and was higher
than that for the Langmuir model for all the three nanocomposite samples (S1, S2, and
S3), implying that the Freundlich model could better express the adsorption isotherm
processes of Pb2+ in S1, S2, and S3. These indicated that: the adsorption of Pb2+ in
raw steel slag (S0) was a monolayer adsorption process, that the three nanocomposite
samples possessed heterogeneous adsorption surfaces, and that the adsorption of Pb2+

in S1, S2, and S3 was a multilayer adsorption process [33]. This was probably due to
the fact that raw steel slag (S0) had only one effective adsorption composition (Ca2SiO4),
but S1 had two effective adsorption components (Ca2SiO4 and HAP), and both S2 and
S3 had three effective adsorbent components (Ca2SiO4, HAP, and BCC), as shown in
Figure 1. The value of n for all the four samples (S0, S1, S2, and S3) was greater than 1,
suggesting high interactions between Pb2+ and all the four samples [32]. The numerical
value of kFre (mg g−1(L/mg)−1/n) for S0, S1, S2, and S3 was 0.396, 8.151, 17.43, and
48.43, respectively, indicating that the formation of nanocomposites greatly improved the
saturation adsorption capability of Pb2+, and the obtained carnation-like nanocomposite
sample (S3) obtained the highest adsorption capacity. From the Langmuir model simulation,
the maximum adsorption capacity (qmax) of Pb2+ in S0, S1, S2, and S3 was 15.66 mg g−1,
623.7 mg g−1, 753.4 mg g−1, and 859.7 mg g−1, respectively, which was very close to the
corresponding experimental value. The hierarchical carnation-like nanocomposite achieved
Pb2+absorption rates 53 times higher than those for the raw steel slag (859.7 mg g−1 of S3
versus 15.66 mg g−1 of S0). Moreover, the comparisons of the adsorption capacities of Pb2+

in steel slag-based materials or HAP materials are shown in Table 2. [13,14,16,34,35] It can
be observed that all the three nanocomposite samples showed remarkable Pb2+ adsorption
capability compared with steel slag-based absorbents. The carnation-like HAP/BCC
nanocomposite (S3) showed great advantages over the steel slag-based materials, with
an adsorption capacity nearly parallel with that of the advanced nanoscale HAP-based
materials. However, the price of the commercial nano HAP powder is about USD 50 per
kilogram. Currently, raw steel slag is practically free of cost, at about USD 4 per ton (USD
0.004 per kilogram), and the other chemicals are all readily and cheaply available; therefore,
the carnation-like HAP/BCC nanocomposite (S3) is the overwhelming favorite due to its
low cost (currently, the cost is evaluated to be only about USD 3.5 per kilogram).

Table 2. Comparison of the adsorption capacities of Pb2+ on steel slag-based materials or HAP materials.

Absorbent Surface Area (m2 g−1) qmax (mg g−1) References

Raw steel slag (300 mesh) (S0) 3.31 15.66 This work
Lappa-like HAP nanocomposite (S1) 52.24 623.7 This work
Mixed nanoflower-like HAP/BCC

nanocomposite (S2) 78.94 753.4 This work

Carnation-like HAP/BCC nanocomposite (S3) 46.67 859.7 This work
Steel slag-derived calcium silicate hydrate 76.5 550 [13,14]

3D flower-like HAP N 30 [34]
Bitter gourd-shaped nanoscale HAP 77.25 815 [16]

HAP-biochar nanocomposite 126.4 961.5 [35]
HAP/calcium silicate hydrate 84.54 946.7 [10]

3.3. Magnetic Performance and Magnetic Separation

Figure 7 illustrates the VSM curves for raw steel slag, the as-prepared S3, and S3
after the adsorption of Pb2+. The raw steel slag had good superparamagnetism, and
the saturation magnetization reached 38 emu g−1. The saturation magnetization of the
carnation-like HAP/BCC nanocomposite (S3) decreased to 25 emu g−1, and after adsorp-
tion of Pb2+, this slightly reduced to 22 emu g−1. The good superparamagnetism, obtained
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from the Fe2.936O4 of steel slag, is favorable to the magnetic separation and recovery of
the absorbents. The recovery efficiency of the separated S3 was still over 95% after being
magnetically separated 5 times, as shown in Table S2.
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3.4. Formation and Adsorption Mechanism

Figure 8 shows the XRD patterns for raw steel slag and the three nanocomposite
samples, before and after adsorption at different times, with an initial Pb2+ concentration of
700 ppm (the XRD pattern results for the adsorption at 1500 ppm Pb2+ and 3000 ppm Pb2+

are shown in Figures S4–S9 in the Supplementary Materials). It can be clearly observed
that: S1 had only one Pb-contained phase—Pb-HAP—and the content of Pb-HAP increased
with the adsorption time; both S2 and S3 had two Pb-contained phases—Pb-HAP and
Pb3(CO3)2(OH)2—and the content of the two Pb-contained phases also increased with the
adsorption time, but the content of Pb3(CO3)2(OH)2 for S3 was higher than that for S2,
according to the intensities of the diffraction peaks; all the samples possessed a Fe2.936O4
phase, which was the source of superparamagnetism. These results corresponded with
the results of Figure 1. In contrast to the phases in steel slag, the modified sample-S1
contained an HAP phase with a small amount of CaHPO4, and S2 and S3 possessed HAP
and BCC, with a small amount of CaHPO4. The content of BCC increased with the addition
of MDP: S1 had no BBS phase, and S3 achieved a higher BCC content than did S2. This
was mainly due to the different additions of MDP during the preparation process (the
addition of MDP for S1, S2, and S3 was 0 g, 10 g, and 30 g, respectively). There was no BCC
phase for S1 because there was no addition of MDP during the preparation process. MDP
(mono-dodecyl phosphate) has a phosphate group and an alkyl chain, with 12 carbon atoms.
The BCC phase of S2 and S3 possibly originated from the reaction of Ca2+ and carbon
chains during calcination in the air. After adsorption of Pb2+, the HAP (Ca10(PO4)6(OH)2)
phase was converted to Pb-HAP (Pb10(PO4)6(OH)2), and the BCC ((Ca3(CO3)2(OH)2·H2O)
turned into Pb3(CO3)2(OH)2. The particle sizes of S1, S2, and S3 before and after the
adsorption of Pb2+ were calculated according to Scherrer equation, as shown in Table S3
of the Supplementary Materials. The specific surface areas of S1, S2, and S3 after the
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adsorption of Pb2+ were 25.59 m2 g−1, 38.68 m2 g−1, and 20.38 m2 g−1, respectively (see
Figure S10 in the Supplementary Materials).
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The TEM and high resolution TEM (HRTEM) images of S3 before and after the adsorp-
tion of Pb2+, as shown in Figure 9, further confirmed the conversions of these phases: before
adsorption, the as-prepared S3 possessed BCC nanosheets set with HAP nanoneedles (just
like the petals and stems of carnation nanoflowers (Figure 2g)); then, after the adsorption
of Pb2+, the BCC nanosheets were converted to sphere-like Pb3(CO3)2(OH)2 nanoparticles,
and the HAP nanoneedles turned into HAP nanorods (as if the carnation nanoflowers bore
nano-fruits).
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These results were consistent with the results of the kinetic adsorption analysis, i.e., the
adsorption processes were chemisorption processes. Therefore, the main effective adsorp-
tion component for S1 was the HAP phase, that of S2 and S3 was a mixture of HAP and
BCC, and the Ca2+ of lappa-like HAP or carnation-like HAP/BCC caused ion exchange
reactions with Pb2+ during the adsorption process. Although S3 had the relatively low-
est specific surface area (46.67 m2 g−1) among the four samples, it obtained the greatest
kFre value (48.43, which is 2.8 times that of S2, 6 times that of S1, and 122.3 times that of
S0) and the highest maximum adsorption capacity of Pb2+ (qmax = 859.7 mg g−1). These
results were likely due to the fact that S3 contained much more BCC, and BCC has a much
lower solubility product than does HAP [21,22], causing the Ca2+ of BCC to more easily
precipitate ion exchange reactions with Pb2+; meanwhile, the hierarchical carnation-like
morphologies of S3 greatly increased the number of interaction sites between the Ca2+ of
BCC, HAP, and Pb2+ in the solution, resulting in a huge improvement in the adsorption
capacity of Pb2+.

On the basis of the aforementioned discussion, the formation mechanism and the Pb2+

adsorption mechanism of the hierarchical calcium-enriched nanoflowers of modified steel
slag can be summarized, as shown in Figure 10.
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the hierarchical nanoflower-like nanocomposite samples: (a) with no addition of MDP, and (b) with
the addition of MDP.

When no MDP was added, the phosphate ions (PO4
3−) first anchored on the surface

of the steel slag by interacting with the Ca2+ ions, and then the added Ca2+ ions reacted
with the anchored phosphate ions and formed a crystal nucleus of HAP nanoneedles
on the surfaces of steel slag particles. The subsequent HAP crystal growth was driven
by an increase in Ca2+ and PO4

3− ions, and calcinations helped to form lappa-like HAP
nanoflowers on the steel slag particles. In the aqueous solution of Pb2+, the Ca2+ ions of
the lappa-like HAP nanoflower caused ion exchanges with Pb2+, and finally, Pb-HAP was
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formed. This entire process is shown as Figure 10a. Figure 10b illustrates the diagram for
the samples prepared with the addition of MDP: the added MDP molecules first anchored
on the surface of the steel slag through the interactions between the phosphate groups of
MDP and the Ca2+ ions of steel slag (CaO phase). Then, the added Ca2+ ions interacted
with the phosphate groups and the alkyl chains of the MDP molecules, and the subsequent
PO4

3− ions and additional Ca2+ precipitated in the complex of Ca2+ and MDP, and finally,
carnation-like HAP/BCC was formed, after calcination in the air. The complex of HAP
and BCC was probably the reason for the formation of the stable BCC phase. Moreover, in
the aqueous solution of Pb2+ (the pH is about 4.1–4.5), Pb2+ was the dominated species,
in the pH range of 2.5–5.9 [36]; therefore, the Ca2+ ions of the carnation-like HAP/BCC
nanoflowers precipitated ion exchanges with Pb2+, and Pb-HAP and Pb3(CO3)2(OH)2,
respectively, were formed. When the MDP molecules were not adequate to cover the
surfaces of the steel slag particles, some surface areas experienced the reaction process
shown in Figure 10a, resulting in the mixture of lappa-like and carnation-like morphologies
for S2.

4. Conclusions

In summary, nanocomposites with lappa-like HAP and/or carnation-like HAP/BCC
were successfully achieved through controlling the addition of MDP during the preparation
process. Without the addition of MDP, the lappa-like HAP nanocomposite was obtained,
and with the addition of 30 g MDP, the carnation-like HAP/BCC nanocomposite was
acquired. The pseudo-second-order and Freundlich models were more powerful than
other models in expressing the kinetic and equilibrium behaviors of Pb2+ adsorption
in the nanocomposites, indicating that the adsorptions belonged to the chemisorption
and multilayer adsorption processes. The main effective adsorption components for the
nanocomposite were HAP and BCC. Through exchanges between Ca2+ ions and Pb2+ ions
in the solution, the HAP and BCC phases converted to Pb-HAP and Pb3(CO3)2(OH)2,
respectively. The structure of the hierarchical calcium-enriched nanoflowers gave the
carnation-like HAP/BCC nanocomposite a high Pb2+ adsorption capacity of 860 mg g−1,
which was 54 times that of the raw steel slag. Additionally, the carnation-like HAP/BCC
nanocomposite possessed good superparamagnetism and magnetic recovery efficiency,
even after the adsorption of Pb2+. The low cost, significant adsorption capacity, and good
magnetic recovery efficiency provides the carnation-like HAP/BCC nanocomposite with
significant potential for the treatment of heavy-metal polluted wastewater and soil.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27175565/s1, Figure S1: BJH pore size distribution of
raw steel slag (S0); Figure S2: The TEM-EDS mapping data of S2; Figure S3: The TEM-EDS mapping
data of S3; Figure S4: XRD patterns of raw steel slag (S0) and sample S1 before and after adsorption
at different times with an initial Pb2+ concentration of 1500 ppm; Figure S5: XRD patterns of raw
steel slag (S0) and sample S1 before and after adsorption at different times with an initial Pb2+

concentration of 3000 ppm; Figure S6: XRD patterns of raw steel slag (S0) and sample S2 before and
after adsorption at different times with an initial Pb2+ concentration of 1500 ppm; Figure S7: XRD
patterns of raw steel slag (S0) and sample S2 before and after adsorption at different times with an
initial Pb2+ concentration of 3000 ppm; Figure S8: XRD patterns of raw steel slag (S0) and sample
S3 before and after adsorption at different times with an initial Pb2+ concentration of 1500 ppm;
Figure S9: XRD patterns of raw steel slag (S0) and sample S3 before and after adsorption at different
times with an initial Pb2+ concentration of 3000 ppm; Figure S10: Nitrogen adsorption/desorption
isotherm curves of S1, S2, and S3 after adsorption of Pb2+; Figure S11: Lappa-like nanoflower
morphology of S1; Figure S12: Carnation-like nanoflower morphology of S3; Table S1: The fitting
parameters for the kinetic adsorption curves of Pb2+ with different concentrations on raw steel slag
and the nanocomposite samples prepared with different additions of MDP; Table S2: The recovery
efficiency of S3 by magnetic separation; Table S3: The particle size of S1, S2, and S3 before and after
adsorption of Pb2+ was calculated according to Scherrer equation.
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