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Introduction
In the course of evolution, genomes become a subject to a

number of large-scale evolutionary events such as genome rear-

rangements that shuffle genomic architectures, and gene inser-

tions and deletions (indels) that insert or remove continuous

intervals of genes. Since these evolutionary events are rare, the

number of them between two genomes is used in phyloge-

nomic studies to measure the evolutionary distance between

them. Such measurement is often based on the maximum par-

simony assumption, implying that the evolutionary distance can

be estimated as the minimum number of events between gen-

omes. A convenient model for the most common genome

rearrangements is given by the double-cut-and-join (DCJ)

operations,1 also known as 2-breaks,2 which make two ‘‘cuts’’

in a genome and ‘‘glues’’ the resulting genomic fragments in a

new order. Namely, DCJs mimic reversals (that inverse contig-

uous segments of chromosomes), translocations (that exchange

tails of the two chromosomes), and fissions/fusions (that split/

join chromosomes), while indels can be modeled by the DCJs

on certain artificial circular chromosomes called prosthetic.3,4

The maximum parsimony assumption enables addressing

the ancestral genome reconstruction problem, which asks to

reconstruct ancestral genomes from given extant genomes, by

minimizing the total distance between genomes along the

branches of the phylogenetic tree. The basic case of this prob-

lem with just three given genomes is known as the genome

median problem (GMP), which asks for a single ancestral gen-

ome (median genome) at the minimum total distance from the

given genomes.

The GMP is NP-hard under a number of models of gen-

ome rearrangements, such as reversals-only5 and DCJ.6 While

these problems can be posed for both circular genomes (consist-

ing of circular chromosomes) and linear genomes (consisting of

linear chromosomes), the DCJ model allows appearance of cir-

cular chromosomes in transformations between linear gen-

omes. Correspondingly, a solution to the GMP under the DCJ

model may contain circular chromosomes even if the given

genomes are linear. Since appearance of circular chromosomes

in the reconstructed ancestral genomes of extant linear gen-

omes represents an artifact and inadequately describes the bio-

logical reality, it is important to distinguish between the GMP

and the linear genome median problem (L-GMP), where the lat-

ter is restricted to linear genomes only.

To the best of our knowledge, there exist no solvers for the

L-GMP, while there are some advanced GMP solvers,7–9

which allow the median genome to contain circular chromo-

somes. This deficiency inspired us to pose the problem of

using the solution for the GMP to obtain a linear genome

approximating the solution to the L-GPM. In this study, we

propose an algorithm that linearizes chromosomes of a given

GMP solution in a certain optimal way as described in the

‘‘Background’’ section. Our approach also provides insights

into the combinatorial structure of genome transformations by

DCJs and indels with respect to appearance of circular chro-

mosomes. We remark that a similar linearization problem

appears in adjacency-based reconstructions of median genomes

and is known to be intractable,10 forcing the existing

approaches10–14 to solve its relaxation and allowing the con-

structed median genomes to contain circular chromosomes.

The article is organized as follows. In the ‘‘Background’’

section, we describe the graph-theoretical representation of

genomes, DCJs, and indels. In the ‘‘Main Results’’ section, we

formulate main theorems providing an approximate solution

for L-GMP. In the ‘‘Methods’’ section, we develop necessary

machienery and prove our main theorems. We conclude the

article with the ‘‘Discussion’’ section.
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Background

DCJ-Indel distance and genome graphs

In this study, we focus on genomes with no duplicated genes.

Let P be a genome, which may contain both circular and linear

chromosomes. We represent a circular chromosome consisting

of n genes as a graph cycle with n directed gene edges encoding

genes and their strands, which alternate with n undirected

edges connecting the extremities of adjacent genes. Similarly,

we represent a linear chromosome consisting of n genes as a

path with n directed gene edges alternating with n+ 1 undir-

ected edges, where n� 1 undirected edges connect extremities

of adjacent genes, and two more undirected edges connect

each endpoint extremity to its own special vertex labeled ‘

corresponding to a telomere (Figure 1A). We label each gene

edge with the corresponding gene x and further label its tail

and head endpoints with xt and xh, respectively (Figure 1A).

We define the operation �� as xt = xh and xh = xt . A collection

of cycles and paths representing the chromosomes of P forms

the genome graph S(P). The undirected edges in S(P) are

called P-edges. We denote by S(P) the gene content of P (ie,

the set of genes present in P) and by V (P) the set of regular

(non-‘) vertices of S(P).

A DCJ transforming a genome P into a genome P 0 corre-

sponds to one of the following operations transforming S(P)

into S(P 0) (Figure 1A and B):

1. fx, yg, fu, vg ! fx, ug, fy, vg (internal reversals,

translocations)

2. fx, yg, fu,‘g ! fx, ug, fy,‘g (reversals at chromo-

some ends, translocations involving a whole

chromosome)

3. fx,‘g, fy,‘g ! fx, yg (fusions)

4. fx, yg ! fx,‘g, fy,‘g (fissions)

where x, y, u, and v are distinct vertices from V (P).

A DCJ scenario between genomes P and Q with equal gene

content (ie, S(P)= S(Q)) is a sequence of DCJs transforming

P into Q. We define the DCJ distance dDCJ(P,Q) between gen-

omes P and Q as the length of a shortest DCJ scenario between

them.

To transform a genome P into a genome Q with unequal

gene content, one needs to consider gene insertion and dele-

tion operations (indels) in addition to DCJs. An insertion

transforming a genome P into a genome P 0 corresponds to one

of the following operations transforming S(P) into S(P 0)

(Figure 1A and C):

(i) replace a P-edge fx, yg with a path (x, u1, �u1,

u2, . . . , �ul , y) (including the case of either x=‘ or

y =‘),

(ii) add a path (‘, u1, �u1, u2, . . . , �ul ,‘),

(iii) add a cycle (u1, �u1, u2, . . . , �ul , u1),

where the edges alternate between P 0-edges f�ui, ui + 1g and

gene edges (ui, �ui) with ui 62 S(P), resulting in S(P 0)=

S(P) [ fu1, . . . , ulg.
A deletion can be viewed as an event reversing an insertion.

A deletion transforming a genome P into a genome P 0 corre-

sponds to one of the following operations transforming S(P)

into S(P 0) (Figure 1A and C):

(i) replace a path (x, u1, �u1, u2, . . . ul , �ul , y) with a P 0-edge

fx, yg (including the case of either x=‘ or y =‘),

(ii) remove a path (‘, u1, �u1, u2, . . . , ul , �ul ,‘),

(iii) remove a cycle (u1, �u1, u2, . . . , ul , �ul , u1),

where the edges alternate between P-edges f�ui, ui + 1g and

gene edges (ui, �ui), resulting in S(P 0)= S(P)nfu1, . . . , ulg.
A DCJ-Indel scenario t between genomes P and Q is a

sequence of DCJs and indels transforming P into Q, where

deletions delete genes from S(P)nS(Q) and insertions insert

genes from S(Q)nS(P) (ie, no gene can be inserted and

then deleted, or deleted and then inserted), denoted as

t : P ! Q. We also find it convenient to represent t as

P =P0!
q1

P1!
q2 � � � ! Pn�1!

qn
Pn =Q, where each qi is a

Figure 1. (A) A genome graph for a linear genome ( + 2 + 3 + 4 + 1). (B) A genome graph for a genome ( + 2 + 1)f+ 3 + 4g consisting of circular and linear
chromosomes is obtained by a DCJ that splits the linear chromosome into two chromosomes. (C) A genome graph for a genome ( + 2 + 5 + 6 + 3 + 4 + 1) is
obtained by an insertion of gene sequence + 5, + 6. Dotted directed edges correspond to inserted genes.
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DCJ or an indel. We define the DCJ-Indel distance dDI(P,Q)

as the length of a shortest DCJ-Indel scenario transforming

genome P into genome Q. It is easy to see that any DCJ-Indel

scenario transforming P into Q can be reversed (turning each

insersion into a deletion, and vice versa) to obtain a DCJ-Indel

scenario transforming Q into P, implying that

dDI(P,Q)= dDI(Q,P).

A circular chromosome C in P is a singleton with respect to

genome Q if it is composed of genes absent in Q, ie,

S(C) \ S(Q)=[. Let sngQ(P) be the number of singletons in

P with respect to Q. The total number of singletons in P and Q

with respect to each other is sng(P,Q) :¼ sngP (Q)+ sngQ(P).

The following lemma describes an important property of

singletons.

Lemma 1 (Compeau4)

For given genomes P and Q, let C be a singleton in P with respect

to Q and P0 be the genome obtained from P by removing C. Then

dDI(P
0,Q)= dDI(P,Q)� 1.

From Lemma 1, the DCJ-Indel distance between two gen-

omes can be computed with the following formula:4

dDI(P,Q) = sng(P,Q)+ dDI(
QP, P Q) , ð1Þ

where QP and P Q are obtained from P and Q by removing all

singletons (ie, sng(QP, P Q)= 0). We need the following

lemma.

Lemma 2 (Compeau4)

Let t : P0!
q1 � � �!qn

Pn be a shortest DCJ-Indel scenario. Let C be

a singleton in Po with respect to Pn. Then for any i 2 f0, . . . , ng
and any chromosome D in Pi such that S(C) \ S(D) 6¼ [, we

have S(D) \ S(P0)=[.

Genome median problem

We pose the GMP under the DCJ-Indel model as follows.

Genome median problem (GMP)

Given genomes B1,B2, and B3, find a genome M with

S(M) � S(B1) [ S(B2) [ S(B3) that minimizes the DCJ-Indel

median score:

msDI(M ,B1,B2,B3) :¼
X3

i = 1

dDI(Bi,M):

Since the GMP is posed under the DCJ-Indel model, a

median genome for given linear genomes may contain circular

chromosomes. To address the issue of circular chromosome

presence, we pose the following problem.

Linear genome median problem (L-GMP)

For given linear genomes B1, B2, and B3, find a linear genome M

with S(M) � S(B1) [ S(B2) [ S(B3) minimizing the DCJ-

Indel median score msDI(M ,B1,B2,B3).

While we are not aware of efficient algorithms (let alone,

software solvers) for solving the L-GMP, we pose the problem

of constructing an approximate solution for the L-GMP from

the given solution for GMP.

Results

Chromosome linearization

Let t : P0!
q1 � � �!qn

Pn be a DCJ-Indel scenario and C be a cir-

cular chromosome in P0. For each i 2 f0, 1, . . . , ng, let

Ci = fC1
i , . . . ,Cmi

i g be a collection of all circular chromo-

somes in Pi such that S(Cl
i ) \ S(C) 6¼ [ (l 2 f1, . . . ,mig).

We call Ci a meta-chromosome of C in Pi and note that Ci itself

may be viewed as a genome, for which S(Ci), S(Ci), and

V (Ci) are defined. In particular, we have S(Ci)=
Smi

l = 1

S(Cl
i ).

Below, we describe an important property of circular chromo-

somes appearing in DCJ-Indel scenarios (Figure 3).

Definition 1

A circular chromosome C is linearized within a DCJ-Indel sce-

nario t : P ! Q (or t linearizes C) if the following three condi-

tions hold:

(E1) C is present in P ;

(E2) S(C) \ S(Q) 6¼ [;

(E3) S(C) \ S(P) 6¼ S(C) \ S(Q), where C is the meta-

circular chromosome of C in Q.

Equivalently, a circular chromosome C of genome P is linear-

ized within t : P ! Q if there exists a gene in C that resides on

a linear chromosome in Q, or together with a gene from another

chromosome of P resides on a circular chromosome in Q.

We extend Definition 1 to a particular event in a DCJ-

Indel scenario as follows.

Definition 2

Let t : P =P0!
q1 � � �!qn

Pn =Q be a DCJ-Indel scenario that

linearizes a circular chromosome C. We say that an event qi line-

arizes C within t if C is linearized within (q1, . . . ,qi) and C is

not linearized within (q1, . . . ,qk) for any k \ i.

The following theorem shows that for given linear genomes,

all circular chromosomes in their median genome are linearized

within the corresponding DCJ-Indel scenarios.

Lemma 3

Let B1, B2, and B3 be linear genomes, and M be a genome such

that S(M) � S(B1) [ S(B2) [ S(B3). Let ti be a shortest DCJ-

Indel scenario between M and Bi for i 2 f1, 2, 3g. Then each cir-

cular chromosome in M is linearized in at least one of the DCJ-

Indel scenarios t1, t2, t3.

Proof

Assume that there is a circular chromosome C in M that is not

linearized in either of t1, t2, t3. Then at least one of conditions
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(E2) or (E3) does not hold for each Q 2 fB1,B2,B3g. Since

S(M) � S(B1) [ S(B2) [ S(B3), for each circular chromosome

C 0 in M, we have S(C 0) � S(B1) [ S(B2) [ S(B3). Hence, the

condition (E2) must hold for at least one Q 2 fB1,B2,B3g.
So, there is l 2 f1, 2, 3g such that the condition (E3) does not

hold for the genome Bl (ie, S(C) \ S(M)= S(C) \ S(Bl )),

where C is the meta-chromosome of C in Bl . In other words,

there exist circular chromosomes C= fC 01, . . . ,C 0kg in the

genome Bl , which contradicts its linearity. h

The following theorems represent a key to proving our main

results on linearization of median genomes. Proofs of these the-

orems are rather technical and given in the ‘‘Methods’’ section.

Theorem 1

Let t : P ! Q be a DCJ-Indel scenario that linearizes a circular

chromosome C. Then there exists a DCJ-Indel scenario
~t : P!r P 0 !~t

0
Q such that r is a DCJ linearizing C within ~t and

j~t 0jł jtj.

For DCJ scenarios, we have a somewhat stronger result.

Theorem 2

Let t : P ! Q be a DCJ scenario that linearizes a circular chro-

mosome C. Then there exists a DCJ scenario ~t : P!r P 0 !~t
0

Q such

that r is a DCJ linearizing C within ~t and j~t 0j= jtj � 1.

Linearization of median genomes

For a genome P, let cchr(P) be the number of circular chromo-

somes in genome P. Our main results on linearization of med-

ian genomes are given by the following theorems.

Theorem 3

Let B1, B2, and B3 be linear genomes, and M be a given median

genome. Then for any n ł cchr(M), there exists a genome M̂ such

that cchr(M̂)= cchr(M)� n, S(M)= S(M̂), and

msDI(M̂ ,B1,B2,B3)� msDI(M ,B1,B2,B3)ł 2n:

Proof

We prove the theorem by induction on n. If n= 0, the theo-

rem trivially holds for M̂ =M .

We assume that the theorem holds for n \ cchr(M). Then

there exists a genome M 0 such that cchr(M 0)= cchr(M)� n,

S(M)= S(M 0), and msDI(M
0,B1,B2,B3)� msDI(M ,B1,

B2,B3)ł 2n. Let C 0 be a circular chromosome in M 0. Since

S(M 0)= S(M) � S(B1) [ S(B2) [ S(B3), we have S(C 0) �
S(B1) [ S(B2) [ S(B3). Let t 0i be a shortest DCJ-Indel sce-

nario between M 0 and Bi for i 2 f1, 2, 3g (Figure 2). By

Lemma 3, there is at least one of the DCJ-Indel scenarios t 01,

t 02, and t 03 that linearizes C 0, say t 01. By Theorem 1, we obtain

a DCJ-Indel scenario ~t1 of the form M 0 !q M̂!
~t 01

B1 such that

q linearizes C 0 within ~t1 and j~t 01jł jt 01j. Clearly, dDI(M
0,B1)

= j~t 01jł jt 01j. By the triangle inequality, for i = 2, 3, we have

dDI(M̂ ,Bi)ł dDI(M̂ ,M 0)+ dDI(M
0,Bi)= 1+ jti0 j: Hence,

we have msDI(M̂ ,B1,B2,B3)� msDI(M
0,B1,B2,B3)ł 2:

Thus, we have

msDI(M̂ ,B1,B2,B3)� msDI(M ,B1,B2,B3)

=msDI(M̂ ,B1,B2,B3)� msDI(M
0,B1,B2,B3)

+msDI(M
0,B1,B2,B3)� msDI(M ,B1,B2,B3)

ł 2+ 2n= 2 � (n+ 1): h

For the GMP under the DCJ model, we can immediately

improve the derived upper bound as follows.

Theorem 4

Let B1, B2, and B3 be linear genomes with equal gene content, and

M be a given median genome. Then for any n ł cchr(M), there

exists a genome M̂ such that cchr(M̂)= cchr(M)� n, and

msDCJ(M̂ ,B1,B2,B3)� msDCJ(M ,B1,B2,B3)ł n:

Proof

The proof proceeds as the proof of Theorem 3 with the fol-

lowing difference. We use Theorem 2 instead of Theorem 1

to obtain a DCJ scenario ~t1 of the form M 0 !q M̂!
~t
0
1

B1 such

that q linearizes C 0 within ~t1 and j~t 01j= jt 01j � 1. Hence, we

have msDCJ(M̂ ,B1,B2,B3)� msDCJ(M
0,B1,B2,B3)ł 1: h

Figure 2. Linear genomes B1, B2, and B3 and their median genome M
represented as vertices. A genome M0 containing cchr(M)� n (n \ cchr(M))
circular chromosomes is represented as vertex, and the corresponding
shortest transformations t01, t02, and t03 are represented as directed dashed
edges. We construct a shortest transformation from M0 to B1 composed of q

and ~t01 such that q results in a genome M̂ with cchr(M̂) = cchr(M0)� 1 and
j~t01jł jt01j. The corresponding shortest transformations from M̂ to B2 and B3

are represented as bold directed edges and denoted by t̂2 and t̂3.
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Methods
This section is devoted to the proof of Theorems 1 and 2.

We call any two DCJ-Indel scenarios between the same pair

of genomes equivalent. Let t : P ! Q be a DCJ-Indel scenario

that linearizes a circular chromosome C. First, in Lemma 4, we

will show that there exists an event r within t that linearizes a

circular chromosome C. Second, in Theorem 5, we will show

that r is a DCJ. Third, we will show how to obtain equivalent

pair of events (i.e., a DCJ-Indel scenario of length 2) (a0,b0)

from adjacent events (a,b) in t, where b and a0 linearize C.

We will distinguish the pair of adjacent events based on

their dependency. Namely, two adjacent events a and b in a

DCJ-Indel scenario are called independent if the edges removed

by b are not created by a. Otherwise, when b removes edge(s)

created by a, we say that b depends on a. We will assume that

b is a DCJ if not stated otherwise. We will consider the fol-

lowing cases:

(1) a and b are independent events (addressed in Lemma

6);

(2) b depends on a deletion a (addressed in Lemma 8);

(3) b depends on a DCJ a (addressed in Lemma 7);

(4) b depends on an insertion a (addressed in Lemmas 9

to 11).

Eventually, results of Lemmas 6 to 11 will enable us to

prove Theorems 1 and 2.

Circular chromosomes and DCJ-Indel scenarios

The following lemma shows the connection between

Definitions 1 and 2.

Lemma 4

Let t : P ! Q be a DCJ-Indel scenario that linearizes a circular

chromosome C. Then there exists an event r that linearizes C

within t.

Proof

Suppose that t is of the form: P =P0!
q1 � � �!qn

Pn =Q. For

each i 2 f0, 1, . . . , ng, let Ci be the meta-chromosome of C

in Pi. In particular, C0 = fCg. Then, the equality

S(Ci) \ S(P)= S(C) \ S(Pi) ð2Þ

holds for i = 0 but not for i = n (since C is linearized within

t). Hence, there exists k 2 f1, . . . , ng such that equation (2)

holds for i = k� 1 but not for i = k. Moreover, it is clear that

S(C) \ S(Pk�1) 6¼ [ and S(C) \ S(Pk) 6¼ [. By Definition 1,

C is not linearized within (q1, . . . ,qk�1) and is linearized

within (q1, . . . ,qk). Thus, r =qk linearizes C within t. h

An event linearizing a circular chromosome C can also be

described in terms of removing edges in genome graphs as fol-

lows (Figure 3).

Theorem 5

Let t : P0!
q1 � � �!qn

Pn be a DCJ-Indel scenario that linearizes a

circular chromosome C. Let Ci be the meta-chromosome of C in Pi

for each i 2 f0, 1, . . . , ng. Then qk linearizes C within t if and

only if qk is a DCJ with a minimal index k such that one of the

following conditions holds:

(i) qk removes edges a 2 S(Ck�1) and b 62 S(Ck�1);

(ii) qk removes a single edge a 2 S(Ck�1).

Figure 3. Illustration of a linearized circular chromosome C within a DCJ-Indel scenario (q1, . . . , qk) and Theorem 5. Dashed gray and black edges denote
newly inserted genes and arbitrary gene sequences, respectively. Dotted edges represent genes that do not belong to meta-chromosomes of C. (A) Initial
genome graph, where C is a linearized circular chromosome and D is a chromosome of any type. (B) The intermediate genome graph resulted from a DCJ-
Indel scenario (q1, . . . , qk�1), where C0 is a meta-chromosome of C and D0 is a chromosome obtained from D. (C) The resulting graph after a fission qk on a
circular chromosome C0. (D) The graph resulted from a DCJ qk that combines a circular chromosome C0 and a chromosome D0.
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Proof

Assume that qk is a DCJ and the above conditions (i) or (ii)

holds, where k is the smallest such index. Since C is linearized

within t, (E1) and (E2) hold for DCJ-Indel scenarios

(q1, . . . ,qk�1) and (q1, . . . ,qk). Now, we need to show that

(E3) holds for (q1, . . . ,qk), but not for (q1, . . . ,qk�1). We

consider the following two cases.

If condition (i) holds, then a belongs to a circular chromo-

some C 0 2 Ck�1 and b belongs to a chromosome D0 62 Ck�1

(Figure 3D). If D0 is circular, then qk creates a new circular

chromosome C 00 2 Ck such that S(C 00)= S(C 0) [ S(D0) (ie,

qk is a fusion of circular chromosomes). By Lemma 2, we have

S(D0) \ S(P0) 6¼ [. Since S(D0) \ S(Ck�1)=[, we have

S(Ck) \ S(P0) 6¼ S(C) \ S(Pk), ie, (E3) holds. If D0 is linear,

then qk turns C 0 into a linear chromosome. Hence, we have

S(C 0) \ S(Ck)=[. Since S(C) \ S(C 0) 6¼ [, we have

S(Ck) \ S(P0) 6¼ S(C) \ S(Pk), ie, (E3) holds. Since k is the

smallest index and S(Pk�1)= S(Pk), (E3) does not hold for

(q1, . . . ,qk�1).

If condition (ii) holds, the proof is similar (Figure 3C).

Now, assume that qk linearizes C within t. Then the equality

S(Ck�1) \ S(P0)= S(C) \ S(Pk�1) ð3Þ

holds. There are three possible types of qk, namely, insertion,

deletion, and DCJ. First, we assume that qk is an insertion.

Then S(Pk�1) � S(Pk). Recall that qk inserts genes from

S(Pn)nS(P0). In particular, since C is present in P0 (ie,

S(C) � S(P0)), qk does not insert any genes from S(C). Thus,

we have S(C) \ S(Pk�1)= S(C) \ S(Pk). Since insertions can-

not change the chromosome types, we have

S(Ck�1) \ S(P0)= S(Ck) \ S(P0). By equation (3), we have a

contradiction. Thus, qk is not an insertion.

Second, we assume that qk is a deletion. Then

S(Pk) � S(Pk�1) and S(Ck) � S(Ck�1). Let

A = S(C) \ S(Pk�1)ð Þn S(C) \ S(Pk)ð Þ
= S(C) \ S(Pk�1)nS(Pk)ð Þ

:

Note that since S(C) \ S(Pn) 6¼ [, we have

S(C) \ S(Pi) 6¼ [ for all i 2 f0, 1, . . . , ng. Then

A 6¼ S(C) \ S(Pk�1). Let

B = S(Ck�1) \ S(P0)ð Þn S(Ck) \ S(P0)ð Þ
= S(Ck�1)nS(Ck)ð Þ \ S(P0)

:

Our goal is to prove that A =B. Since A is the subset of

genes removed by qk, A \ S(Pk)=[. In particular,

A \ S(Ck)=[. Hence, A \ S(Ck) \ S(P0)ð Þ=[. By equa-

tion (3), we have that A � B. Now, let g 2 B. Note that

g 2 S(P0), g 2 S(Ck�1), and g 62 S(Ck). Since deletion cannot

change the chromosome types, it follows that g is removed by

qk. Then g 62 S(Pk). By equation (3), g 2 S(C) \ S(Pk�1), and

thus we have g 2 A. Since the choice of g was arbitrary, we

have proved that A = S(Ck�1) \ S(P0)ð Þn S(Ck) \ S(P0)ð Þ.

Note that S(Ck) \ S(P0) � S(Ck�1) \ S(P0) and S(C) \ S(Pk)

� S(C)\ S(Pk�1). Therefore, S(Ck) \ S(P0)= S(C) \ S(Pk), a

contradiction to qk linearizing C. Thus, qk is not a deletion.

We proved that qk is a DCJ. Then S(Pk�1)= S(Pk).

Hence,

S(Ck�1) \ S(P0)= S(C) \ S(Pk�1)

= S(C) \ S(Pk) 6¼ S(Ck) \ S(P0)
:

Thus, S(Ck�1) 6¼ S(Ck) holds. Since qk does not change

the gene content, qk either breaks one circular chromosome

C 0 2 Ck�1, or combines circular chromosomes C 0 2 Ck�1 and

C 00 62 Ck�1 into a single circular chromosome, or combines a

circular chromosome C 0 2 Ck�1 and linear chromosome into a

single linear chromosome. In the first case, qk removes a single

edge that belongs to S(Ck�1) (Figure 3C). In the last two

cases, among the two edges removed by qk, one must belong

to S(Ck�1) and the other does not belong to S(Ck�1)

(Figure 3D). h

The following lemma describes an important property of

meta-chromosomes.

Lemma 5

Let t : P0!
q1 � � �!qn

Pn be a DCJ-Indel scenario, where qn line-

arizes a circular chromosome C within t. Let k 2 f0, . . . , n� 1g,
and Ck and Ck+ 1 be the meta-chromosomes of C in Pk and Pk+ 1,

respectively. Then for any vertex x 2 V (Pk) \ V (Pk+ 1), if

x 2 V (Ck+ 1), then x 2 V (Ck).

Proof

Let gx be the gene corresponding to x. Note that x 2 V (Ci) if

and only if gx 2 S(Ci) for i 2 fk, k+ 1g. Since gx 2 S(Pk) and

gx 2 S(Pk+ 1), gx cannot be inserted or removed by qk+ 1.

Suppose that x 2 V (Ck+ 1), ie, gx 2 S(Ck+ 1). We consider

two cases depending on whether qk+ 1 is an indel or a DCJ.

First, assume that qk+ 1 is an indel. Since gx 2 S(Ck+ 1),

there is a circular chromosome C 0 2 Ck+ 1 such that

gx 2 S(C 0). Let C 00 be a chromosome in Pk such that

gx 2 S(C 00), ie, S(C 00) \ S(C 0) 6¼ [. If C 00=C 0 (ie, qk+ 1 does

not affect C 0), we have C 00 2 Ck, implying that gx 2 S(Ck). If

C 00 6¼ C 0, we have either S(C 0) � S(C 00) or S(C 00) � S(C 0).

Since C 0 2 Ck+ 1, in both cases, C 0 2 Ck. Therefore,

gx 2 S(Ck).

Second, assume that qk+ 1 is a DCJ. Then, since qk+ 1

does not linearize C, qk+ 1 operates on four vertices that

belong to V (Ck+ 1). Since qk+ 1 is a DCJ, S(Ck)= S(Ck+ 1).

Hence, these four vertices belong to V (Ck). Thus, if

gx 2 S(Ck+ 1) then gx 2 S(Ck). h

From Lemma 5, the following corollary follows

immediately.

Corollary 1

Let t : P0!
q1 � � �!qn

Pn be a DCJ-Indel scenario, where qn line-

arizes a circular chromosome C. Let k 2 f0, . . . , n� 1g and

x, y, z be vertices from V (Pk) \ V (Pk+ 1) such that
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fx, yg 2 S(Pk) and fx, zg 2 S(Pk+ 1). Let Ck and Ck+ 1 be

the meta-chromosomes of C in Pk and Pk+ 1, respectively. If

fx, zg 2 S(Ck+ 1), then fx, yg 2 S(Ck).

Independent adjacent events

In this section, we address the case (1), ie, a and b are inde-

pendent events. It is easy to see that the order of any two adja-

cent independent events in a DCJ-Indel scenario can be

changed without affecting the starting and ending genomes.15

Lemma 6

Let t : P0!
q1 � � � ��!qn�2

Pn�2 ��!qn�1
Pn�1!

qn
Pn be a DCJ-Indel sce-

nario that linearizes a circular chromosome C, where qn�1 and

qn are independent events. If qn linearizes C within t,

then qn also linearizes C within the DCJ-Indel scenario

P0!
q1 � � � ��!qn�2

Pn�2!
qn

P 0 ��!qn�1
Pn.

Proof

Let Cn�2 and Cn�1 be the meta-chromosomes of C in Pn�2

and Pn�1, respectively. Since qn linearizes C within t, by

Theorem 5, qn is a DCJ. If qn removes two edges in S(Pn�1),

say fx, yg 2 S(Cn�1) and fz,wg 62 S(Cn�1), then since qn�1

and qn are independent, the edges fx, yg and fz,wg are pres-

ent in S(Pn�2). By Corollary 1, we have fx, yg 2 S(Cn�2) and

fz,wg 62 S(Cn�2). By Theorem 5, qn linearizes C within the

DCJ-Indel scenario P0!
q1 � � � ��!qn�2

Pn�2!
qn

P 0 ��!qn�1
Pn. If qn

removes a single edge, the proof is similar. h

DCJ depends on a deletion

In this section, we consider case (2), ie, a DCJ b depends on a

deletion a. For such pair of events the following lemma holds.

Lemma 7
Let t : P0!

q1 � � � ��!qn�2
Pn�2 ��!qn�1

Pn�1!
qn

Pn be a DCJ-Indel sce-

nario that linearizes a circular chromosome C, where DCJ qn

depends on deletion qn�1. If qn linearizes C, then there exists a

DCJ-Indel scenario P0!
q1 � � � ��!qn�2

Pn�2 ��!
q0n�1

P 0 �!q
0
n

Pn, where

q0n�1 linearizes C and q0n is a deletion.

Proof

Let Cn�2 and Cn�1 be the meta-chromosomes of C in Pn�2

and Pn�1, respectively. Let (x, u1, �u1 . . . , ul , �ul , y) be the path

in S(Pn�2) that is replaced with fx, yg in S(Pn�1) by qn�1.

Suppose that qn removes two edges. Since qn depends on

qn�1, we can assume that qn removes edges fx, yg, fz,wg in

S(Pn�1) and creates fx, zg, fy,wg in S(Pn) (Figure 4A, B,

and D). By Theorem 5, without loss of generality, we assume

that fx, yg 2 S(Cn�1) and fz,wg 62 S(Cn�1). We define q0n�1

as the DCJ that removes edges fx, u1g, fz,wg in S(Pn�2),

and creates fx, zg, fu1,wg in S(P 0), where P 0 is the genome

resulted from q0n�1. Moreover, we define q0n as the deletion

that replaces a path (w, u1, �u1, . . . , ul , �ul , y) in S(P 0) with an

edge fy,wg in S(Pn) (Figure 4A, C, and D). Since qn

depends on qn�1, fz,wg is present in S(Pn�2). By Corollary

1, fx,u1g2S(Cn�2) and fz,wg 62S(Cn�2). Thus, by Theorem

5, q0n�1 linearizes C within P0!
q1 �����!qn�2

Pn�2��!
q0n�1

P 0�!q
0
n

Pn.

Suppose that qn removes a single edge a. Since qn depends

on qn�1, we have a = fx, yg. We define q0n�1 as the DCJ that

removes a single edge fx, u1g and creates fx,‘g, fu1,‘g, and

q0n as the deletion that replaces a path (‘, u1, . . . , �ul , y) with

an edge fy,‘g. The proof that q0n�1 linearizes C within

P0!
q1 � � � ��!qn�2

Pn�2 ��!
q0n�1

P 0 �!q
0
n

Pn is similar. h

DCJ depends on a DCJ

In this section, we address case (3), ie, DCJ b depends on a

DCJ a. Let A be the set of edges created by a, and B be the

set of edges removed by b. Since b depends on a, A \ B 6¼ [.

We say that b strongly depends on a if A =B and weakly

depends on a otherwise (such pairs of adjacent DCJs are also

known as enchained15). In a genome graph, a pair of adjacent

dependent DCJs replaces three edges with three other edges

on the same six vertices (this operation is known as a 3-break2).

It is easy to see that for a pair of weakly dependent DCJs,

there exist equivalent pairs of weakly dependent DCJs.15 Then

the following lemma holds.

Lemma 8

Let t : P0!
q1 � � � ��!qn�2

Pn�2 ��!qn�1
Pn�1!

qn
Pn be a DCJ-Indel sce-

nario that linearizes a circular chromosome C, where qn�1 and qn

are dependent DCJs. If qn linearizes C, then there exists a

pair of DCJs (q0n�1,q
0
n) equivalent to (qn�1,qn) such

that q0n�1 linearizes C within the DCJ-Indel scenario

P0!
q1 � � � ��!qn�2

Pn�2 ��!
q0n�1

P 0 �!q
0
n

Pn.

Figure 4. Illustration of Lemma 8. (A) Initial genome graph, where the
dashed edges denote arbitrary gene sequences. C1 is a circular
chromosome linearized by r2 within DCJ-Indel scenario (r1, r2), where r1 is a
deletion of gene sequence (gk + 1, gk + 2) and r2 is a DCJ. (B) The intermediate
genome resulted from deletion r1. (C) The intermediate genome resulted
from DCJ r01. (D) The graph resulted from the equivalent pair of DCJ-Indel
scenarios (r1, r2) and (r01, r02), where C1 is linearized by DCJs r01 and r2, and
r1, r02 are deletions.
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Proof

Let Cn�2 and Cn�1 be the meta-chromosomes of C in Pn�2

and Pn�1, respectively. Let A be the set of edges created by a,

and B be the set of edges removed by b. We consider two cases

depending on whether qn strongly depends or weakly depends

on qn�1.

First, assume that qn strongly depends on qn�1 (ie, A =B).

If jAj= 2, then let fx, yg and fz,wg be the edges removed by

qn in Pn�1. By Theorem 5, without loss of generality, we

assume that fx, yg 2 S(Cn�1) and fz,wg 62 S(Cn�1). Since

fx, yg and fz,wg are created by qn�1, the edges fx, zg and

fy,wg, or fx,wg and fy, zg are present in S(Pn�2). In both

cases, we have a contradiction to Corollary 1. If jAj= 1, the

proof is similar.

For the rest of the proof, we assume that qn weakly depends

on qn�1 (ie, A \ B 6¼ [ and A 6¼ B). We consider two cases

depending on the number of edges removed by qn.

If qn removes two edges in Pn�1, let fx, yg and fz,wg be

these edges, and fx, zg and fy,wg be the edges created by qn

in Pn. By Theorem 5, without loss of generality, we assume

that fx, yg 2 S(Cn�1) and fz,wg 62 S(Cn�1). Since qn weakly

depends on qn�1, either fx, yg or fz,wg is created by qn�1

(Figure 5A, B, and E). We consider these two subcases below.

Suppose that fx, yg is created by qn�1. If qn�1 creates a

single edge, then qn�1 removes edges fx,‘g and fy,‘g in

S(Pn�2), a contradiction to Corollary 1. Thus, we assume that

qn�1 removes two edges, say fx, x1g and fy, y1g. By Corollary

1, both fx, x1g and fy, y1g belong to S(Cn�2). Since

fz,wg 2 S(Pn�2) and fz,wg 62 S(Cn�1), by Corollary 1,

fz,wg 62 S(Cn�2). We define q0n�1 as a DCJ that removes

fz,wg and fx, x1g in S(Pn�2) and creates fx, zg and fw, x1g
in S(P 0). We further define q0n as a DCJ that removes

fw, x1g and fy, y1g in S(P 0) (Figure 5A, C, D, and E) and

creates fy,wg and fx1, y1g in S(Pn). Then by Theorem 5,

q0n�1 linearizes C within t 0.

Suppose that fz,wg is created by qn�1. Let us first assume

that qn�1 removes two edges fz, z1g and fw,w1g. Since

fz,wg 62 S(Cn�1), by Corollary 1, fz, z1g and fw,w1g do

not belong to S(Cn�2). Moreover, since fx, yg 2 S(Pn�2) and

fx, yg 2 S(Cn�1), we have fx, yg 2 S(Cn�2). We define q0n�1

as the DCJ that removes fx, yg and fz, z1g in S(Pn�2) and

creates fx, zg and fy, z1g in S(P 0). We define q0n as the DCJ

that removes fw,w1g and fy, z1g in S(P 0) and creates fy,wg
and fw1, y1g in S(Pn) (Figure 5). By Theorem 5, q0n�1 line-

arizes C within t 0. If qn�1 removes a single edge, then the

proof is similar.

Figure 5. Illustration of Lemma 7. (A) Initial genome graph, where the dashed edges denote arbitrary gene sequences. The dashed edge and black
undirected edge between w1 and w2 form a circular chromosome C that is linearized within (r1, r2) by r2. (B-D) The intermediate genomes after first DCJs in the
three equivalent pairs of weakly dependent DCJs. (E) The resulting genome graph after the equivalent pairs of DCJs, where C is linearized by DCJs r2 and
either r3 or r5 (depending on the belonging other chromosomes to meta-chromosome corresponding to C).
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If qn removes a single edge fx, yg in Pn�1, then by

Theorem 5, fx, yg 2 S(Cn�1). Since qn�1 creates fx, yg, it

removes two edges. We assume that these edges are fx, x1g
and fy, y1g. By Corollary 1, fx, x1g and fy, y1g belong to

S(Cn�2). We define q0n�1 as a DCJ that removes a single edge

in S(Pn�2), say fx, x1g, and creates two edges fx,‘g and

fx1,‘g in S(P 0). We define q0n as a DCJ that removes fy, y1g
and fx1,‘g in S(P 0) and creates fy,‘g and fx1, y1g in

S(Pn). By Theorem 5, q0n�1 linearizes C within t 0. It is easy to

see that by construction, in all cases, (q0n�1,q
0
n) is equivalent

to (qn�1,qn), which completes the proof. h

DCJ depends on an insertion

In this section, we consider case (4), ie, a DCJ b depends on

an insertion a. We say that b strongly depends on a if b

removes two edges created by a. If b removes one edge created

by a, we say that b weakly depends on a. In contrast to cases

(2) and (3), when b weakly depends on a, there may not

always exist an equivalent pair (a0,b0), where a0 is a DCJ and

b0 is an insertion.

To better capture and analyze the combinatorial structure

of events in a DCJ-Indel scenario t, we construct the depen-

dency graph16 DG(t) (also known as overlap graph17,18), whose

vertices are labeled with events from t and there is an arc (d, g)

whenever an event g depends on an event d. We remark that a

DCJ can weakly depend on at most two insertions in a DCJ-

Indel scenario. The following definition describes DCJs b in t

for which the pair of adjacent events (a,b) does not have an

equivalent pair (a0,b0), where a0,b are DCJs and a,b0 are an

insertion.

Definition 3

A DCJ b in a DCJ-Indel scenario t is called upper-movable if the

following property holds:

� If there exists exactly one insertion a in t such that there is

a path from a to b in DG(t), say (a, g, . . . ,b), then g

removes either the first or the last edge of the path inserted

by a.

First, we consider the case when a DCJ depends on two

insertions (Figure 6). Second, we address the case when a DCJ

is upper-movable and depends on only one insertion (Figure

7). Finally, we consider the case when a DCJ is not upper-

movable.

Lemma 9

Let t : P0!
q1 � � � ��!qn�3

Pn�3 ��!qn�2
Pn�2 ��!qn�1

Pn�1!
qn

Pn be a DCJ-

Indel scenario that linearizes a circular chromosome C, where DCJ

qn weakly depends on insertions qn�1 and qn�2. If qn linearizes

C, then there exists a DCJ-Indel scenario

P0!
q1 � � � ��!qn�3

Pn�3 ��!
q0n�2

P 0 ��!q0n�1
P 00 !

q0n
Pn, where q0n�2 linearizes

C and q0n�1, q0n are insertions.

Proof

Let Cn�3, Cn�2, and Cn�1 be the meta-chromosomes of C in

Pn�3, Pn�2, and Pn�1, respectively. Let P1 =

(x, u1, �u1, . . . , ul , �ul , y) and P2 =(z, v1, �v1 . . . , vk, �vk,w) be

paths inserted by qn�2 and qn�1, respectively. Since DCJ qn

weakly depends on insertions qn�1 and qn�2, without loss of

generality, we assume that qn removes f�up�1, upg and

f�vq�1, vqg, and creates f�up�1, �vq�1g and fup, vqg for

p 2 f2, . . . , lg and q 2 f2, . . . , kg (Figure 6A, B, and D). By

Theorem 5, we have f�up�1, upg 2 S(Cn�1) and

f�vq�1, vqg 62 S(Cn�1). Then, all edges in P1 belong to

S(Cn�1) and all edges in P2 do not belong to S(Cn�1). If

qn�1 depends on qn�2 (ie, z= �us�1 and w= us for some

s 2 f2, . . . , lg), then all edges in P1 and P2 belong to

S(Cn�1), a contradiction. Thus, qn�1 and qn�2 are indepen-

dent events. We define q0n�2 as a DCJ that removes fx, yg
and fz,wg in Pn�3 and creates fx, zg and fy,wg in P 0. We

define q0n�1 and q0n as insertions that replace fx, zg in P 0 with

a path (x, u1, �u1, . . . , up�1, �up�1, �vq�1, vq�1 . . . , �v1, v1, z) in P 00

and fy,wg in P 00 with a path (y, �ul , ul . . . , �up, up, vq,

�vq, . . . , vk, �vk,w) in Pn, respectively (Figure 6A, C, and D).

By Corollary 1, fx, u1g 2 S(Cn�2) and fz,wg 62 S(Cn�2)

and, moreover, fx, yg 2 S(Cn�3) and fz,wg 62 S(Cn�3).

By Theorem 5, q0n�2 linearizes C within a DCJ-Indel scenario

P0!
q1 � � � ��!qn�3

Pn�3 ��!
q0n�2

P 0 ��!q0n�1
P 00 !

q0n
Pn. h

Lemma 10

Let t : P0!
q1 � � � ��!qn�2

Pn�2 ��!qn�1
Pn�1!

qn
Pn be a DCJ-Indel sce-

nario that linearizes a circular chromosome C, where DCJ qn

depends on insertion qn�1, and there is no a 2 fq1, . . . ,qn�2g
such that a is insertion connected by a path to qn in DG(t). If qn

is upper-movable and linearizes C, then there exists a DCJ-Indel

scenario P0!
q1 � � � ��!qn�2

Pn�2 ��!
q0n�1

P 0 !
q0n

Pn, where q0n�1 linearizes

C and q0n is an insertion.

Proof

Let Cn�2 and Cn�1 be the meta-chromosomes of C in Pn�2

and Pn�1, respectively. Let P=(u, u1, �u1, . . . , ul , �ul , v) be a

path inserted by qn�1.

Assume that qn strongly depends on qn�1. Let fx, yg and

fz,wg be the edges removed by qn in Pn�1. Then fx, yg and

fz,wg are inserted by qn�1, and thus belong to the same

chromosome. Then by Theorem 5, qn cannot linearize C, a

contradiction.

For the rest of the proof, we assume that qn weakly depends

on qn�1. Since there is no insertion a 2 fq1, . . . ,qn�2g con-

nected by a path to qn in DG(t), qn�1 is the only insertion in t

that has a path to qn in DG(t). Since qn is upper-movable, qn

removes fu, u1g or f�ul , vg. We consider two cases depending

on the number of edges removed by qn.
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If qn removes two edges, then without loss of generality,

we assume that qn removes fu, u1g and fx, yg in S(Pn�1) and

creates fu, xg and fu1, yg in S(Pn) (Figure 7A, B, and D).

Let us define q0n�1 as a DCJ that removes fu, vg and fx, yg in

S(Pn�2) and creates fu, xg and fy, vg in S(P 0). We define q0n
as an insertion that replaces the edge fy, vg in S(P 0) with a

path (y, u1, �u1, . . . , ul , �ul , v) in S(Pn) (Figure 7A, C, and D).

By Theorem 5, without loss of generality, fu, u1g 2 S(Cn�1)

and fx, yg 62 S(Cn�1). By Corollary 1, fu, vg 2 S(Cn�2) and

fx, yg 62 S(Cn�2). Thus, by Theorem 5, q0n�1 linearizes C

within P0!
q1 � � � ��!qn�2

Pn�2 ��!
q0n�1

P 0 �!q
0
n

Pn.

If qn removes a single edge, the proof is similar. h

Lemma 11

Let t : P0!
q1 � � � ��!qn�2

Pn�2 ��!qn�1
Pn�1!

qn
Pn be a DCJ-Indel sce-

nario that linearizes a circular chromosome C, where DCJ qn

weakly depends on insertion qn�1. If qn linearizes C within t

and is not upper-movable, then there exists a DCJ-Indel scenario

P0!
q1 � � � ��!qn�2

Pn�2 ��!
q0n�1

P 0 �!q
0
n

P 00 ���!q0n+ 1
Pn, where q0n�1 line-

arizes C and q0n,q
0
n+ 1 are insertions.

Proof

Let Cn�2 and Cn�1 be the meta-chromosomes of C in Pn�2

and Pn�1, respectively. Let P=(u, u1, �u1 . . . , ul , �ul , v) be a

path inserted by qn�1. Since qn weakly depends on qn�1 and

is not upper-movable, qn�1 breaks P into two non-trivial sub-

paths. We consider two cases depending on the number of

edges removed by DCJ qn.

If qn removes two edges, then without loss of generality,

we assume that qn removes edges f�uk, uk+ 1g (k 2
f1, . . . , l � 1g) and fx, yg in S(Pn�1) and creates edges

f�uk, xg and fuk+ 1, yg in S(Pn). By Theorem 5, we can

assume that f�uk, uk+ 1g 2 S(Cn�1) and fx, yg 62 S(Cn�1).

Note that fx, yg and fu, vg are present in S(Pn�2). By

Corollary 1, fu, vg 2 S(Cn�2) and fx, yg 62 S(Cn�2). We

define q0n�1 as a DCJ that removes fx, yg and fu, vg in

S(Pn�2) and creates fx, ug and fy, vg in S(P 0). We define q0n
and q0n+ 1 as insertions that replace edges fx, ug in S(P 0) and

fy, vg in S(P 00) with paths (u, u1, �u1, . . . , uk, �uk, x) in S(P 00)

and (y, uk+ 1, �uk+ 1 . . . , ul , �ul , v) in S(Pn), respectively. By

Theorem 5, q0n�1 linearizes C within P0!
q1 � � � ��!qn�2

Pn�2 ��!
q0n�1

P 0 �!q
0
n

P 00 ���!q0n+ 1
Pn.

If qn removes a single edge, the proof is similar. h

Figure 6. Illustration of Lemma 9. (A) Initial genome graph, where the dashed edges denote arbitrary gene sequences. C1 is a circular chromosome linearized
by r3 within DCJ-Indel scenario (r1, r2, r3), where r3 is a DCJ and r1, r2 are insertions of gene sequences (gl , gl + 1) and (gj , gj + 1). (B) The intermediate genomes
before and after an insertion r2. (C) The intermediate genomes before and after an insertion r02. (D) The resulting graph after the equivalent pair of DCJ-Indel
scenarios (r1, r2, r3) and (r01, r02, r03), where C1 is linearized by DCJs r01 and r3, and r1, r2, r02, r03 are insertions.

Figure 7. Illustration of Lemma 10. (A) Initial genome graph, where the
dashed edges denote arbitrary gene sequences. C1 is a circular
chromosome linearized by r2 within DCJ-Indel scenario (r1, r2), where r1 is
an insertion of gene sequences (gl , gl + 1) and r2 is a DCJ. (B) The
intermediate genome after an insertion r1. (C) The intermediate genome
after a DCJ r01. (D) The resulting graph after the equivalent pair of DCJ-
Indel scenarios (r1, r2) and (r01, r02), where C1 is linearized by DCJs r01 and r2,
and r1, r02 are insertions.
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Proof of Theorems 1 and 2

We remark that for each pair of adjacent events (a,b), there is

an equivalent pair of adjacent events (a0,b0), where a0,b are

insertions and a,b0 have the same type. Below we prove

Theorem 6, which will imply Theorems 1 and 2.

Theorem 6

Let t : P ! Q be a DCJ-Indel scenario that linearizes a circular

chromosome C. Then there exists a DCJ-Indel scenario

P!r P 0 !t
0

Q such that r is a DCJ linearizing C, and if C is line-

arized by an upper-movable DCJ within t, then jt 0j= jtj � 1,

otherwise jt 0j= jtj.

Proof

We prove the theorem statement by induction on jtj. If

jtj= 1, then by Lemma 4 and Theorem 5, the statement trivi-

ally holds.

For an integer n ø 2, we assume that the theorem holds for

all jtj\ n. Suppose that t has length n, ie, t has the form

t : P =P0!
q1 � � �!qn

Pn =Q. We consider two cases depend-

ing on whether qn linearizes C within t.

Case 1. qn does not linearize C within t. By Lemma 4, there

exists an event qk for k \ n that linearizes C within t. By

induction, we obtain a DCJ-Indel scenario

t1 : P0!
r

P 01!
q02 � � �!

q0l
Pk !

qk+ 1 � � �!qn
Pn, where r linearizes C

and jtjł jt1jł jtj+ 1. We let t 0=(q02, . . . ,q0l ,

qk+ 1, . . . ,qn). It is clear that jt 0j= jtj � 1 if qk is upper-

movable, and jt 0j= jtj otherwise.

Case 2. qn linearizes C within t. By Theorem 5, qn is a DCJ.

We consider two cases depending on whether qn depends on

qn�1. If qn does not depend on qn�1, then, by Lemma 6, we

obtain a DCJ-Indel scenario t1 : P0!
q1 � � � ��!qn�2

Pn�2 ��!
q0n�1

P 0 �!q
0
n

Pn, where q0n�1 =qn and q0n =qn�1, and q0n�1 line-

arizes C. If qn depends on qn�1 and qn�1 is a DCJ or a dele-

tion, then by Lemma 7 or 8, we obtain a DCJ-Indel scenario

t1 : P0!
q1 � � � ��!qn�2

Pn�2 ��!
q0n�1

P 0 �!q
0
n

Pn, where q0n�1 linearizes

C. In both cases, applying the induction to t1, we obtain a

DCJ-Indel scenario t2 : P0!
r

P 01!
q002 � � �!

q00l
P 0 �!q

0
n

Pn, where r

linearizes C and jtjł jt2jł jtj+ 1. Now, we let

t 0=(q002, . . . ,q00l ,q
0
n). It is clear that jt 0j= jtj � 1 if q0n�1 is

upper-movable, and jt 0j= jtj otherwise.

It remains to consider the case when DCJ qn depends on

qn�1, qn�1 is an insertion, which we split into two subcases

depending on whether qn is upper-movable.

Case 2.1. qn is upper-movable. Here we consider two cases

depending on whether there exists any insertion other than

qn�1 that is connected by a path to qn in DG(t).

Case 2.1.1. qn�1 is a single insertion such that there is a path

to qn in DG(t). By Lemma 10, we obtain a DCJ-Indel sce-

nario t1 : P0!
q1 � � � ��!qn�2

Pn�2 ��!
q0n�1

P 0 �!q
0
n

Pn, where q0n�1 line-

arizes C. Since q0n�1 is upper-movable in t1, by induction, we

obtain a DCJ-Indel scenario t2 : P0!
r

P 01!
q002 � � � !

q00n�2

P 0n�2 !
q00n�1

P 0 �!q
0
n

Pn, where r linearizes C and jt2j= jtj. We let

t 0=(q002, . . . ,q00n�2,q0n�1,q
0
n) to complete the proof.

Case 2.1.2. There exists an insertion qi with i \ n� 1 con-

nected by a path to qn in DG(t). We consider two subcases

depending on whether i = n� 2. If i = n� 2, then by

Lemma 9, we obtain a DCJ-Indel scenario

t1 : P0!
q1 � � � ��!qn�3

Pn�3 ��!
q0n�2

P 0 ��!q0n�1
P 00 !

q0n
Pn, where q0n�2 line-

arizes C and jt1j= jtj. Since q0n�2 is upper-movable in t1, by

induction, we obtain a DCJ-Indel scenario

t2 : P0!
r

P 01!
q002 � � � !

q00n�2
P 0 ��!q0n�1

P 00 !
q0n

Pn, where r linearizes C

and jt2j= jtj. We let t 0=(q002, . . . ,q00n�1,q0n) to complete the

proof. If i 6¼ n� 2, then we replace the pair of adjacent events

(qn�2,qn�1) in t with an equivalent pair of adjacent events

(q0n�2,q
0
n�1), where q0n�2 is an insertion and q0n�1 has the

same type as qn�2, resulting in t1 : P0!
q1 � � � ��!qn�3

Pn�2 ��!
q0n�2

P 0 ��!q0n�1
Pn�1!

qn
Pn. By Lemmas 6 to 8 for the pair

of adjacent events (q0n�1,qn) (depending on the type of q0n�1

and dependency with qn), we obtain a DCJ-Indel scenario

t2 : P0!
q1 � � � ��!qn�3

Pn�2 ��!
q0n�2

P 0 !
q00n�1

P 00 !
q00n

Pn, where q00n line-

arizes C and jt2j= jtj. Since q00n�1 is upper-movable in t2, by

induction, we obtain a DCJ-Indel scenario

t3 : P0!
r

P 01!
q0
00
2 � � � !

q0
00
n�1

P 00 !
q00n

Pn, where r linearizes C and

jt3j= jtj. We let t 0=(q0002 , . . . ,q000n�1,q00n) to complete the

proof.

Case 2.2. qn is not upper-movable. By Lemma 11, we obtain a

DCJ-Indel scenario t1 : P0!
q1

P1 � � � ��!qn�2
Pn�2 ��!

q0n�1
P 0 �!q

0
n

P 00 ���!q0n+ 1
Pn, where q0n�1 linearizes C and jt1j= jtj+ 1. Since

there is no insertion a in the DCJ-Indel scenario t1 connected

by a path to q0n�1 in DG(t1), q0n�1 is upper-movable in t1. By

induction, we obtain a DCJ-Indel scenario

t2 : P0!
r

P 01!
q002 � � � !

q00n�1
P 0 �!q

0
n

P 00 ���!q0n+ 1
Pn, where r linearizes C

and jt2j= jtj+ 1. We let t 0=(q002, . . . ,q00n�1,q
0
n,q

0
n+ 1) to

complete the proof.

Theorems 1 and 2 immediately follow from Theorem 6.

Discussion
For three given linear genomes and their DCJ median genome

M (which may contain circular chromosomes), we described

an algorithm that constructs a linear genome M 0 such that the

approximation error of M 0 (ie, the difference in the DCJ
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median scores of M 0 and M) is bounded by twice the number

of circular chromosomes in M.

We claim (and will prove elsewhere) that the bound in

Theorem 3 is tight. We illustrate this claim with Figure 8,

where each of the linear genomes B1, B2, and B3 can be

obtained from the genome M by an insertion followed by a fis-

sion. Note that all the pairwise DCJ distances between

B1,B2, andB3 equal 4. We claim that the DCJ-Indel median

score of M is 6, while any linearization of M has the DCJ-

Indel median score at least 8, implying that the bound in

Theorem 3 is tight.

At the same time, it was previously observed by Xu8 on

simulated data that the number of circular chromosomes pro-

duced by their GMP solver is typically very small, implying

negligible approximation error for our algorithm.

The proposed algorithm is implemented in the AGRP sol-

ver MGRA2.19
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