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Abstract: Dairy cows undergo dynamic physiological changes from late gestation to early lactation,
including metabolic changes and immune dysfunction. The aim of this study was to investigate the
relationship between immune function and metabolic changes in peripartum dairy cows. Fifteen
healthy Holstein dairy cows were enrolled 14 days prior to parturition, and plasma was collected
on day −7, 0, 7, and 21 relative to calving. Plasma non-esterified fatty acids (NEFAs), glucose,
β-hydroxybutyric acid (BHBA), immunoglobulin G (IgG), tumor necrosis factor alpha (TNF-α),
and interleukin-2 levels were measured, and metabolic profiles were determined using ultra-high-
performance liquid chromatography–quadrupole time-of-flight mass spectrometry. The data were
analyzed using Tukey–Kramer adjustment for multiple comparisons, and multivariate and univariate
statistical analyses were performed to screen for differential metabolites. The results showed that
the concentrations of NEFAs, glucose, BHBA, and TNF-α in the plasma significantly increased and
concentrations of IgG and interleukin-2 in plasma significantly decreased from −7 d to the calving
day (p < 0.05). Additionally, the concentrations of glucose, IgG, and TNF-α significantly decreased
from 0 to +7 d, and concentrations of NEFAs decreased significantly from +7 to +21 d (p < 0.05).
The following six primary metabolic pathways were identified in all time point comparisons, and L-
glutamate, linoleic acid, taurine, and L-tryptophan were involved in these major metabolic pathways.
Correlation and pathway analyses indicated that a negative energy balance during the transition
period adversely affects immune responses in cows, and L-tryptophan exerts immunomodulatory
effects through the Trp-Kyn pathway, resulting in depletion of Trp and elevation of Kyn.

Keywords: dairy cattle; metabolism; immune function; tryptophan; transition period

1. Introduction

The twenty-one days before and after calving in dairy cows are generally referred to as
the transition period [1]. In this critical time, cows must adapt to a series of abrupt changes
from pregnancy to calving and lactation [2]. During this period, cows experience a dramatic
negative energy balance (NEB), because the energy intake does not match their energy
requirements [3,4]. The dry matter intake of cows from third parity or after decreases by
approximately 52% during the 14 days before calving [5,6], and 60–80% of their loss in
body mass is attributed to loss of body fat [7,8]. As a consequence of fat mobilization,
higher levels of non-esterified fatty acids (NEFAs) are produced in adipose tissue and
released into blood [9]. Furthermore, the physiological challenge of fat mobilization
can lead to excessive hepatic lipid peroxidation and produces numerous free radicals,
resulting in decreased immune function [10]. For instance, according to Ospina et al.,
cows with blood concentrations of NEFAs > 0.29 mmol/L in the pre-partum period or
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>0.57 mmol/L in the post-partum period were more vulnerable to developing conditions
such as retained placenta, ketosis, and displaced abomasum [11]. However, during the
transition period, cows not only mobilize their body fat to overcome energy deficiencies,
but also undergo dramatic alterations in other biological processes such as glucose and
amino acid metabolism.

Changes in metabolic pathways and their significance for preserving health have been
intensively studied in periparturient dairy cows. According to Reynolds et al., 10–30% of
amino acids in peripartum dairy cows were converted into glucose through liver gluconeo-
genesis to relieve the NEB [12]. Luo et al. found that the levels of certain amino acids in the
plasma of cows were significantly changed during parturition, including Val, Ile, Trp, Glu,
and Arg [13]. Zhang et al. found that Ile, Leu, Lys, and Kyn were significantly increased
in the serum of cows with ketosis [14]. However, amino acid metabolism in dairy cows
during the peripartum period is not well understood.

Metabolomics is a tool for identifying the metabolite profiles of biological samples
and for identifying biomarkers for diagnostics [15–17]. In recent years, this technology
has been applied to the research on ruminants, and it can be used to better understand
the changes in biological processes and relationships of metabolites in cows under specific
conditions [18,19]. We hypothesized that changes in plasma metabolites are involved in
regulating the immune function of dairy cows during the transition period. Based on
previous data on the metabolome of cows, non-targeted metabolomic data were used to
identify differential metabolites at −7, 0, +7, and +21 days relative to calving. We also
examined immunoglobulin G (IgG), tumor necrosis factor (TNF)-α, and interleukin (IL)-2.
The results showed that IgG is a central molecule of the mammalian immune system [20],
TNF-α has an important role in the differentiation and regulation of immune cells [21], and
IL-2 can induce proliferation of T cells and enhance the immune response function of T cells
and B cells [22]. Therefore, we have chosen these indicators directly or indirectly reflecting
the immune status of cows. This study was intended to investigate the relationship between
immune function and metabolic changes in peripartum dairy cows. This study improves a
better understanding for further studies on metabolic regulation in relation to the health of
dairy cattle.

2. Materials and Methods
2.1. Animal Diet and Management

All procedures involving animals were performed according to the Care and Use
of Laboratory Animal Guidelines for ethical review of animal welfare (approval num-
ber: GB/T 35892-2018). Fifty Holstein dairy cows were selected from Ningxia Dairy
Farm (Ningxia, China). The cows had similar parity (3.20 ± 0.41), body condition scores
(3.25 ± 0.49 (5-point system)), and calving days (280 ± 2.23 days). The cows were trans-
ferred to maternity stalls when they showed signs of calving and then transferred to a fresh
pen after calving. Two pens had the same facilities and equipment on day 21 of the due
date. All cows were under constant veterinary care and had free access to fresh water and
were fed with total mixed rations.

2.2. Sample Collection and Preparation

According to the expected date of delivery (280 days of gestation), samples from the
caudal vein were collected from 15 clinical healthy Holstein cows and added to 10 mL
EDTA tubes at 9 a.m. on −7, 0, +7, and +21 d relative to calving. The plasma was obtained
using heparin sodium as an anticoagulant, followed by centrifugation for 10 min (1500× g)
within 1 h of collection. All samples were extracted into 2 mL Eppendorf tubes and stored
at −80 ◦C for further analyses.

2.3. Plasma Analysis

The concentrations of NEFAs, glucose, IL-2, TNF-α, aspartate aminotransferase (AST),
alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), and IgG in plasma were
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determined using commercial test kits purchased from Nanjing Jian Cheng Institute of
Biological Engineering (Nanjing, China; #A042-2-1, #F006-1-1, #H003, #C010-2-1, #A059-2-2,
#C017-2-1, #A052-1, #H106-1-1, respectively). All procedures were performed strictly in
accordance with the manufacturer’s instructions.

2.4. Sample Metabolite Extraction

Blood plasma samples were thawed at 4 ◦C for 15 min; 100 µL blood from each sample
was mixed with 400 µL extraction solvent (V methanol:V acetonitrile = 1:1) to remove
proteins, followed by vortexing for 30 s. After storage at −20 ◦C for 60 min, the samples
were centrifuged at 12,000 rpm for 15 min at 4 ◦C. The resulting supernatant was collected
and analyzed. Quality control samples were prepared by mixing an equal aliquot of the
supernatants to evaluate the system’s stability before testing.

2.5. Ultra-High-Performance Liquid Chromatography–Quadrupole Time-of-Flight Mass
Spectrometry Analysis and Data Processing

Metabolic profiling of plasma was performed on a ultra-high-performance liquid
chromatography system (1290, Agilent Technology, Santa Clara, CA, USA) coupled to a
time-of-flight mass spectrometry (Agilent 6530; Agilent Technologies, Santa Clara, CA,
USA) platform. We used a UPLC BEH Amide column (1.7 µm, 2.1 × 100 mm, Waters,
Milford, MA, USA) and TripleTOF 6600 (AB Sciex, Framingham, MA, USA). The mobile
phase consisted of 25 mM NH4OAc and 25 mM NH4OH in water (pH 9.75) (A) and
acetonitrile (B), and the following elution gradient was used: 0 min, 95% B; 7 min, 65%
B; 9 min, 40% B; 9.1 min, 95% B; 12 min, 95% B, at 0.5 mL per min. The samples were
kept at 4 ◦C during the whole analysis, and the injection volume was 2 µL. During liquid
chromatography–mass spectrometry (LC-MS), the Triple TOF mass spectrometer was used
to obtain tandem mass spectrometry on the basis of information dependence. In this
mode, the acquisition software (Analyst TF 1.7, AB Sciex) constantly evaluates the full
scan measurement mass spectrum data, and collects and triggers the acquisition of these
spectra according to the preselected standard. In each cycle, 12 precursor ions with intensity
greater than 100 were selected to be fragmented at 30 V collision energy. The electrospray
ionization source conditions were as follows: 60 psi ion source gas 1; 60 psi ion source gas
2; 35 psi curtain gas; 65 ◦C source temperature; and 5000 or −4000 V ion spray voltage
floating in positive or negative modes, respectively.

2.6. Statistical Analysis

The data of plasma biochemical indicators were analyzed using SPSS software (version
21.0 for Windows, SPSS, Inc., Chicago, IL, USA). Tukey–Kramer adjustment was applied
for multiple comparisons. Results are expressed as the mean ± standard error. Differences
with p ≤ 0.05 were considered significant. Multi-dimensional statistical analysis of the ion
peaks was performed using SIMCA-P 14.1 software (Umetrics, Umea, Sweden) and mainly
included unsupervised principal component analysis and supervised orthogonal partial
least squares discriminant analysis (OPLS-DA). The model was judged by parameters R2Y
(model interpretation rate). When R2Y was >0.4 and the Q2 intercept was <0, the models
were considered to be stable and reliable.

Univariate analysis was performed, and fold-change analysis was conducted to com-
pare the relative abundance of metabolites between groups. A variable importance in
projection value of >1 in OPLS-DA and p value of ≤0.05 in the t-test were used as screen-
ing criteria. Significantly different metabolites between different parturition time points
were screened and used for metabolic pathway enrichment analysis of different time
groups. Kyoto Encyclopedia of Genes and Genomes pathway analysis was performed
using MetaboAnalyst 5.0 (http://www.metaboanalyst.ca accessed on 25 May 2021) soft-
ware. Spearman rank correlation coefficients were calculated to examine the association
of phenotypic variables and key differential metabolites using Origin software (OriginPro
2021; OriginLab Corporation, Northampton, MA, USA).

http://www.metaboanalyst.ca
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3. Results
3.1. Plasma Analyses

The concentrations of NEFAs, β-hydroxybutyric acid (BHBA), glucose, IgG, TNF-α,
IL-2, AST, ALP, and GGT in the plasma on day −7 before expected calving and on days 0,
7, and 21 relative to calving are presented in Figure 1. From −7 to 0 d, the concentrations
of NEFAs, glucose, BHBA, TNF-α, ALP, and GGT in plasma increased by 97.14%, 35.78%,
58.60%, 52.16%, 37.17%, and 44.06%, respectively (p < 0.05), whilst the concentrations of
IgG and IL-2 decreased by 24.16% and 31.01%, respectively (p < 0.01). The concentrations
of glucose, IgG, and TNF-α on +7 d significantly decreased by 34.37%, 17.28%, 29.44%, and
18.34%, respectively, compared to 0 d (p < 0.05), while there were no significant differences
in NEFAs, BHBA, and IL-2 levels during this period (p > 0.05). From +7 to +21 d, NEFAs
significantly decreased by 39.13% and the concentrations of GGT increased by 32.01%
(p < 0.05), without significant differences found in other indicators during this period
(p > 0.05).
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Figure 1. Plasma concentrations of non-esterified fatty acids (NEFAs), β-hydroxybutyric acid (BHBA),
glucose, immunoglobulin G (IgG), tumor necrosis factor (TNF)-α, interleukin (IL)-2, AST, ALP, and
GGT at −7, 0, +7, and +21 d. Data are expressed as the mean ± SE, * represent p < 0.05; ** represent
p < 0.01.

3.2. Metabolite Profile Analysis

The response intensity and retention time of each peak mostly overlapped, and the
total ion chromatogram peak shape were intact. The response differences (RSD) of L-2-
chlorophenylalanine in the QC samples in the positive and negative ion modes are shown
in Supplementary Table S1. Adjacent peaks showed obvious separation, indicating that the
method used was robust, stable, and highly repeatable. Thus, the chromatographic and
mass spectrometric conditions were suitable for sample identification. After preprocessing
the ion peak data, multidimensional statistical analysis was performed. The principal
component analysis (PCA) score plot showed that the samples from different time points
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were well separated, and samples within the same groups were aggregated (Figure 2).
To analyze the differences among the time points, longitudinal orthogonal partial least
squares discriminant analysis (OPLS-DA) was performed. The OPLS-DA score plots and
permutation score plots for each time point are shown in Figures 3–6. The model parameters
in positive and negative ion modes for R2Y are shown in Supplementary Table S2, where the
test results were >0.4, indicating that the model was stable and reliable. Cross-validation
and permutation tests for the model in positive and negative ion modes showed that the
Q2 intercepts were <0 (Supplementary Table S2), indicating that the OPLS-DA model was
not overfitted and that the metabolites differed at each time point.

Metabolites 2022, 12, 953 5 of 15 
 

 

3.2. Metabolite Profile Analysis 
The response intensity and retention time of each peak mostly overlapped, and the 

total ion chromatogram peak shape were intact. The response differences (RSD) of L-2-
chlorophenylalanine in the QC samples in the positive and negative ion modes are shown 
in Supplementary Table S1. Adjacent peaks showed obvious separation, indicating that 
the method used was robust, stable, and highly repeatable. Thus, the chromatographic 
and mass spectrometric conditions were suitable for sample identification. After prepro-
cessing the ion peak data, multidimensional statistical analysis was performed. The prin-
cipal component analysis (PCA) score plot showed that the samples from different time 
points were well separated, and samples within the same groups were aggregated (Figure 
2). To analyze the differences among the time points, longitudinal orthogonal partial least 
squares discriminant analysis (OPLS-DA) was performed. The OPLS-DA score plots and 
permutation score plots for each time point are shown in Figures 3–6. The model param-
eters in positive and negative ion modes for R2Y are shown in Supplementary Table S2, 
where the test results were >0.4, indicating that the model was stable and reliable. Cross-
validation and permutation tests for the model in positive and negative ion modes 
showed that the Q2 intercepts were <0 (Supplementary Table S2), indicating that the 
OPLS-DA model was not overfitted and that the metabolites differed at each time point. 

 
Figure 2. Principal component analysis score plot for −7, 0, +7, and +21 d samples analyzed in posi-
tive ion mode (A) and negative ion mode (B). PC1—first principal component; PC2—second prin-
cipal component. 

Figure 2. Principal component analysis score plot for −7, 0, +7, and +21 d samples analyzed in
positive ion mode (A) and negative ion mode (B). PC1—first principal component; PC2—second
principal component.

Metabolites 2022, 12, 953 6 of 15 
 

 

 
Figure 3. (a,b) Orthogonal partial least squares discriminant analysis (OPLS-DA) of scores and per-
mutation test plots for the −7 d and 0 d group samples analyzed in the positive ion mode, respec-
tively. (c,d) Orthogonal partial least squares discriminant analysis of scores and permutation test 
plots for the −7 d and 0 d group samples analyzed in the negative ion mode, respectively. t[1]—first 
principal component; to [1]—second orthogonal component. The intercept limit of Q2, calculated by 
regression line, is the plot of Q2 from permutation test in the OPLS-DA model. 

 
Figure 4. (a,b) Orthogonal partial least squares discriminant analysis (OPLS-DA) of scores and per-
mutation test plots for the +7 d and 0 d group samples analyzed in the positive ion mode, respec-
tively. (c,d) Orthogonal partial least squares discriminant analysis of scores and permutation test 
plots for the +7 d and 0 d group samples analyzed in the negative ion mode, respectively. t[1]—first 
principal component; to [1]—second orthogonal component. The intercept limit of Q2, calculated by 
regression line, is the plot of Q2 from permutation test in the OPLS-DA model. 

Figure 3. (a,b) Orthogonal partial least squares discriminant analysis (OPLS-DA) of scores and
permutation test plots for the −7 d and 0 d group samples analyzed in the positive ion mode,
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test plots for the −7 d and 0 d group samples analyzed in the negative ion mode, respectively.
t[1]—first principal component; to [1]—second orthogonal component. The intercept limit of Q2,
calculated by regression line, is the plot of Q2 from permutation test in the OPLS-DA model.
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permutation test plots for the +21 d and 0 d group samples analyzed in the positive ion mode,
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Figure 6. (a,b) Orthogonal partial least squares discriminant analysis (OPLS-DA) of scores and
permutation test plots for the +21 d and +7 d group samples analyzed in the positive ion mode,
respectively. (c,d) Orthogonal partial least squares discriminant analysis of scores and permutation
test plots for the +21 d and +7 d group samples analyzed in the negative ion mode, respectively.
t[1]—first principal component; to [1]—second orthogonal component. The intercept limit of Q2,
calculated by regression line, is the plot of Q2 from permutation test in the OPLS-DA model.

3.3. Differential Metabolite Analysis

The variable importance in projection was obtained from the p-value in the t-test
and the OPLS-DA model. Based on a variable importance in projection > 1, p < 0.05, and
fold-change threshold of >2 or <0.5, differential metabolites across the experimental groups
were identified. Seventy-four differential metabolites were identified between −7 and
0 d (Supplementary Table S3). Fifty differential metabolites were identified on day +7 d
compared to on 0 d (Supplementary Table S4). There were 106 differential metabolites
between +21 and 0 d (Supplementary Table S5) and 82 differential metabolites between
+21 and +7 d (Supplementary Table S6). There were 16 shared metabolites were identified
in all time point comparisons (Figure 7): Phe-Trp, L-pipecolic acid, L-glutamate, inosine
5′-monophosphate, D-mannitol, DL-O-Tyr, betaine, 5,2′-O-dimethylcytidine, 4-O-beta-
galactopyranosyl-D-mannopyranose, 2′-O-methylinosine, cis-9-palmitoleic acid, 1-stearoyl-
sn-glycerol 3-phosphocholine, linoleic acid, L-Trp, sucrose, and taurine.

3.4. Metabolic Pathway Enrichment Analysis

To further analyze the dynamic changes in differential metabolites, MetaboAnalyst
5.0 was used to analyze metabolic pathway enrichment. A metabolic pathway with an
impact value > 0.1 and p < 0.05 was regarded as the most relevant pathway. A total of
six primary metabolic pathways were identified in all time point comparisons, including
D-glutamate and D-glutamine metabolism; linoleic acid metabolism; taurine and hypo-
taurine metabolism; alanine, aspartate, and glutamate metabolism; tryptophan metabolism;
and Arg biosynthesis (Figure 8B). Only four critical different metabolites were involved in
these six major metabolic pathways: L-glutamate, linoleic acid, taurine, and L-tryptophan
(Figure 8A). The results from pathway analysis indicated that cows undergo substantial
changes in metabolic responses during the transition period, mainly involving lipid and
amino acid metabolism. The results of Spearman correlation analysis are shown in Figure 9.
We subsequently queried metabolites that differed among groups in the Kyoto Encyclopedia



Metabolites 2022, 12, 953 8 of 14

of Genes and Genomes pathway database and searched published articles for data related
to the overall metabolism pathway (Figure 10).
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levels, respectively, in the 0 d group.
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Figure 8. (A) Sankey plot showcasing key metabolites involved in significant enriched pathways.
The dot plot shows the impact score and total number of metabolites in each enriched pathway (false
discovery rate-adjusted p < 0.05). (B) Metabolic pathway analysis. x-axis, pathway impact; y-axis,
−log10 (p). Circles represent the pathway impact score. Darker circles indicate more significant
changes in metabolites in the corresponding pathway. The size of the circle corresponds to the
metabolite counts in the corresponding pathway.
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Figure 10. Metabolic pathways involving major metabolites with different plasma concentrations on
−7, 0, +7, and +21 d relative to calving. (+) indicates increased level and (−) indicates decreased level.
TCA—tricarboxylic acid; IDO—indoleamine 2,3-dioxygenase; TUCA—taurocholic acid; GLCA—
glycocholic acid; Phos—phosphenol pyruvic acid; α-KET—α-ketoglutaric acid; Oxa—oxaloacetate.

4. Discussion

According to Reynolds et al., dairy cows require approximately 1 kg of glucose per day
during late gestation; this demand increases to around 2.5 kg per day in the first 3 weeks
postpartum [12]. Therefore, cows must mobilize their body fat reservoirs, which may lead to
high levels of NEFAs being released into the blood [23]. NEFAs are a widely used indicator
of body fat mobilization. Ospina et al. reported that the critical concentrations of NEFAs are
approximately 0.29 mmol/L prepartum and 0.57 mM postpartum [11]. Moreover, body fat
mobilization typically begins as early as several weeks before calving and intensifies during
and after calving, as the net energy for lactation significantly increases postpartum [24].
In this study, the elevated NEFAs concentration from −7 d (0.35 mM) to +7 d (0.69 mM)
indicates that the cows were suffered from an NEB.

Many studies have revealed relationships between an NEB and immune suppression
of cows in the early days after caving [25,26]. In this study, indices related to immunity
(IgG, TNF-α, and IL-2) in the plasma were measured to examine immune function in
cows [27]. We first correlated the plasma NEFAs to these immune indicators to determine
the general immune status of periparturient cows. The plasma TNF-α level increased as
calving approached and remained low throughout early lactation, which is consistent with
the results of previous studies [28,29]. The IL-2 level decreased before calving, which is
similar to the results of Gao et al. [30]. The IgG concentrations decreased significantly
prepartum, which is also consistent with the results of a previous study [31]. NEFAs were
negatively correlated with IgG at −7 d, and 0 d and negatively correlated with IL-2 at
−7 d, +7 d, and +21 d. Excessive NEFAs also can induce liver oxidative stress and lead to
inflammatory cytokine in hepatocyte injury through the activation of nuclear factor kappa
B (NF-κB) [32]. The major biomarkers of hepatocytic injury include elevated levels of intra-
cellular enzymes such as AST, GGT, and ALP [33]. In this study, the concentrations of ALP
and GGT in plasma were significantly increased before calving, indicating hepatocellular
injury. These results demonstrate that a severe NEB during the transition period in cows
adversely impacts immune function by reducing the expression of antibodies and other
inflammatory cytokines.

An increasing number of studies have shown that amino acids play an important
roles in modulating immune responses in dairy cows [34,35]. In this study, we found
that amino acid metabolism of L-tryptophan (Trp), linoleic acid, L-glutamate, and taurine
significantly changed from late pregnancy to early lactation. Experiments in humans and
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rats showed that the tryptophan–kynurenine pathway was related to balancing initiation
and suppression of the immune response [36,37]. However, the effects of Trp metabolism on
immunity in dairy cows has not been widely examined. Interestingly, we found that Trp is
closely associated with the regulation of immune function. The main reasons for this effect
are as follows: the indoleamine 2,3 dioxygenase is the rate-limiting enzyme in kynurenine
(Kyn) production in the Trp degradation pathway [38], and the Kyn/Trp ratio in plasma is
a key indicator of the regulation of indoleamine 2,3 dioxygenase activity [39]. The Kyn/Trp
ratio increased from 0.49% on −7 d to 1.41% on +21 d with increasing Kyn levels and
decreasing Trp levels (Figure 5). Moreover, Trp can be converted into indole-3-lactate,
which significantly affects the modulation of immune function [40]. Increases in Kyn
metabolites would reduce the production of indole-3-lactate and lower immune function.
Indeed, the level of indole-3-lactate decreased in the prepartum stage (Figure 5), and the
Kyn/Trp ratio was significantly positively correlated with TNF-α on +21 d and negatively
correlated with IgG on −7 d and +7 d. Therefore, Trp is an effective immunomodulatory
agent through the Trp-Kyn pathway that depletes Trp and elevates Kyn.

Excessive lipid mobilization is accompanied by changes in immune function and
inflammation [41]. Linoleic acid belongs to the family of omega-6 polyunsaturated fatty
acids and can be converted into arachidonic acid (AA) in the body. Previous studies have
demonstrated that linoleic and arachidonic acid have immunoinhibitory activities [42]. For
example, AA is upregulated in typical inflammatory cells, suggesting that high AA levels
indicate inflammation in the body [43]. In this study, LA and AA significantly increased
from −7 to +7 d, which is similar to the changes observed in previous studies [13,18]. A
significant negative correlation between AA and IgG at −7 d was observed in this study.
Therefore, we found negative relationships between elevated circulating NEFAs, LA, and
AA and immune function.

L-glutamate is normally converted into glutamine through Gln synthetase [44]. Glu-
tamine can enhance the body’s immunity, relieve oxidative stress, and provide energy
by affecting the fumaric acid synthesis in the tricarboxylic acid cycle [45]. Doepel et al.
reported that high levels of glutamine may reduce the degradation of intestinal glucose,
and therefore relieve the NEB in the body [46]. Correlation analysis revealed a negative
relationship between L-glutamine and NEFAs at +21 d. Combined with the changes in
glucose concentrations in the plasma, our results suggest that high levels of L-glutamate
relieve the NEB and strengthen immunity by reducing glucose degradation.

Taurine is an antioxidant sulfur-containing amino acid accounting for 60–80% of all
free amino acids [47]. Taurine participates in immune function regulation via its anti-
apoptosis activities, antioxidant stress effects, and regulation of mitochondrial function [48].
Marcinkiewicz et al. [49] showed that taurine improves immune function. However, in our
study, as taurine concentrations increased, IgG and IL-2 levels significantly decreased and
TNF-α significantly increased before calving. These inconsistent results may be explained
as follows: taurine reduces apolipoprotein B100 and lipid secretion, which are essential
structural components of very low-density lipoproteins [50]. The biological roles of very
low-density lipoproteins are primarily related to triglyceride transport and eventually to
cholesterol transport to the tissues. In this study, we observed a significant increase in
taurine from −7 to 0 d (Figure 5). More triglyceride may be deposited in the liver because
of reduced very low-density lipoproteins in the prepartum period.

5. Conclusions

An NEB in the transition period adversely affects immune function in cows. Four
critical metabolites were significantly changed at all time points: L-glutamate, linoleic
acid, taurine, and L-tryptophan. These metabolites are associated with the regulation of
immune function involved in D-glutamate and D-glutamine metabolism; linoleic acid
metabolism; taurine and hypo-taurine metabolism; alanine, aspartate, and glutamate
metabolism; tryptophan metabolism; and Arg biosynthesis. In particular, L-tryptophan
exerts immunomodulatory effects through the Trp-Kyn pathway, resulting in depletion of
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Trp and elevation of Kyn. Further metabolomics studies are needed to obtain more detailed
information on the metabolites and immune modulation of cows in the transition period.
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