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Despite decades of research, investigations into effective neural and pharmacological therapies for many drugs of abuse,
such as cocaine, have produced no FDA-approved approaches. This difficulty derives from the complexity of substance
use disorders, which encompass a variety of behavioral, psychological, and neural circuit-based changes that occur as a
result of repeated experience with the drug. Dopamine signaling has been demonstrated to play a key role in several
aspects of drug abuse—from mediating its reinforcing properties and drug-seeking to triggering relapse—while also medi-
ating a number of important aspects of normal (nondrug related) motivated behaviors and actions. Real-time recording
methods such as in vivo voltammetry, electrophysiology, and calcium imaging demonstrate that the signaling properties
of dopamine for motivationally relevant stimuli are highly dynamic and spatiotemporally circumscribed within afferent
target regions. In this review, we identify the origins and functional consequences of heterogeneous dopamine release in
the limbic system, and how these properties are persistently altered in the drug-experienced brain. We propose that
these spatiotemporally parallel dopaminergic signals are simultaneously available to the animal, but that these circuits
are impaired following prolonged drug experience by disrupting the location and content of dopamine signals in afferent
target regions. These findings are discussed in the context of relapse and pathways to discovering new treatments for ad-

diction disorders.

Substance abuse disorders are notoriously widespread in the hu-
man population, and inflict an astonishing toll on individuals,
their social networks, and society as a whole. At the time of this
writing, drug addiction has become a national emergency. So great
is the toll on human lives that the Centers for Disease Control and
Prevention reports that death tolls from drug overdoses in a single
year now surpass the amount of American combat deaths since
the Vietnam war combined. While much of the focus on this epi-
demic has centered on the stunning rise of opiate abuse, there has
been a paralleled rise in abuse of other drugs like cocaine, where use
rates have increased 61% in just 2 yr, along with overdose deaths
that are among the highest since the late 1990s (Hughes et al.
2016).

However, there has been surprisingly little success in develop-
ing pharmacotherapies to treat these disorders. To date, there have
been no FDA-approved treatments for cocaine abuse disorder. The
reasons for this have to do with the complexity of drug abuse dis-
orders in general, involving both powerful behavioral and neuro-
biological components. Behavioral elements involve specific
drug-associated paraphernalia, social associations, behavioral ritu-
als associated with drug taking, and the motivational cycles of
bingeing and withdrawal, while the neurobiological components
involve the interaction of a variety of limbic regions such as the
ventral tegmental area (VTA), its afferent target regions (particular-
ly the nucleus accumbens [NAc]), and various other inputs that
modulate VTA function. However, the complexity of signaling reg-
ulation within these systems (e.g., interactions between dopamine,
glutamate, acetylcholine, adenosine, and microglia) along with
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dynamic shifts in these regulatory properties as a result of chronic
drug exposure highlight the complexity of substance abuse disor-
ders and therefore why straightforward treatments are unlikely to
succeed.

In this review, we propose that the signaling properties of
dopamine are highly heterogeneous, and therefore, dopamine
will have notably different functions within defined circuits. As
such, the function of dopamine signals cannot be understood
completely by general principles, but instead must be defined
within context (behavior) and in place (neural circuit). We present
three organizing principles that support this position. First, the
organization of dopaminergic nuclei is highly heterogeneous
across regions, terminal field targets, and transmission properties.
Second, phasic dopamine release patterns widely vary by afferent
target region, even during performance of identical tasks. Third,
presynaptic inputs can significantly alter phasic release properties,
allowing for local shaping of release within microcircuit regions.
Finally, we present evidence that acute and repeated experience
with drugs of abuse modifies the dopamine signaling properties
of these pathways, thereby changing important features of learn-
ing and drug-associated behaviors. We believe that understanding
the heterogeneity, complexity, and dynamic nature of these sig-
naling properties will allow future studies to develop effective
means of treating complex behavioral disorders like substance
abuse.
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Heterogeneous dopamine signals

Anatomy of the mesolimbic dopamine system

Dopaminergic output regions

Within the context of learning, motivation and drug taking behav-
iors, the majority of work has focused on signaling of the mesolim-
bic dopamine system. The VTA is intrinsically heterogeneous
based on cell type, connectivity, and organization. Anatomically,
this area is comprised of parabrachial pigmented nucleus, caudal
linear nucleus, rostral linear nucleus, interfasicular nucleus, and
paranigral nucleus (Swanson 1982; Fu et al. 2012). Each of these re-
gions is thought to maintain topographical organizations that are
biased toward specific forebrain targets. For example, topographic
projections from the VTA to the striatum follow relatively consis-
tent mapping between VTA locations and limbic targets
(Ikemoto 2007), with cell bodies that target medial aspects of the
striatum such as the olfactory tubercle and medial shell of the
NAc located more medial and posterior in the VTA (rostral linear,
interfasicular, paranigral, and caudal linear nuclei), while those
that target the core and dorsal striatum are far more lateral and an-
terior (parabrachial pigmented area, substantia nigra). Indeed,
these pathways show a surprisingly low degree of collateralization,
with one recent report indicating only 0.4% of VTA dopamine cells
projected to both medial and lateral accumbens locations (Yang
et al. 2018). However, it is likely that axonal collateralization and
other forms of cross-regional networks are present in dopamine
pathways (Beier et al. 2015), which could act to coordinate phasic
dopaminergic signaling across related regions. Beyond connectivi-
ty, these pathways may have additional functional considerations.
For example, a subset of atypical fast-firing DA neurons that have
low expression of the dopamine transporter may be able to use a
higher frequency band to carry different signals to limbic targets
than the conventional VTA dopamine neurons (Lammel et al.
2008).

Additionally, it is now recognized that dopaminergic pop-
ulations do not exclusively release dopamine, but a subset can co-
release dopamine along with traditional neurotransmitters like
glutamate and GABA. For example, identified dopamine neurons
can produce GABA and copackage these molecules along with
dopamine (Tritsch et al. 2012, 2014; Kim et al. 2015). These
dopamine-GABA coreleased mechanisms likely modulate a set of
regions including a nigrostriatal pathway to the dorsal striatum
(Tritsch et al. 2012, 2014) and a VTA pathway to the lateral habe-
nula (LHb) which may ultimately act to regulate the VTA’s own ac-
tivity (Stamatakis et al. 2013; Lammel et al. 2015; Dolzani et al.
2016). As with GABA, glutamatergic cells in the VTA can be found
that release exclusively glutamate, or glutamate that is coreleased
with dopamine (Hnasko et al. 2010; Morales and Root 2014;
Root et al. 2016). As with the general projection architecture of
the VTA, most of these dopamine-glutamate positive cells have
projections to limbic regions including the NAc and LHb (Stuber
et al. 2010; Root et al. 2014a,b). In important ways, these cells
may be further differentiated by other aspects of receptor expres-
sion, but likely provide important differences in signaling than
dopamine signals alone may contribute, and will be considered
in more detail below.

Differences in dopaminergic signaling: circuit-level
and behavioral considerations

Work in my laboratory and many others have begun to character-
ize the role that phasic dopamine signaling contributes to motivat-
ed learning and action. The most salient of the theories that led
many researchers (including myself) into the field of dopamine
was the observation that dopamine neural activity could provide
a neural correlate for learning, particularly as it related to classical
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conditioning (Schultz et al. 1997; Waelti et al. 2001). In these mod-
els (and in contrast to earlier hedonic-based theories of dopamine
Wise et al. 1978), dopamine neurons increased or decreased activ-
ity at the time of rewards not based only on the value of the reward
itself, but rather on the degree to which the outcome was unexpect-
ed. In this scenario, dopamine signals showed increased activity to
encode positive prediction errors (better than expected) and de-
creased activity below baseline for negative prediction errors
(worse than expected). This signaling pattern corresponded with
a long history of learning theory principles of associativity associ-
ated with the Rescorla and Wagner “delta rule” model (Rescorla
and Wagner 1972). Consistent with this, dopamine also signaled
information about the value of the anticipated outcome at the
time of predictive cues, and that signaling would thus “shift”
from unexpected rewards (early in learning) to cues (late in learn-
ing), consistent with model predictions (Pan et al. 2005). These
reward prediction errors (RPEs) were thus thought to provide a
teaching signal to the brain, and indicated an important role for
dopamine in a variety of learning processes based on value and
prediction.

From this profound and elegant insight, researchers over the
next two decades have been trying to understand how (or whether)
these brief phasic signals come to control behavioral output of mo-
tivated animals. In most of these cases, the central assumption has
been that dopamine signals act as a largely unitary signal that is
broadly available to the limbic system in brief bursts of phasic re-
lease events, consistent with a general neuromodulatory function
of monoamine signaling and also with the general architecture of
the mesolimbic dopamine system. From this, it was argued that
these complex patterns of release provide information about
what signals the dopamine system was transmitting to the limbic
system as a whole. Therefore, using real-time methods to record
dopamine activity in behaving animals should provide the neces-
sary tools to understand the important function(s) of the dopa-
mine system.

Methods to understand real-time dopamine signaling have
traditionally used electrophysiology of putative dopamine cell
bodies in the midbrain based on properties of waveforms (Holler-
man and Schultz 1998; but see Margolis et al. 2010; Schultz and
Dickinson 2000) or pharmacological verification (Roesch et al.
2007). Recent genetic targeting of dopamine-specific populations
using cre transgenic lines (TH::Cre or DAT::Cre) now permit
more selective identification for both “phototagging” (light-
responsive neural responses in opsin-expressing cells (Lima et al.
2009; Cohen et al. 2012; Kravitz et al. 2013; Stauffer et al. 2016))
or in vivo calcium imaging (Gunaydin et al. 2014). In addition,
dopamine can be detected using electrochemical methods, and
thus in vivo fast scan cyclic voltammetry (FSCV) can be used
in terminal regions to assess release patterns (Phillips et al.
2003a; Heien et al. 2004; Roitman et al. 2004). FSCV has the advan-
tage of assessing the real-time release kinetics within a specific
region rather than inferring release from electrophysiological or
calcium imaging methods which may not always align (London
et al. 2018). This mismatch may arise from several factors, includ-
ing terminal modulation factors such as dopamine transporter
(DAT) availability (Jones et al. 1996), activity glutamatergic affer-
ents from other regions (Jones et al. 2010), and/or cholinergic
interneurons (Cachope et al. 2012), which could alter release
properties.

Several reports have now confirmed that phasic dopamine sig-
naling corresponds to important features of the RPE hypothesis. In
general, these studies with Pavlovian conditioning designs demon-
strate that unexpected rewards trigger increases in dopamine activ-
ity (Day et al. 2007; Nasrallah et al. 2011; Lak et al. 2014; Stauffer
et al. 2014; Saddoris et al. 2017), while with additional training,
dopamine signals “shift” to become time-locked to reward-
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predictive cues (Day et al. 2007; Hart et al. 2014). Furthermore, in
more sophisticated choice-based tasks, dopamine signaling during
predictive cues signaled subjective factors about predicted valua-
tion of outcomes, including individual preference and utility
(Roesch et al. 2007; Day et al. 2010; Gan et al. 2010; Sugam et al.
2010; Sackett et al. 2017). Specifically, these findings and others
show that dopamine release during cues scales with the subjective
preference of the anticipated outcome such that preferred options
elicit greater dopamine release events, and that optogenetic ma-
nipulation of these dopamine signals is sufficient to alter subse-
quent choice and associative behaviors (Saddoris et al. 2015b;
Chang et al. 2016; Schelp et al. 2017; Sharpe et al. 2017).

However, several challenges to an RPE-based interpretation
of dopamine function have emerged based on several factors
that include behavioral considerations and the dynamics of
dopamine release within different target regions. First, there are
limited data that dopamine signaling during the reward receipt
necessarily relates to the development of cue-predictive properties,
as is anticipated by learning theory and behavioral work. For exam-
ple, we have now shown that phasic dopamine release in the NAc
core fails to track the value of different reward options (Saddoris
et al. 2017), mirroring similar effects obtained in primate VTA
neurons (Stauffer et al. 2014). This effect is observed despite the es-
tablished observation that dopamine signals in this same region
encode differences in predicted outcome values during cue
presentations.

Second, RPE methods fail to account for the many observa-
tions that are linked to motivation and individual differences in
conditioned approach. For example, state-related changes in moti-
vation (e.g., hunger versus satiety) can significantly alter phasic
dopamine release rates during cues predictive of reinforcing stimuli
(Saddoris et al. 2015a; Aitken et al. 2016; Papageorgiou et al. 2016).
Furthermore, incentive salience theories (Berridge and Robinson
1998; Berridge 2012; Saunders and Robinson 2012) further posit
that dopamine is more linked to motivational significance rather
than reward prediction alone. For example, phasic release associat-
ed with conditioned cue approach (sign tracking) is greatest at the
cue during approach, but limited during rewards. In contrast, ani-
mals who approach a foodcup during reward-related cues show
more blunted dopamine responses to the cue but slightly elevated
responses to reward receipt (relative to sign trackers) (Flagel et al.
2011). Itis argued that this disparity can be attributed to dopamine
increasing the incentive value of the cue in sign trackers (thus elic-
iting approach), whereas goal trackers are able to learn perfectly
well without that dopaminergic signal. Consistent with this, phar-
macological manipulations with dopamine antagonists block the
expression of sign tracking but fail to alter goal tracking behaviors
(Flagel et al. 2011; Saunders and Robinson 2012).

Finally, dopamine signaling is not consistent across brain re-
gions even during the same behavioral task. In behavioral tests,
the same stimuli or actions can produce highly divergent dopa-
mine signals across subregions of the striatum. In Pavlovian tasks,
for example, both NAc core and shell display phasic release events
to cue-predictive stimuli. However, in the core, dopamine signal-
ing is rapid with a large peak at cue presentation and a minimal re-
sponse to predicted rewards. In contrast, NAc shell dopamine tends
to remain elevated for the duration of the cue and also at the re-
ward receipt, even when well predicted (Cacciapaglia et al. 2012;
Saddoris et al. 2016). We have demonstrated that regional differ-
ences in DAT availability—while present (Yorgason et al. 2011;
Ferris et al. 2013; Saddoris et al. 2015a; Saddoris 2016)—are insuf-
ficient to account for these signaling differences. A single burst
of electrically elicited dopamine closely tracks stimulus-elicited
dopamine in the core, while the same stimulation only captures
a fraction of stimulus-related dopamine in the shell (Saddoris
et al. 2015a).

www.learnmem.org

These observations suggest that dopamine in the NAc shell
encode information that is both incompatible with RPE theories
and not congruent with dopamine release patterns in a directly
adjacent region. Indeed, we have now shown that in a chained
operant task where presses on one lever (seeking lever) grant access
to a second (taking lever) that can be pressed for food, the differ-
ences between core and shell dopamine release become even
more profound (Saddoris et al. 2015a). Here, dopamine in the
NACc core tracked only the initial presentation of the seeking lever,
but produced only modest release at the taking lever and reward re-
ceipt. In contrast, dopamine release in the NAc shell tracked both
seeking and taking levers as well as the reward delivery at similar
release concentrations. Furthermore, under extinction conditions
with this task, dopamine release in the core showed changes at
the cue that gradually decreased over trials and displayed negative
prediction errors at the time of expected reward delivery. In con-
trast, shell dopamine release tended to decrease at times with
changes in animal motivation, but did not display prediction er-
rors at reward omission. We have argued that core dopamine
release was quite consistent with RPEs, but that shell was in fact
more congruent with Incentive Salience models (Tindell et al.
2006, 2009; Smith et al. 2011; Saddoris et al. 2015a).

Other factors beyond conditioning have also been shown to
produce reliable differences in dopamine signaling between striatal
targets. For example, phasic release in the NAc shell appears to en-
code important information about reward magnitude, both during
unsignaled reward consumption (Roitman et al. 2008; Saddoris
et al. 2017) and cues predictive of valued rewards (Beyene et al.
2010; Loriaux et al. 2011; Sackett et al. 2017). In contrast, shell do-
pamine release was much less sensitive to costs (such as risk or
delay) that could devalue the expected value of expected outcomes
(Day et al. 2010; Sugam et al. 2012). NAc core dopamine showed
a different set of goal-directed signaling. In several settings, dopa-
mine signals during reward-predictive cues scaled with the pre-
ference of the expected outcome, particularly those that were
devalued by costs (Day et al. 2010; Sugam et al. 2012; Ko and
Wanat 2016; Schelp et al. 2017). For example, as the delay to
obtain a large reward increased across blocks, dopamine levels
significantly decreased for the option (Saddoris et al. 2015b).
Furthermore, stimulation of dopamine afferents selectively within
the NAc core was able to alter choice behavior when the options
differed only by a delay cost (immediate versus delay, same reward
outcome), but not for magnitude-based choices (large versus small
reward, same delay) (Saddoris et al. 2015b).

Early reports suggested a specific role for dopamine in
reward-related learning (Mirenowicz and Schultz 1996), though
more recent studies indicate a role for dopamine in aversive learn-
ing as well (Oleson et al. 2012b; Danjo et al. 2014). For example,
dopamine appears to play a causal role in negative reinforcement,
where optogenetically stimulated dopamine afferents in the NAc
core facilitate active avoidance and fear extinction (Wenzel et al.
2018b). While less is known about region-specific aspects of dopa-
mine signaling in fear learning, heterogeneity in signaling has
been seen in this system as well. In the primate, putative dopami-
nergic cells often showed patterned firing to both cues predictive of
rewards and aversive outcomes, while other midbrain neurons dis-
played activity that was biased toward either reward or aversion
(Matsumoto and Hikosaka 2009). Furthermore, FSCV recordings
in the NAc demonstrate a region-specific difference in dopamine
release; while cues predicting unavoidable shocks elicit transient
increases in dopamine in the shell, the same cue induces sustained
pauses in release in the core (Badrinarayan et al. 2012). Thus, do-
pamine is providing multiple parallel signals in the NAc that can
be used by the animal to guide behavior based on task and motiva-
tional demands. In general, this suggests that any given proposed
function of dopamine must be understood within the region it is
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signaling, and that the dopamine system may at any time provide
quite different and even competing signals.

In addition, virtually nothing is known about the functional
real-time signaling of dopamine in behaving animals in extra-
striatal targets such as the PFC or amygdala, and whether these
signals differ from phasic dopamine patterns seen in the NAc.
These difficulties stem not from a lack of interest—indeed, impor-
tant work from several labs using pharmacological approaches
have shown critical importance of dopamine signals in places
like the PFC in choice behavior and other goal-directed behaviors
(Floresco et al. 2008; St Onge et al. 2011; Cocker et al. 2014,
2016; Jenni et al. 2017)—but rather from low levels of signal and
difficulty in isolating dopamine from other catecholamines like
norepinephrine. However, future work with detailed FSCV analysis
in awake and behaving subjects may provide important insight
into these nonstriatal targets, and further highlight the heteroge-
neity of the dopamine response in behavior.

Drug taking and the dopamine signal: acute
and persistent changes in neural circuits

Early work with this system showed that drugs of abuse ultimately
act by increasing dopamine levels in the NAc (Di Chiara and
Imperato 1988). In particular, psychostimulants provide their rein-
forcing mechanisms by increasing the availability of dopamine in
the synapse by invigorating release (amphetamine) or preventing
reuptake of dopamine overflow (cocaine); in contrast, opiates
work in general by removing inhibitory tone on dopamine cells
in the midbrain, effectively “releasing the break” on the system
(Johnson and North 1992). Indeed, VTA dopamine signals are es-
sential to mediating the reinforcing properties of drugs as seen by
their involvement in mediating self-administration, conditioned
place preference, behavioral sensitization, and reinstatement
(Gong et al. 1996, 1997; Neisewander et al. 1996; Duvauchelle
et al. 2000; Ikemoto 2002; Xi et al. 2004).

There is strong evidence that phasic dopamine signaling me-
diating drug-related behaviors is similarly heterogeneous as it was
in normal (nondrug) related behaviors. For example, the rate of
psychostimulant self-administration into the anterior aspect of
the striatum differs strongly based on subregion. Though all re-
gions receive dopaminergic VTA afferents (Ferreira et al. 2008),
the highest rates of self-administration are found in more medial
and dorsal locations that include the medial NAc shell and olfacto-
ry tubercle, but far less in the lateral NAc shell or NAc core (Ikemoto
2003, 2007).

Using FSCV, these structural differences can be seen in the
phasic release patterns. In general, cocaine infusions induce a sig-
nificant increase in phasic dopamine release (Heien et al. 2005;
Stuber et al. 2005). This signaling can be seen in increases in the
number of dopamine transient events and also the amount of re-
lease during each burst (Stuber et al. 2005). As above, there is con-
siderable evidence for differences in phasic response patterns
between striatal target regions. For example, dopamine transients
in the NAc shell show a substantially greater increase in release
probability and volume of release than in the NAc core following
intravenous infusions of cocaine (Aragona et al. 2008). Consistent
with dopamine’s role in learning, phasic release is also elicited by
drug-associated cues, as well as with drug-seeking behaviors,
though this is again biased toward signaling within the NAc shell
compared to the core (Phillips et al. 2003b; Aragona et al. 2009;
Wheeler et al. 2011). Recent data also provide support for changes
in signaling properties along the anterior-posterior aspect of the
ventral striatum (Park et al. 2012) that may relate to different mo-
tivational properties of drugs of abuse. For example, optical stimu-
lation of dopamine afferents in the rostral NAc shell can oppose

www.learnmem.org

negative hedonic shifts in cue-elicited drug craving, while the
same stimulation in the caudal shell can amplify the negative com-
ponents (Hurley et al. 2017).

Psychostimulants like cocaine create their reinforcing proper-
ties by generating persistently elevated levels of dopamine in the
synaptic region of motivationally relevant regions. However, re-
peated experience with these abnormally high levels of sustained
dopamine levels has been shown to induce plastic changes in sig-
naling properties. For example, animals that are trained to self-
administer cocaine initially display phasic release events in the
NAc. However, following weeks of this self-administration behav-
ior, phasic dopamine release is now seen in the dorsal striatum
(Willuhn et al. 2012, 2014). This neuroplastic shift in signaling in-
dicates that phasic dopamine may represent information about
events that are at a minimum engaging other brain regions, and
in some cases providing information that is inappropriate for new-
ly engaged regions (Takahashi et al. 2007; Burton et al. 2017).
These potentially pathological representations in novel circuits
could be less susceptible to modification by new learning.

To identify how these persistent plastic changes affect behav-
ior, we have recorded dopamine in rats with a history of cocaine
self-administration. Subjects typically had relatively brief but reg-
ular access to cocaine (2 wk, 2 h access per day), followed by a pe-
riod of enforced abstinence. These animals show striking changes
in behavior when learning food-related (nondrug) tasks after this
period of cocaine exposure. For example, rats show altered moti-
vation-related impairments in performance in a Pavlovian-to-
instrumental transfer (PIT) task (Saddoris et al. 2011; LeBlanc et
al. 2013; Ostlund et al. 2014), second-order Pavlovian condition-
ing (Saddoris and Carelli 2014; Saddoris et al. 2016), and even dis-
criminating between reward magnitudes (Saddoris et al. 2017). In
addition, these animals showed an abnormal degree of condi-
tioned cue approach (Saddoris et al. 2016), consistent with obser-
vations in animals following abstinence from other drugs of abuse
like alcohol (McClory and Spear 2014; Spoelder et al. 2015) and
psychostimulants (Yager and Robinson 2013; Robinson et al.
2015).

Phasic dopamine release in these cocaine-experienced sub-
jects is significantly impaired in these subjects across a number
of dimensions, including striatal target region. For example, dopa-
mine release during a Pavlovian discrimination task showed
region-specific changes in release patterns in cocaine-experienced
animals (Saddoris et al. 2016). After conditioning, dopamine re-
lease in these animals was profoundly altered. In the core,
cue-related dopamine signaling was biased toward the reward in-
stead of the predictive cue, a pattern more often seen much earlier
in learning in drug-naive animals (Day et al. 2007). In contrast,
dopamine release in the shell of cocaine-experienced subjects
was virtually absent. Despite the fact that dopamine release could
readily be evoked by electrical stimulation of dopamine afferents in
these animals (Saddoris 2016), few transient release events were ob-
served during the task and were not aligned to behavioral events.
Similar observations of impaired associative dopamine release
have been found following repeated access to cocaine and other
drugs of abuse (Nasrallah et al. 2011; Spoelder et al. 2015).
Surprisingly, these impairments in drug-related dopamine signal-
ing can disconnect the well-characterized relationship between
dopamine and conditioned approach. In drug-naive animals, in-
creases in dopamine positively correlate with the degree of sign
tracking responses, while cocaine-experienced rats display robustly
elevated sign tracking responses despite diminished dopamine re-
lease in the NAc (Saddoris et al. 2016). These observations appear
to be conflicting, but instead may suggest that chronic exposure
to drugs is altering not just the sensitivity of target neurons to do-
pamine input, but also the location, timing, and release volume of
the dopamine input itself.
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We suggest that these shifts are likely predictable, with stria-
tal phasic release being biased toward regions that are more dorsal
and lateral than in drug-naive populations. In a recent experi-
ment, electrically stimulated release of dopamine in awake and be-
having rats produced evoked transients in the NAc core that
appeared more “shell-like” after cocaine experience. Specifically,
release and reuptake kinetics of stimulated release were far more
similar to those typically seen in the shell of drug-naive controls
than in the core (Saddoris 2016). Related findings from other
labs using in vivo electrically stimulated dopamine demonstrate
similar heterogeneity in dopamine release kinetics based on
drug type, duration of exposure and period of enforced abstinence
(Addy et al. 2010; Calipari et al. 2014, 2015; Cameron et al. 2016;
Siciliano et al. 2016). Behaviorally we see this same effect. In a
simple experiment in our laboratory (Saddoris et al. 2017), ani-
mals received unsignaled rewards of different sizes (either one
or two pellets). In normal controls, dopamine release patterns
in the medial NAc shell (but not the core) reflected differences
in reward value, with greater concentrations of dopamine during
reuptake being seen for larger rewards. However, in cocaine-expe-
rienced animals, this reward magnitude dopamine encoding
now unexpectedly appeared in the core while very little dopamine
was elicited by the same stimuli in the shell. Despite this
magnitude-related dopamine encoding in the core of cocaine an-
imals, these subjects were unable to appropriately select between
levers that produced either one or two pellets, suggesting that
the preserved (but regionally inappropriate) dopamine signaling
of reward magnitude was insufficient to guide motivated
behavior.

Collectively, these findings further demonstrate the necessity
of dopamine signals within specific circuits to produce adaptive
and appropriate behaviors. The persistence of discriminative dop-
amine signals in the cocaine-experienced brain was of little use
to the animal because they occurred in an abnormal target region.
These observations are more consistent with the importance of
dopamine’s functional roles within specific circuits, but less so
with a more general signal available to limbic targets as a whole.
We thus expect that plasticity gated in target regions by this inap-
propriate signaling contributes to the persistence of drug-related
associations.

Dopamine terminal mechanisms: release kinetics
and synaptic modulation

A final note on the importance of heterogeneity of dopamine sig-
naling must assess the effects of local modulation on dopamine sig-
nals. Work has shown that midbrain dopamine neurons (identified
by waveform and/or genetic targeting) consistently display a
strong bias toward RPE-type encoding in a number of different
behavioral contexts (Cohen et al. 2012; Eshel et al. 2016; Stauffer
etal. 2016). However, in the above discussion, we have highlighted
the distinct release properties of dopamine within specific target re-
gions, and how disruption of these patterns induced by chronic
drug experience can cause profound changes in motivated behav-
ior. This lack of correspondence is surprising, but we expect that
differences could be attributable to any combination of several fac-
tors. First, recordings taken from midbrain regions could oversam-
ple from populations of dopaminergic cells that have biases in their
projection fields in RPE-related terminal locations. For example, we
and others have shown that NAc core dopamine release often en-
codes information (predicted outcome values, RPEs); perhaps these
populations are more likely to be identified and characterized than
in shell targeting (or other limbic) regions. Given the heterogene-
ity of dopaminergic pathways to the forebrain limbic system
(Ikemoto 2007; Lammel et al. 2011, 2014), these pathways and
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their relationship to signaling properties have not yet been
described.

A second factor could be local modulation of release by pre-
synaptic mechanisms within targeted regions. In this scenario,
dopamine cell bodies could signal a relatively uniform output sig-
nal that is related to RPE information, but local factors could aug-
ment this signal to be more appropriately used within the afferent
region. Previous work has already suggested that even within a
given dopamine target region (such as NAc core), there is a lack
of uniformity of signaling. For example, some NAc regions contain
“hot spots” of stimulus-related release, while nearby locations pro-
duce very little stimulus-related release (Wightman et al. 2007).
However, electrical stimulation of VTA afferents produces dopa-
mine in both locations, suggesting that targeted heterogeneous re-
gions have some functional purpose in the behaving animal.
Indeed, neural populations in the NAc without phasic dopamine
release either do not develop (Owesson-White et al. 2009) or rapid-
ly lose phasic excitatory responses to external stimuli (Cacciapaglia
et al. 2011). It has recently been suggested that these intrinsic dif-
ferences in release properties between hot/cold spots could pro-
duce biased sampling approaches; for example, researchers with
acutely placed electrodes could seek out and prioritize recordings
in regions with the greatest level of release and naturally occurring
transients (Rodeberg et al. 2017). However, these “hot spot” re-
gions may not be representative of the region as a whole, and could
indicate important and currently uncharacterized differences in lo-
cal modulation of signaling.

A large number of local factors within dopamine terminal
fields have now been demonstrated to modulate the release,
and a full discussion of these factors is beyond the scope of this re-
view. These factors include potential modulation by endocannabi-
noids (Cheer et al. 2004; Oleson et al. 2012a; Wenzel and Cheer
2018a), glutamatergic inputs from limbic regions (Jones et al.
2010), neuroinflammation (Schindler et al. 2017; Brown et al.
2018), adenosine (Ross and Venton 2015), and acetylcholine
(Threlfell and Cragg 2011; Cachope et al. 2012). In this latter situa-
tion, cholinergic interneurons (Chls), comprise <5% of the total
population of striatal neurons, and exert presynaptic control over
neurotransmitter release from DA neurons. Chls can enhance DA
release through the activation of $32-subunit-containing nicotinic
acetylcholine receptors on DA axons (Cachope et al. 2012;
Threlfell et al. 2012). While Chls are tonically active, they can ex-
hibit synchronized firing following the receipt of excitatory input,
primarily of cortical and thalamic origin (Kosillo et al. 2016). Chl
synchrony has notable consequences for DA release kinetics, as
local pharmacological manipulation of cholinergic receptors in-
duced significant suppression (scopolamine) or facilitation (meca-
mylamine) of DA release to motivationally salient cues and
unexpected rewards (Collins et al. 2016). Crucially, this control
of DA activity can be driven independently of midbrain firing
activity. It is therefore insensitive to the frequency of phasic DA
signals that might occur in response to reward-relevant stimuli
or that might be pathologically altered following chronic drug
administration.

While Chls are present throughout the striatum, their func-
tional interactions with DA activity are not necessarily comparable
across subregions. Due to the cessation of phasic DA activity, Chls
briefly pause firing (Zhang et al. 2018). However, in slice prepara-
tion, Chls in the dorsal striatum exhibit a hyperpolarization, fol-
lowed by an elongated pause in activity, while Chls in the NAc
core are at most slowed by phasic bursts of DA firing. In contrast,
Chls in the NAc shell respond to DA activity with a burst of action
potentials, followed by a pause and rebound activity (Chuhma
et al. 2014). The ChI pauses may be protective against loss of
nAChR sensitivity and therefore degradation of cholinergic control
of terminal DA (Shin et al. 2017). As such, cholinergic modulation
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of shell signaling may yield greater, longer-lasting responses to sa-
lient events that induce phasic bursts of VTA neurons. Moreover, as
these pauses represent an aspect of Chl activity that is sensitive to
midbrain excitatory activity, they too can evolve over the course of
conditioning. In doing so, Chl can improve the temporal specific-
ity of signals that may be critical for learning.

From phasic dopamine to striatal encoding; or,
what does dopamine do?

The great preponderance of the work investigating phasic dopa-
mine signaling in behaving animals has focused on the kinetics
of dopamine signal itself rather than the consequences of this
signaling on receiving neurons. This is largely a necessity of the
methods that have been optimized to detect properties of the dop-
aminergic system (e.g., FSCV, or optogenetically identifying the ac-
tivity of dopamine neurons). One important aspect of dopamine
signaling is that it acts to alter excitability of targeted neurons, con-
sistent with its typically understood function as a neuromodulator
rather than a neurotransmitter. Thus, an important consideration
of dopamine signaling should be considered in the context of how
these signals mediate changes in encoding in downstream target
regions. Early reports using a simultaneous FSCV/electrophysiolo-
gy recording technique in the same location revealed that phasic
neural encoding was highly correlated with the presence of phasic
dopamine release (Cheer et al. 2005, 2007; Owesson-White et al.
2009). However, several reports have now suggested that the rela-
tionship between dopamine signaling and neural encoding is of-
ten quite complex. For example, in a food self-administration
task, NAc core neurons showed either phasic excitations or inhibi-
tions related to task events (e.g., press, food reward). However,
when phasic burst firing of dopamine cells is inhibited via
intra-VTA infusions of APV, neural excitations in the NAc core dis-
appear (i.e., become nonresponsive to task events), but phasic inhi-
bitions appear to be unaffected (Cacciapaglia et al. 2011). Thus, the
heterogeneous response of target neurons in response to dopamine
release (perhaps corresponding to D1R- and D2R-expressing popu-
lations in the NAc), suggest that even a uniform dopamine signal
can propagate highly specific circuit-level outcomes within the
limbic system.

Few studies have investigated differences in the relationship
between core and shell dopamine signaling and associated neural
encoding. Work from our group used an identical decision-making
task, using either FSCV (Sugam et al. 2012) or electrophysiology
(Sugam et al. 2014) to record accumbal dopamine inputs and
NAc neural outputs, respectively. Rats in this task were trained so
that one response produced a small but certain reward, while the
other “risky” response produced either a larger reward on half
the trials or nothing on the other half. After a block of “forced
choice” training trials, rats were then allowed to select their pre-
ferred responses in a free choice block. Using FSCV, Sugam et al.
(2012) found that most animals develop a stable preference for ei-
ther the safe or risky option. For those subjects, cues associated
with the animals’ preferred choice elicited greater dopamine re-
lease than the nonpreferred option in the core, but both options
produced similar release in the shell. However, dopamine failed
to show any difference on free choice trials, suggesting that dopa-
mine was signaling the overall preferred choice rather than the
actually chosen action (Roesch et al. 2009). However, electrophys-
iological recordings in the NAc core and shell revealed a sharply
different pattern of core and shell responses (Sugam et al. 2014).
Unlike dopamine signals, phasic neural encoding in both core
and shell failed to differentiate between preferred and nonpre-
ferred cues on forced-choice trials, but instead showed a high de-
gree of discriminative encoding based on the preferred action on
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free choice trials, an effect which was particularly salient in the
core. This lack of congruence demonstrates that the information
contained in the dopamine signal is not passively translated
into action by target regions, but rather provides one of many im-
portant signals important for mediating motivated action.
Understanding the extent (and indeed limits) of the dopamine sig-
nal on behavior will thus demand the context of location, conver-
gent signals, and target cell type.

Conclusion

Drug use and abuse is known to involve the signaling of dopamine.
These signals are involved in a variety of mechanisms that affect
these drug-related behaviors, including the reinforcing properties
of the drug, initiating the drug taking actions, encoding informa-
tion about drug-related cues, modulating affect during craving,
and triggering features of relapse. Despite the commonality of
the dopamine molecule, the signals important for supporting
these processes have distinct temporal, spatial and behavioral con-
texts in which they occur. Indeed, dopamine signaling arises from
a set of highly heterogeneous populations and is released in pat-
terns that differ based on terminal field locations. These patterns
are then likely subject to highly specific terminal modulatory pro-
cesses that can modify release further based on the availability and
input structure of local microcircuits. Finally, these architectures
are highly dynamic and can change significantly as a result of
chronic experience with drugs of abuse.

No doubt dopamine gets a significant amount of attention in
learning, motivation and drug abuse for both functional and his-
torical reasons. However, the arising picture of dopamine’s func-
tion in these processes also include important interactions with
other neurotransmitter systems like norepinephrine (McElligott
et al. 2013), glutamate, and peptides (Lemos et al. 2012; Wanat
et al. 2013; Al-Hasani et al. 2015; Twining et al. 2015), among oth-
ers. These factors point to the complexity of potential treatments
for addiction, as the interaction and dynamic updating of compo-
nents of dopamine-related processes present neurotherapies as a
moving target. However, more precise approaches that can reveal
the function of dopamine in context and in place should provide
better insights to provide more effective treatment options moving
forward.
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