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Cardiovascular disease is a kind of heart, brain, and blood vessel injury disease by the
interaction of various pathological factors. The pathogenesis of cardiovascular disease is
complex with various risk factors, including abnormally elevated blood pressure, glucose,
and lipid metabolism disorders, atherosclerosis, thrombosis, etc. Plant polysaccharides
are a special class of natural products derived from plant resources, which have the
characteristics of wide sources, diverse biological activities, and low toxicity or side effects.
Many studies have shown that plant polysaccharides improve cardiovascular diseases
through various mechanisms such as anti-oxidative stress, restoring the metabolism of
biological macromolecules, regulating the apoptosis cascade to reduce cell apoptosis,
and inhibiting inflammatory signal pathways to alleviate inflammation. This article reviews
the pharmacological effects and protective mechanisms of some plant polysaccharides in
modulating the cardiovascular system, which is beneficial for developing more effective
drugs with low side effects for management of cardiovascular diseases.
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INTRODUCTION

Cardiovascular disease (CVD) is a type of chronic non-infectious disease caused by circulatory
system damage (Abe et al., 2017), with the characteristics of high incidence and large mortality. In
recent years, owing to human lifestyle changes, the prevalence of CVD has been on an upward trend,
and its fatality rate far exceeds that of cancer and other diseases. Statistically, more than two-fifths of
deaths are attributed to CVD, in the rural and urban Chinese death population in 2016 (Ma et al.,
2020), which makes CVD become the number one killer that affects human health. With the
increasing understanding of the pathogenesis of CVD, the level of medical care of CVD has made
great progress. Still, there are some shortcomings in the clinical treatment of CVD that remain to be
resolved. In terms of drugs, most of small molecule chemicals commonly used in clinical treatment of
CVD have many adverse reactions, insignificant efficacy, low patient compliance and other
disadvantages. Consequently, in the process of seeking new drugs, plant polysaccharides with
multiple targets, good biocompatibility and low toxicity have gradually become a hot spot in the
research of anti-CVD drugs.

As a kind of natural macromolecule polymer extracted from various parts of plants, plant
polysaccharides are composed of ten or more monosaccharides through polymerization with
glycosidic linkages (Yu et al., 2018). A large number of studies have shown that plant
polysaccharides have various bioactivities such as anti-tumor, immunomodulation, antioxidant,
radioprotection, hepatoprotection, anti-virus (Xie et al., 2016; Yu et al., 2018), which play an
important role in regulating human physiological functions. More importantly, several studies have
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also shown other functions of plant polysaccharides such as
antioxidant, anti-hyperglycemic, anti-hypertensive, anti-
atherosclerosis, anti-myocardial ischemia etc. (Zaporozhets and
Besednova, 2016). These pharmacological effects provide a
theoretical basis for plant polysaccharides to treat CVD. This
article reviews reported mechanisms by which plant
polysaccharides protect CVD from the perspective of multiple
pharmacological effects.

PROTECTIVE EFFECTS OF PLANT
POLYSACCHARIDES ON
CARDIOVASCULAR SYSTEM
Globally, CVD is not only the leading cause of the decline in
people’s quality of life, but a primary reason for death. The
pathogenesis of CVD is complicated, including glucose or lipid
metabolism disorders, endothelial dysfunction, oxidative stress,
and inflammation response. Till now, atherosclerosis, myocardial
ischemia, abnormally elevated blood pressure, and thrombosis
are recognized as the main risk factors for inducing CVD
(Benjamin et al., 2019). Plant polysaccharides from natural
sources play a cardiovascular protective effect by improving
these series of risk factors.

The Effect of Plant Polysaccharides on
Hypertension
Hypertension characterized by an uncontrolled increase in blood
pressure leads to arteriosclerosis and myocardial injury, which
has been regarded as one of the major factors to induce a series of
refractory CVDs including coronary heart disease,
cerebrovascular disease (stroke) and heart failure (Huang
et al., 2013). The occurrence and development of hypertension
is related to quite a few factors, among them, the dysfunction of
endothelial and vascular smooth muscle is one of the primary
causes of hypertension. Previous studies have shown that
administration of low-molecular-weight fucoidan (LMWF)
extracted from brown algae promoted the phosphorylation of
endothelial nitric oxide synthase (eNOS) at Ser1177 and up-
regulated the eNOs/NO signal of vascular endothelial cells, which
significantly improved the vasodilation disorder induced by
endothelial dysfunction and robustly reduced basal
hypertension in Goto-Kakizaki type 2 diabetic rats (Cui et al.,
2014). Additionally, the subsequent findings by the research
group suggested that LMWF also alleviated the hyper-
responsiveness of vascular smooth muscle caused by diabetes
and effectively improved diabetes induced hypertension. The
effect of anti-vascular smooth muscle hyper-responsiveness of
LMWF is mainly achieved by restoring the activity of antioxidant
enzymes to inhibit the production of ROS, and inhibiting COX-2
to reduce the level of vasoconstrictor TXA2 in vascular smooth
muscle (Liang et al., 2016). Consistently, mean arterial blood
pressure in both normal blood pressure rats and hypertensive rats
were appreciably lowered by white mulberry fruit
polysaccharides, which is also related to the increase of the
release of NO in vascular endothelial cells (Wang et al., 2019).

In this study, the production of NO may be related to the
activation of intracellular Ca2+ signaling and PI3K/AKT
signaling pathway. In addition, Astragalus polysaccharides
treatment also reduced the mean pulmonary artery pressure in
rats with monocrotaline-induced pulmonary arterial
hypertension by activating eNOS/NO signaling pathway (Yuan
et al., 2017). Interestingly, several studies have demonstrated that
plant polysaccharides can also reduce high blood pressure by
inhibiting angiotension-converting enzyme (ACE), including
acidic polysaccharides from gastrodia rhizome (Lee et al.,
2012), Chickpea water-soluble polysaccharide (Mokni Ghribi
et al., 2015), Cymodocea nodosa sulfated polysaccharide (Kolsi
et al., 2016), Momordica charantia polysaccharide (Tan and Gan,
2016), as well as water-soluble polysaccharides from Ephedra
alata (Soua et al., 2020) and Almond and Pistachio (Sila et al.,
2014). They can not only alleviate vasoconstriction by inhibiting
the formation of angiotensin II, but also reduce metabolism of
vasodilator bradykinin through the inhibition of kininase II,
thereby dilating blood vessels and lowering blood pressure.
Figure 1 summarizes plant polysaccharides with anti-
hypertension activities.

The Effect of Plant Polysaccharides on
Atherosclerosis
Atherosclerosis (AS) is a lipid-driven vascular inflammatory
disease accompanied by gradually formation of vascular
occlusive plaques and thrombus at the lesion site, which in
turn induces CVDs including myocardial and cerebral
infraction. Polysaccharides from Nitraria retusa fruits (Rjeibi
et al., 2019) improved the atherosclerosis index (AI) of
hyperlipidemia mice induced by TritonX-100 by reducing the
level of serum triglycerides (TG), total cholesterol (TC), low-
density lipoprotein cholesterol (LDL-C), and increasing the level
of high-density lipoprotein cholesterol (HDL-C). Treatment with
Gastrodia rhizomes crude and acidic polysaccharides (Kim et al.,
2012) also markedly reduced the content of serum TC, LDL-C
and AI of high-fat diet rats, but had no effect on serum TG and
HDL-C levels. Furthermore, Enteromorpha prolifera
polysaccharide (Tang et al., 2013; Guo et al., 2021),
polysaccharides from Porphyra yezoensis (Qian et al., 2014)
also reversed abnormal serum lipid concentrations in rats or
hamsters with high-fat feeding, which is beneficial to alleviate
atherogenesis. Fan et al. (Fan et al., 2013) found that the effect of
Okra polysaccharide in lowering the serum lipid contents of obese
mice was related to the regulation of the expression of lipid
metabolism-related genes. Likewise, administration of
polysaccharides from Rosae laevigatae fruits (Yu et al., 2013;
Zhang et al., 2020), the sulfated polysaccharide from Ulva pertusa
(Qi and Sheng, 2015; Li et al., 2020) and Ophiopogon
polysaccharide (Wang et al., 2017) decreased blood lipids also
by affecting the expression of these genes. Surprisingly, the
Ophiopogon polysaccharide (Shi et al., 2016) also lowered the
blood lipid level of hyperlipidemia mice by combining with the
cholesterol metabolite bile acid then promoting the excretion of
cholesterol through feces. Cyclocarya paliurus polysaccharide
improved the blood lipid levels of hyperlipidemia rats by up-
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regulating the level of lipoprotein lipase, hormone-sensitive lipase
as well as adipose triglyceride lipase, which promote lipid
metabolism by down-regulating the level of acetyl-CoA
carboxylase, fatty acid synthase as well as hydroxy
methylglutaryl coenzyme A reductase (HMG-CoA) involved in
lipid synthesis (Yang et al., 2016; Hu et al., 2017). Yang et al. also
reported that Cyclocarya paliurus polysaccharide can regulate the
expression of lipid metabolism enzymes by affecting the
methylation level of related genes, thereby reducing blood
lipids (Yang et al., 2019; Yang et al., 2021). Besides, fucoidan
not only promoted lipid metabolism by regulating the expression
of cholesterol metabolism-related genes, but inhibited the
expression of aortic α-smooth muscle actin (α-SMA), CD11b
and vascular endothelial growth factor (VEGF), fibroblast growth
factor-2 (FGF-2), P-SAPK as well as inflammatory cytokines,
which alleviated atherosclerotic lesions in apolipoprotein
E-deficient (apoE-/-) mice with high fat diet (Xu et al., 2019;
Yin et al., 2019).

On the other hand, in atherosclerosis progression,
macrophages can not only release inflammatory mediators to
promote inflammatory response in the site of lesion, but
excessively ingest lipids to transform into foam cells that are
one of the components of atherosclerotic plaque. Remarkably, the
administration of sulphated galactan isolated from the
Acanthophora muscoides decreased the content of
macrophages and tissue factor in the atherosclerotic plaques of
apoE-/- mice with high-cholesterol diet by directly interferes with
the chemotactic function of macrophages (GomesQuindere et al.,
2015). In cholesterol crystals-pretreated macrophage-like THP-1

cells, treatment with Chayote polysaccharides reduced
intracellular lipids levels by up-regulating the expression of
liver X receptor alpha (LXRα), and also inhibited the
activation of inflammasome NLRP3 (Castro-Alves et al., 2019).
Additionally, Red alga polysaccharides inhibited the activation of
NF-κB and the up-regulation of intercellular vascular cell
adhesion molecule-1 (VCAM-1) as well as adhesion molecule-
1 (ICAM-1) in human coronary artery endothelial cells
(HCAECs) induced by angiotensin II (Hamias et al., 2018) or
TNF-α (Levy-Ontman et al., 2017), which is helpful for alleviating
inflammatory atherosclerosis progression. In addition, Opuntia
dillenii Haw. Polysaccharides (Zhao et al., 2012) improved the
aortic injury of hyperlipidemia rats by inhibiting the expression of
VCAM-1 in the vascular endothelial and smooth muscle cells,
which alleviated the process of AS. Figure 2 shows plant
polysaccharides with anti-atherosclerosis actions.

The Effect of Plant Polysaccharides on
Thrombus
Thrombus is a blood clot formed by the aggregation of insoluble
fibrin, activated platelets, and other cells on the internal surface of
blood vessels at the site of injury, including arterial thrombosis
and venous thrombosis (Chan and Weitz, 2019). Several plant
polysaccharides have the biological activity of anticoagulant and
inhibiting platelet aggregation, which could effectively depress
the thrombosis. Guar gum hydrolysate delayed the time to arterial
blood flow decreases to zero, which is beneficial to depress arterial
thrombosis induced by Fecl3 in hamster with high-fat diet (Kuo

FIGURE 1 | Plant polysaccharides with anti-hypertension activities.
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et al., 2009). Consistently, chemically sulfated guar gum exhibited
anticoagulant and antithrombotic effects in rats (de Oliveira
Barddal et al., 2020). Similarly, sodium alginate sulfates
inactivated α-thrombin and coagulation factor Xa through the
interaction between negative charges in the sulfate groups and the
positively charges of anti-thrombin amino acid residues, exerting
anticoagulant effect (Fan et al., 2011). Differently, sulfated Citrus
pectin fractions inhibited coagulation factor Xa and platelet
aggregation by directly inhibiting α-thrombin, which
attenuated venous thrombosis in rats (Cipriani et al., 2009).
Additionally, sulfated rhamnan from Monostroma angicava
(Liu D. et al., 2018), sulfated Pumpkin polysaccharide (Liang
et al., 2018), sulfated Ginger polysaccharide (Wang et al., 2020),
sulfated polysaccharides from Codium dwarkense børgesen
(Golakiya et al., 2017), other sulfated polysaccharides extracted
from seaweeds (Glauser et al., 2013; Chagas et al., 2020), as well as
tea polysaccharides from Camellia sinensis (Cai et al., 2013) have
been reported to have anticoagulant effects. On the other hand,
Caesalpinia ferrea polysaccharides (de Araujo et al., 2021),
polysaccharides of Geoffroea spinosa (Souza et al., 2015) and
Lycium barbarum L. leaves polysaccharides (Lin et al., 2019)
not only have anticoagulant activity but inhibit platelet
aggregation, which exhibit depression effects on the
formation of thrombus.

The Effect of Plant Polysaccharides on
Myocardial Ischemia and Myocardial
Ischemia-Reperfusion Injury
In recent years, persistent myocardial ischemia has becoming the
primary cause of myocardial infarction (Thomes et al., 2010). As
a classical approach, ischemia reperfusion could effectively
restore the blood supply of ischemic myocardium, however,

the production of a large amount of reactive oxygen species
(ROS) and the infiltration of inflammatory cells caused by
ischemia-reperfusion can also cause irreversible damage to the
heart tissue (Hou et al., 2017). The biological activities of plant
polysaccharides including anti-oxidant stress, anti-apoptosis, and
anti-myocardial ischemia are beneficial to slow the progression of
ischemic heart disease. Dendrobium officinale polysaccharides
supplementation elevated serum SOD levels, up-regulated the
expression of meis1, inhibited cardiomyocyte apoptosis, which
significantly improved myocardial ischemic injury induced by
coronary artery ligation in mice (Dou et al., 2016). Anti-oxidant
and anti-apoptosis effects of Dendrobium officinale
polysaccharide on cardiomyocytes were discovered using
H9C2 cells damage model induced by H2O2 (Zhao et al.,
2017). Ophiopogon japonicus polysaccharide promoted
angiogenesis in myocardial ischemic tissue by activating
SPHK/S1P/bFGF/AKT/ERK and eNOS/NO signaling
pathways, which decreased the myocardial infarct size in rats
with acute myocardial ischemia (Wang et al., 2012). It also
increased endogenous antioxidants contents, Na+-K+-ATPase
and Ca2+-Mg2+-ATPase activities in rats with isoproterenol
(ISO)-induced myocardial ischemia (Fan et al., 2020).
Momordica charantia polysaccharides protected rats against
ISO-induced cardiomyocytes damage attributed to the
depression of NF-κB, the increase of myocardial antioxidants
levels and the decrease of pro-inflammatory factors (Raish, 2017).
For rats with myocardial injury caused by cardiac ischemia or I/R,
fucoidan plays a cardioprotective effect by improving oxidative
stress, reducing the release of inflammatory factors and
normalizing the Na+-K+-ATPase and Ca2+-Mg2+-ATPase levels
(Li et al., 2011; Krishnamurthy et al., 2012). Notably, in cardiac
I/R injury rats, Tamarind xyloglucan inhibited MAPK/bax/
caspase-3 apoptosis cascade by up-regulated the expression of

FIGURE 2 | Plant polysaccharides with anti-atherosclerosis actions.
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fatty acid-binding protein (Lim and Lee, 2017), while Larch
arabinogalactan depressed the cardiomyocytes apoptosis by
inhibiting gelsolin/MAPK p38 and gelsolin/HIF-1α signals,
which effectively alleviated myocardial damage (Lim, 2017).
Moreover, Astragalus polysaccharides (Liu X. et al., 2018),
Angelica sinensis polysaccharides (Zhang et al., 2010), Aralia
elata polysaccharide (Zhang et al., 2013), Aloe vera selenium
polysaccharides (Yang et al., 2017), Salvia miltiorrhiza
polysaccharide (Song et al., 2013; Geng et al., 2015) as well as
Soybean oligosaccharides (Zhang et al., 2015) have been reported
to the effects of anti-oxidation and reduce myocardial cell
apoptosis in cardiac I/R model rats. More strikingly, Aloe vera
selenium polysaccharides, Salvia miltiorrhiza polysaccharide and
Soybean oligosaccharides also elevated the activities of Na+-K+-
ATPase and Ca2+-Mg2+-ATPase, which is consistent with the
effect of Lycium barbarum L. polysaccharide on cardiomyocytes
in cardiac I/R rats (Hou et al., 2017). In the experiment of
hypoxia-reoxygenation treatment of H9C2 cells, Fructus
aurantii polysaccharide inhibited bax/caspase-mediated cells
apoptosis and promoted the antioxidant effect mediated by
Nrf2/HO-1 signal by activating the PI3K/AKT signaling
pathway (Shu et al., 2020). Yang et al. also proved that
Fructus aurantii polysaccharide has a protective effect on

ISO-induced myocardial ischemia injury in rats by exerting
antioxidant and anti-apoptotic effects (Yang et al., 2020).
Figure 3 exhibits plant polysaccharides with myocardial
protective effects.

DISCUSSION

In recent years, with the rise of botanical medicine, the active
ingredients in traditional herbs have gradually attracted people’s
attention. As one of the main active ingredients in most plant
extracts, polysaccharides are widely used in research on the
treatment of cardiovascular diseases. Nevertheless, most of the
reports focus on the extraction, isolation, physical, and chemical
properties of plant polysaccharides, but the pharmacological
research of plant polysaccharides is relatively simple. We
believe that the exact target of plant polysaccharides in vivo,
and the cardiovascular protective mechanism at the molecular
level need to be studied in depth in the future. On the other hand,
although we generally accepted that plant polysaccharides had
low toxicity or side effects, the structural uncertainty of plant
polysaccharide monomers and individual differences might still
lead to serious adverse events, so that the identification of plant

FIGURE 3 | Plant polysaccharides with myocardial protective effects.
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polysaccharide molecular structure and adverse reactions
clarification are necessary.
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