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Abstract. The c-myc and c-myb proto-oncogenes en- 
code phosphorylated nuclear DNA binding proteins 
that are likely to be involved in transcriptional regula- 
tion. Here we demonstrate that both Myc and Myb 
proteins are hyperphosphorylated during mitosis. In 
the case of Myb, hyperphosphorylation is accompa- 
nied by the appearance of three M phase-specific tryp- 
tic phosphopeptides. At least one of these phosphopop- 
tides corresponds to a phosphopeptide generated after 
phosphorylation of Myb in vitro by p34 ~ kinase. By 
contrast, the mitotic hyperphosphorylation of Myc 
does not correlate with the appearance of unique phos- 
phopeptides, suggesting that M phase and interphase 
sites may be clustered within the same peptides. In 

addition Myc does not appear to be a target for p34 ~ 
phosphorylation. 

The hyperphosphorylated forms of Myc and Myb 
from mitotic cells are functionally distinct from the 
corresponding interphase proteins in that the former 
have reduced ability to bind nonspecifically to double- 
stranded DNA cellulose. Furthermore, mitotic Myb 
binds poorly to oligodeoxynucleotides containing an 
Myb response element. We surmise that the decreased 
DNA binding capacity of hyperphosphorylated Myb 
and Myc during M phase may function to release 
these proteins from chromatin during chromosome 
condensation. 

T 
HE notion that the complex series of nuclear and cy- 
toplasmic events that constitute mitosis (M phase) in 
eukaryotes may be triggered by a single signal, or a 

small number of signals, dates back to cell fusion experi- 
ments in the slime mold Physarum as well as mammalian 
cells (Johnson and Rao, 1970, Rausch et al., 1966). Fusion 
experiments between cells in G2/M phase and cells in other 
cell cycle phases revealed that the former possess a dominant 
factor(s) which can act upon intcrphase nuclei to induce pre- 
mature chromosome condensation and nuclear envelope 
breakdown (Johnson and Rao, 1970). This idea has been 
borne out by recent work leading to the identification of a 
protein complex whose action appears to control entry into 
M phase and possibly other cell cycle phases as well. A key 
constituent of this complex is a highly conserved protein 
kinase (p34~2). This supports the notion that the mitotic 
"trigger" may function through a phosphorylation cascade 
(for recent reviews see Nurse, 1990, Moreno and Nurse, 
1990, Pines and Hunter, 1990). 

It has long been thought that protein phosphorylation is in- 
volved in mitosis. Several studies had demonstrated a 
general increase in phosphorylation during entry of mam- 
malian tissue culture cells into M phase (Davis et al., 1983). 
Furthermore, a phosphorylated epitope present on multiple 
proteins during mitosis appeared to be specifically recog- 
nized by mAbs prepared against an M phase HeLa cell ex- 
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tract (Davis et ai., 1983). One of these antibodies, MPM-2, 
was found to produce diffuse immunofluorescent staining 
during interphase, while during M phase it reacted strongly 
with ldnetochores, centrosomes, midbodies and other nu- 
clear proteins (Vandre et al., 1984). Specific target proteins 
for M phase phosphorylation have also been identified in- 
cluding microtubules (Piras and Piras, 1975), historic H1 
(for review see Wu et al., 1986), and the nuclear lamins 
(Gerace and Blobel, 1980). In the case of the lamins, M 
phase-specific hyperphosphorylation appears to be respon- 
sible for lamin disassembly, and subsequent dephosphoryla- 
tion is required for lamin reassembly at the end of mitosis 
(for review see Burke and Gerace, 1986; Ottaviano and Ger- 
ace, 1985; Suprynowicz and Gerace, 1986; Fisher, 1987). 

The concept that cycles of phosphorylation and dephos- 
phorylation initiate and regulate key cell cycle events has 
been greatly bolstered by the finding that the p34 ~c2 kinase 
is a critical component oftbe mitotic-activating complex. An 
important goal has become to identify primary substrates of 
p34 ua and to relate their phosphorylation to specific cell 
cycle changes. Recent work (for review see Moreno and 
Nurse, 1990) has demonstrated a number of interesting sub- 
strates for the mitotic kinase including the nuclear lamins 
(Heald and McKeon, 1990; Liischer et al., 1991; Peter et al., 
1990), histone HI (Langan et al., 1989), RNA polymerase 
II (Cisek and Corden, 1989), HMGI (Reeves et al., 1991), 
caidesmon (Yamashiro et al., 1991; Mak et al., 1991) GTP- 
binding proteins (Bailly et al., 1991), and SWI5 (Moll et al., 
1991). The studies on the nuclear lamins indicate that phos- 
phorylation by p34 ~2 is crucial for nuclear lamina disas- 
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sembly (Heald and McKeon, 1990; Peter et al., 1990). For 
SWIS, phosphorylation by cdc28 seems to regulate the sub- 
cellular localization, the phosphorylated form being cyto- 
plasmic and the dephospho form nuclear (Moll et al., 1991). 
For the other substrates it is not yet completely clear what 
role, if any, p34 ~c2 phosphorylation plays in the function of 
the other substrates. 

Given that oncogenes appear to be involved in the regula- 
tion of cell proliferation, it is of interest to determine 
whether their protein products are also differentially phos- 
phorylated during mitosis. Recent studies have demon- 
strated M phase hyperphosphorylation for ppt0 ~ and sev- 
eral other src family protein tyrosine kinases, mos, plS0 ~et 
(for extensive review see Shalloway and Shenoy, 1991), and 
the tumor suppressor proteins Rb (Chen et al., 1989; Lin et 
al., 1991) and p53 (Thilner et al., 1990; Brischoff et al., 
1990; Stirzbecher et al., 1990). Phosphopeptide mapping 
experiments indicate that these proteins may be directly 
phosphorylated by p34 ~dc2. In the case of pptO ~'~ the M 
phase phosphorylation results in a significant increase in ki- 
nase activity possibly mediated through a secondary event 
involving loss of phosphate from tyrosine 527 (Bagrodia et 
al., 1991). 

The oncogene-encoded proteins examined for M phase 
hyperphosphorylation thus fax have been primarily cytoplas- 
mic kinases (for review see ShaUoway and Shenoy, 1991). 
Here we report studies on the phosphorylation state of the 
proteins encoded by the c-myc and c-myb protooncogenes 
(referred to as Myc and Myb proteins, respectively). Both 
of these proteins are sequence-specific DNA binding pro- 
teins that have been implicated in the control of cell differen- 
tiation and proliferation. They are thought to function as 
transcription factors, although roles in DNA replication have 
also been considered (for recent reviews see Liischer and 
Eisenman, 1990b,c). Previous work has demonstrated that 
Myc and Myb are phosphorylated in exponentially growing 
cells by casein kinase II (CKID (Lfischer et al., 1990, 1989). 
Phosphorylation by CKII inhibits the sequence-specific 
binding of Myb and it has been suggested that the frequent 
loss of the CKII phosphorylation site may contribute to on- 
cogenic activation (Lfischer et al., 1990). For Myc the func- 
tional significance of CKII phosphorylation has not been 
resolved (Street et al., 1990). Here we show that the onset 
of mitosis correlates with additional phosphorylation events 
on Myc and Myb as well as with a reduced ability of both 
these proteins to bind DNA. 

Materials and Methods 

Cell Culture and Labeling 
HeLa cells were grown in DME, supplemented with 10% FBS. The human 
Burkitt's lymphoma cell line Manca was maintained in DME supplemented 
with 10% bovine serum. The chicken bursal lympboma cell line BK3A has 
been described (Hihara et ai., 1974; Liiscber et aL, 1991). For mitotic ar- 
rest experiments, exponentially growing HeLa ceils were arrested at the 
G1/S border of the cell cycle by treatment with 1 mM thymidine for 16 h. 
Then the cells were washed and incubated for 8 h in regular medium to al- 
low transition through S phase before the addition of 100 ng/ml of nocoda- 
zole (Sigma Chemical Co., St. Louis, MO). After 5 h in nocodazole, the 
mitotic cells were removed from the monolayer by shake-off. Exponentially 
growing BIC3A cells were treated for 10-11 h with 100 ng/ml nocodazole. 
The mitotic index of the nocodazole-treated cells was determined by DAPI 
staining of methanol/acetone fixed cells. More than 95% of the HeLa cells 

and between 90-85 % of the BK3A cells displayed regularly condensed 
chromosomes. Cell labeling with [3sS] methionine and with 32p_ 
orthopbosphate was performed as described previously (Liiscber et al., 
1991; Liischer and Eisenman, 1988). 

Antibodies 
The antipeptide antibodies used were afffinity-purified rabbit antibodies pre- 
pared against synthetic peptides corresponding to the 12 COOH-terminal 
amino acids of human or chicken Myc, respectively (Harm et al., 1983; 
Harm and Eisenman, 1984). The Myb-specific polyclonal rabbit antiserum 
raised against a bacterial fusion protein has been described (Liischer and 
Eisenman, 1988). The Myb-specific mAb 2.27, raised against a bacterial 
fusion protein, was obtained from G. Ramsay (University of California, San 
Francisco) (Evan at ai., 1984). The polyclonal rabbit antiserum recognizing 
enolase was obtained from J. Cooper (Fred Hutchinson Cancer Research 
Center) (Cooper et al. 1983). The anti-p34 c~'2 antibodies used were 
affinity-purified rabbit antibodies prepared against a synthetic peptide corre- 
sponding to the 8 COOH-terminal amino acids of human p34 and was ob- 
tained from J. Wang (University of California, San Diego) (Lin et ai., 1991). 

Immunoprecipitation and Immunoblotting 
All the procedures were as described previously (Liischer et al., 1991, 
Lfischer et ai., 1990, 1988; Liischer and Eisenman, 1990a). 

Kinase Assays 
p34 cdc2 kinase assays using purified enzyme (Brizuela et al., 1989) were 
performed on immunoprecipitated Myc or Myb as described for lamin B2 
(Liischer et al., 1991). Alternatively, Myc or Myb were first immunoprecip- 
itated onto protein A-Sepharose 4B beads and the p34 ode2 was immunoprc- 
cipitated from nocodnzole-treated Manta cells onto the same Sepharose 
beads. The kinase reactions were performed as described (Litscher et al., 
1991). Casein kinase 1I assays were done as described before (Uischer et 
al., 1989). For Glycogen synthase kinase 3 (GSK3) kinase assays, Myc was 
immunoprecipitated onto protein A-Sepharose 4B beads and washed. Be- 
fore the kinase reaction, the immunocomplexes were washed twice in 20 
mM imidazole-HCI, pH 7.4, 5 mM MgC12, 0.02 ram EDTA, and then 
taken up in 20 #1 of the same buffer and 2 ~1 of purified GSK3 (from rabbit 
muscle, 250 U/ml against Mg/ATP-dependent protein phosphatase, ob- 
tained from T. Haystead, University of Washington). The reaction was per- 
formed at 30°C for 15 rain and stopped by the addition of SDS-gel sample 
buffer. 

Phosphopeptide Mapping and Phosphoamino 
Acid Analysis 
Two-dimensional phosphopeptide mapping and phosphoamino acid analy- 
sis were performed as described before (Firzlaff et al., 1989; Lfiscber et 
al., 1991). One-dimensional phosphopeptide mapping was done as de- 
scribed previously (Liischer et al., 1989), except that proteinase K (10 
ng/sample) was used instead of S. aureus V8 protease. 

DNA Binding 
For DNA-cellulose chromatography assays, 20-30 x 106 exponentially 
growing or nocodazole-arrested BK3A cells were labeled with 32P i for 2 h. 
The labeled cells were then resuspended in 0.5 ml of buffer C (30 mM Tris- 
HCI, pH 7.4, 5 mM NaF, 10 mM b-glycerophosphate, 15 aprotinine) con- 
taining 400 raM NaC1 and broken by sonication. The cell lysates were 
cleared by centrifugation at 16,000 g for 15 re_in. The supernatants were 
diluted with buffer C to 50 mM NaC1 (loading buffer) and loaded onto a 
double-stranded DNA cellulose column (bed volume 1 ml, obtained from 
Sigma Chemical Co.). The lysate was passed three times over the column. 
After washing with loading buffer the bound proteins were eluted stepwise 
with increasing salt concentrations. Individual fractions were adjusted to 
0.5% of NP-40, DOC, and SDS. Myc and Myb were successively immuno- 
precipitated from individual fractions using specific antibodies. The gel 
retardation assays are performed as described previously (Lfischer et ai., 
1990). In brief, Myb was immunoprecipitated from detergent lysates of 
BK3A cells. The immunoprecipitated protein was released from the anti- 
body by treatment with 6M gnanidine-HC1, 0.1% ~-mercapteethanol. The 
denatured proteins were renatured by dialysis against gel mobility shift 
buffer. 
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Results 

Myc in Interphase and Mitotic HeLa Cells 

In our initial studies we examined the synthesis of Myc in 
mitotic and interphase HeLa cells. Mitotic cells were pre- 
pared as described in detail in Materials and Methods. To 
increase the number of cells in mitosis we first treated the 
exponentially growing HeLa cell monolayer cultures with 
excess thymidine for 16 h in order to block most cells at the 
G1/S border. After wash-out of the thymidine the partially 
synchronized population was allowed to continue growth 
through S phase for an additional 8 h before treatment with 
nocodazole. After 5 h in nocodazole the mitotic cells were 
harvested by shake-off, labeled with 32p-orthophosphate 
(32pi) or p~S]methionine, lysed in detergents, and immuno- 
precipitated with specific anti-Myc antibody. Fig. 1 shows 
an SDS-PAGE analysis of anti-Myc immunoprecipitates 
psS]methionine labeled from mitotic (lane 4) and inter- 
phase HeLa cells (lane 3). In this experiment we estimated 
that 99 % of the harvested cells contained condensed chro- 
matin and were in mitosis as judged by DAPI staining (data 
not shown). The two major c-myc primary translation prod- 
ucts p64c-My c and p67 c'Myc are clearly detected in the inter- 
phase cells along with a series of faint background bands un- 
related to Myc. By contrast, the mitotic cells appear to lack 
any labeled protein bands co-migrating with p64/p67,-My c, 
although many of the faint background bands are still visible. 
The absence of [35S]methionine labeled Myc in mitotic 

HeLa cells is not simply due to shut-off of protein synthesis 
in mitosis since the immunoprecipitation was performed on 
mitotic and interphase extracts whose volumes were adjusted 
for equal incorporation of the radioactive label. Further- 
more, when equal quantities of total radioactive extract were 
electrophoresed we clearly detected synthesis of the major 
interphase proteins, with some exceptions, during mitosis, 
although overall translation was depressed several fold in this 
experiment (Fig. 1, lanes 1 and 2). 

Although newly synthesized Myc could not be detected in 
these cells blocked in mitosis, we reasoned that a potentially 
stable pool of Myc, such as that observed by anti-Myc im- 
munofluoresence analysis of mitotic cells (Eisenman et al., 
1985; Winqvist et al., 1984), might be detectable through 
phosphate exchange after 32pi labeling. SDS-PAGE compar- 
ison of equal aliquots of 32pi labeled mitotic and interphase 
HeLa cells showed an apparent increase in phosphorylation 
in the mitotic cells, including several strongly labeled bands 
(Fig. 1, lanes 5 and 6). Immunoprecipitation with anti-Myc 
revealed the expected 32pi-labeled p64/p67 c-~yc bands in in- 
terphase cells (Fig. 1, lane 9). Treatment of the immunocom- 
plex with alkaline phosphatase before denaturation and elec- 
trophoresis resulted in the loss of most but not all of the 
32pi-label, with no change in electrophoretic mobility of the 
residual labeled material (Fig. 1, lane 10). Anti-Myc im- 
munoprecipitates from mitotic cells however showed a 
specific 32Pi-labeled doublet with the major labeled species 
migrating ,,ol kD more slowly than p64 (Fig. I, lane 7). 
Again, alkaline phosphatase treatment removed most of the 

Figure L Myc in mitotic HeLa cells. Logarithmically growing HeLa cells (I) or cells arrested in metaphase by nocedazole treatment (M) 
were labeled with [35S]methionine (lanes 1-4), with 32pt (lanes 5-10), or were unlabeled (lanes 11-15). Total labeled cell lysates were run 
in lanes 1, 2, 5, and 6, and unlabeled cell lysate was run in lanes 14 and 15. Myc was immunoprecipitated using afffinity-purified antibodies 
raised against the 12 COOH-terminal amino acids of human Myc 0anes 3, 4, 7-13). After separation on an SDS-polyacrylamide gel, the 
samples in lanes 11-15 were transferred to nitrocellulose and probed with anti-Myc antibodies (lanes 11-13) or with antienolase antiserum 
(lanes 14 and 15). The immunoprecipitates in lanes 8, 10, and 13 were treated with alkaline phosphatase (,4/') before separation on SDS- 
polyacrylamide gels. Samples were analyzed on 10% SDS-PAGE. The following prestained molecular mass markers were used for this 
and all other analyses: myosin (200 kD), phosphorylase B (97.4 kD), BSA (68 kD), ovalbumin (43 kD), and ~x-chymotrypsinogen (25.7 kD). 

Liischer and Eisenman Mitotic Hyperphosphorylation of Nuclear Oncoproteins 777 



Figure 2. Phosphorylation of 
Myb and Myc in the chicken 
bursal lymphoma cell line 
BK3A. Myb and Myc were im- 
munoprecipitated from loga- 
rithmically growing BK3A cells 
and phosphorylated in an in 
vitro kinase reaction by p34 ~ 
(lane 1). Myb and Myc were 
immunoprecipitated from 32pi- 
labeled BK3A cells arrested in 
mitosis by nocodazole treat- 
ment (lane 2), released from 
the nocodazole block for 2 
(lane 3), 6 (lane 4), and 10 h 
(lane 5), or from logarithmi- 
cally growing ceils (lane 6). 
After the nocodazole block, 
ceils were labeled during the 
last 2 h of the incubation time. 

The lysates were sequentially immunoprecipitated with anti-Myc 
antibodies and then with anti-Myb antiserum. Samples were ana- 
lyzed by 10% SDS-PAGE. 

label but in this case the mobility of the residually labeled 
proteins was shifted to that found in the interphase cells (Fig. 
1, lanes 8-10). 

To determine whether the mobility shift of phosphate- 
labeled Myc in mitotic relative to interphase cells was an ar- 
tifact due to labeling of a small population of Myc in mitosis, 
we analyzed total Myc in mitotic and interphase cells using 
immunoblotting. Since the very low levels of Myc preclude 
direct immunoblotting of cell extracts, we first prepared anti- 
Myc immunoprecipitates from unlabeled mitotic and inter- 
phase HeLa cells which were fractionated on SDS-PAGE, 
transferred to nitrocellulose, and probed with anti-Myc anti- 
bodies followed by anti-rabbit Ig-alkaline phosphatase con- 
jugate. The major band at 53 kD corresponds to the Ig heavy 
chains from the first immunoprecipitate. The p64/p67c-uyo 
proteins were visible in interphase cells (Fig. 1, lane 1/), 
while mitotic ceils contain major anti-Myc detectable pro- 
teins shifted to ~1 kD higher molecular mass (Fig. 1, lane 
12). Alkaline pbosphatase treatment of the initial im- 
munocomplex again resulted in a shift to the interphase mo- 
bility (Fig. 1, lane 13). 

These results suggest that while there is little or no de novo 
synthesis of Myc in HeLa cells blocked in mitosis there is 
nonetheless a pool of potentially stable Myc. This pool of 
Myc differs from that found in interphase cells in that it has 
a slower electrophoretic mobility due to pbosphorylation, a 
result reminiscent of that for hyperphosphorylated ppt0 ~-sr~ 
and other proteins in mitotic cells (Shalloway and Shenoy, 
1991). That the altered mobility of Myc is not due to some 
nonspecific effect of our procedure for inducing mitosis or 
is not simply a general modification of all cellular proteins 
was demonstrated by examining the cytoplasmic phos- 
phorylated enzyme enolase which did not possess an altered 
electrophoretic mobility when mitotic and interphase cells 
were compared (Fig. 1, lanes 14 and 15). 

Nuclear Oncoprotein Phosphorylaffon in Avian 
Lymphoid Cells 
Our initial studies using HeLa cells suggested that Myc was 
differentially phosphorylated in interphase and mitosis. For 

further experiments, we utilized the rapidly growing chicken 
B cell lymphoma cell line BIC3A. The use of BK3A allowed 
us both to extend our initial observations to another cell type 
and to examine the Myb nuclear oncoprotein since c-myb ex- 
pression is mainly restricted to hematopoietic cells (Lfischer 
and Eisenman, 1990c). After treatment of BK3A cells with 
nocodazole for 10-11 h, 90-95% of the harvested cells had 
condensed chromatin as determined by DAPI staining (data 
not shown). These cells were either labeled with 32Pi for 2 h 
in the presence of nocodazole or released from the block 
for the times indicated and labeled during the final 2 h. Im- 
munoprecipitates from these labeled cells were prepared 
first with an anti-Myc antiserum then with anti-Myb, and 
analyzed on SDS-PAGE. Both Myc and Myb were shifted to 
a slightly lower electrophoretic mobility in mitotic compared 
to interphase cells (Fig. 2). This shift in the apparent molec- 
ular weights of Myc and Myb was rapidly reversed after 
removal of nocodazol (Fig. 2, lanes 2-5). In addition to the 
altered mobility of M phase Myc, a 60-kD species was ob- 
served which in I phase cells was only visible after prolonged 
exposure of the gel (see Figs. 5 A). The labeled protein spe- 
cies indicated as p46, p41, and p21 in Fig. 5 A are NH2- 
terminal truncated forms of c-Myc as determined by their re- 
activity with a COOH-terminal antibody and by comparative 
phosphopeptide mapping (B. Ltischer unpublished observa- 
tions). These forms are potential degradation products of 
Myc. In mitotic cells the p21 form was absent (see Fig. 5 A). 

Since we need to treat cells with nocodazole in order to 
obtain sufficient quantities of mitotic cells, it is formally pos- 
sible that the effects observed on Myc and Myb (also see be- 
low) might be due simply to nocodazole itself. However, in 
experiments where exponentially growing cells are treated 
with nocodazole for 1 h we find no evidence for Myb hyper- 
pbosphorylation. After 3 h of treatment we detected a small 
amount of hyperphosphorylated protein, probably due to ac- 
cumulation of cells in mitosis. Thus the effects observed in 
nocodazole-blocked cells are likely to be due to the fact that 
the cells have entered mitosis rather than as a direct effect 
of nocodazole. 
We next prepared two-dimensional tryptic phosphopep- 

tide maps of the mitotic and interphase Myb and Myc pro- 
reins isolated from BK3A cells (Figs. 3 A and 5 A) to deter- 
mine whether the increased incorporation of phosphate in 
the case of Myb, and the shift in apparent molecular weight 
of both proteins, during mitosis correlated with additional 
sites of phosphorylation. Fig. 3 B shows tryptic phosphopep- 
tide maps of Myb protein hnmunoprecipitated from BK3A 
cells in interphase (Fig. 3 I) and nocodazole blocked in mito- 
sis (Fig. 3 M). Interphase Myb displayed five phosphopep- 
tides labeled I-5. Spots I and 2 correspond to the previously 
characterized NH2-terminal casein kinase II phosphoryla- 
tion site (Lfiscber et al., 1990). During mitosis this pattern 
was retained with the exception of spot 5 which decreased 
in intensity. However, mitotic Myb had clearly gained addi- 
tional phosphopeptides indicated by spots 6-8. By 2 h after 
removal of nocodazole the additional mitotic-specific phos- 
phopeptides had disappeared and the pattern resembled that 
found in interphase cells (data not shown). We also deter- 
mined whether the additional phosphorylations of Myb in 
mitosis resulted in a change in the ratio of phosphoser- 
ine/phosphothreonine. The phosphoamino acid analysis, 
shown in Fig. 4, demonstrates that in I phase BK3A cells ser- 
ine was predominantly phosphorylated with no detectable 
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Figure 3. Hyperphosphorylation of mitotic Myb: involvement of p34 '~2. (A) Myb was immonoprecipitated from logarithmically growing 
unlabeled BK3A cells and phosphorylated by the p34 '~:2 kinase 0ane 1), from M phase nocodazole-arrested or logarithmically growing 
32pi-labeled cells (lanes 2 and 3, respectively). Samples were analyzed on a 10% SDS-PAGE. (B) The labeled Myb displayed in A was 
extracted from the gel, digested with trypsin, and the resultin~ peptides were analyzed on cellulose thin-layer plates in the first dimension 
by electrophoresis (horizontal, anode on the left) and in the second dimension by ascending chromatography (vertical). 

phosphorylation oftyrosine or threonine (Fig. 4 I), while in 
mitotic cells there is a distinct increase in threonine phos- 
phorylation (Fig. 4 M) which was reversed 2 h after removal 
of nocodazole (Fig. 4, M + 2). Thus the onset of mitosis is 
likely to bring about new phosphorylations on Myb involv- 
ing at least threonine residues. Phosphoamino acid analysis 
of Myc isolated from either I or M phase cells revealed no 
differences between the two forms of the protein as in both 
instances Ser and Thr phosphorylation at equal ratio was de- 
tected (data not shown). 

We also prepared one-dimensional partial phosphopeptide 
maps using proteinase K of mitotic and interphase Myc iso- 
lated from BK3A cells (Fig. 5 B, only the p59 -My~ species 
was used for peptide mapping). These were compared to 
Myc phosphorylated in vitro by CKII or GSK3. CKII phos- 
phorylates two regions in Myc, one in the central acidic do- 
main, and one near the COOH-terminus (Ltischer et al., 
1989). GSK3 phosphorylates sites near the NH2 terminus 
which are also modified in vivo (]3. Lt3scher, unpublished ob- 
servations). Three major peptides were observed in these 

one-dimensional maps, labeled 1-3 (Fig. 5 B). Peptides 1 
and 2 being derived from regions of the protein modified by 
CKII and peptide 3 from near the NH2 termhlus modified 
by GSKHI, myosin basic protein kinase (B. Ltischer, unpub- 
lisbed observations), or mitogen-activated protein kinase 
(Alvarez et al., 1991). The comparison showed that peptides 
1 and 2 comigrated, whereas peptide 3 from M phase Myc 
had a reduced mobility when compared to I phase Myc. This 
suggested that the phosphorylation event responsible for the 
altered mobility on SDS-PAGE is occurring in the NH2 ter- 
minal portion of the protein. 

Next, we prepared two-dimensional phosphopeptide maps 
using proteinase K (Fig. 5 C). Surprisingly we could detect 
only minor differences in the pattern of peptides produced 
during these two cell cycle phases despite the evident shift 
in electrophoretic mobility which is sensitive to alkaline 
phosphatase treatment (Fig. I) and the altered mobility of 
peptide 3 onone dimensioi~ maps (Fig. 5 B). As proteinase 
K has a rather wide specificity, it should be mentioned that 
none of the phosphopeptides comigrated with phospho-Ser 

Figure 4. Phosphoamino acid 
analysis of Myb. 3zPi-labeled 
Myb was hydrolyzed in 6 M 
HC1 for 3 h at 110~ and the 
resulting amino acids were sep- 
arated by electrophoresis on 
cellulose thin-layer plates at 
pH 1.9 in the first dimension 
and atpH 3.5 inthe second. 
The positions of unlabeled 
phosphoamino acids used as 
markers are indicated. 
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Figure 5. Analysis of mitotic Myc. (A) Myc was 
immunoprecipitated from 32Prlabeled mitoti- 
cally arrested BIC3A cells or from logarithmi- 
cally growing cells (lanes I and 2, respectively). 
Samples were analyzed on a 10% SDS-PAGE. 
(B) The p59~-M~ species of Myc isolated from 
32pi-labeled I-phase (lane 2) and M-phase 
(lane 1) cells were cut out from an SDS-PAGE, 
digested with proteinase K, and reelectrophor- 
esed on a 20% SDS-PAGE. As comparison 
p59 ~-uy~ was immunoprecipitated and then la- 
beled in an in vitro kinase reaction with CKII 
(lane 3) or GSK3 (lane 4). (C) The p59 ~-My~ 
species of Myc were eluted from the gel, di- 
gested with proteinase K, and the resulting pep- 
tides analyzed in two dimensions (see Fig. 3). 

or -Thr. We also obtained identical interphase and mitotic 
phosphopeptide maps when the Myc proteins from BK3A 
cells were digested with trypsin, chymotrypsin, thermoly- 
sin, or endoproteinase Pro or when Myc proteins were ana- 
lyzed from M phase or I phase HeLa cells after trypsin diges- 
tion (data not shown). At this point, the basis for the 
difference in the phosphorylation pattern between the M 
phase and I phase forms of Myc is unclear (see Discussion). 

A Role for thep34~z Kinase in Mitotic 
Phosphorylation of Myb 
The p34 ~o2 kinase has been demonstrated to specifically 
phosphorylate several proteins which are believed to be criti- 
caUy involved in regulating cell cycle events (for recent 
reviews see Enoch and Nurse, 1991; Moreno and Nurse, 
1990; Pines and Hunter, 1990). In addition, a molecular 
complex containing p34 ~do2 appears to be responsible for 
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Figure 6. Nonspecific DNA binding of Myb and Myc. Mitotically 
arrested BK3A cells or logarithmically growing cells were labeled 
for 2 h with 3:Pi. The cells were then disrupted by sonication and 
soluble proteins were chromatographed on double-stranded calf 
thymus DNA coupled to Sepharose 4b beads. Myc and Myb were 
immunoprecipitated from the individual fractions and analyzed on 
10% SDS-PAGE. The NaCI concentrations used to elute are indi- 
cated. F~, flow through; W, wash. The bands corresponding to Myc 
and Myb from all the lanes were cut out and counted. The sum of 
all the counts for I phase Myb, M phase Myb, I phase Myc, or 
M phase Myc (Myb I, Myb M, Myc I, or Myc M, respectively) 
was set at 100%. The percentage of label in each fraction relative 
to the total counts of the combined fractions is displayed. A graphi- 
cal representation of these data is shown in the lower panel. The 
100 % value represents 40.1% of the total I phase Myc radioactivity 
(9,310 cpm); 42.6% of the total M phase Myc (13,310); 22.3% of 
the total I-phase Myb (4,070 cpm), and 24.0% of the total M phase 
Myb (6,540 cpm). The input cpm were determined by taking 10% 
of the lysate applied to the column, immunoprecipitating the Myc 
and Myb proteins, and determining the amount of radioactivity in 
the relevant SDS-PAGE gel slice by means of Cerenkov counting. 

driving mitosis (Pines and Hunter, 1990). Our observations 
on the differential phosphorylation of Myc and Myb during 
mitosis impelled us to test the possibility that these proteins 
might be targets for the p34 r kinase. We therefore pre- 
pared specific immunocomplexes containing Myc and Myb 
from BK3A cells and either added purified p34 ~ (Brizuela 
et al., 1989), or coimmunoprecipitated p34 ~2 onto the 

protein A-Sepharose beads containing the Myb or Myc im- 
munocomplexes, and incubated the samples with [732Pl- 
ATE Fig. 2 shows that under the former conditions labeled 
phosphate was incorporated into Myb but not into Myc 
(lanes 1, note that both conditions gave identical results). 
Using the same procedure lamin B2 was also shown to be 
a substrate for p34 ~c2 (Lfischer et al., 1991). This result is 
shown more clearly for Myb in Fig. 3 A where in vivo 32Pi- 
labeled interphase and mitotic Myb is compared with Myb 
labeled in vitro with p34 ~c2. The increased incorporation of 
phosphate label and the shift to lower electrophoretic mobil- 
ity in vivo is apparent. Interestingly, the mobility shift is 
closely mimicked by phosphorylation in vitro with p34 cd~ 
(compare Fig. 3 A, lanes 1-3). However, whereas the 
p34 ~2 phosphorylated Myb appeared as a single species, 
M phase Myb was composed of two closely spaced protein 
forms which are not well resolved in J2Pi labeled samples 
but clearly separated in the immunoblot shown in Fig. 7. 
This mobility shift is not induced by all kinases which phos- 
phorylate Myb since we have previously shown that the 
specific CKII phosphorylation which occurs both in vitro 
and in vivo does not result in a substantial mobility shift 
(Lfischer et al., 1990). 

Phosphorylation of Myb in vitro by p34 r might simply 
be nonspecific and not correspond to actual in vivo phos- 
phorylation sites. We therefore compared the tryptic phos- 
phopeptide maps of p34~2-1abeled Myb with Myb protein 
from I and M phase cells. The phosphopeptide patterns, 
shown in Fig. 3, indicated that p34 ~ generated one major 
and six minor phosphopeptides (Fig. 3, p34). Three of these 
peptides, numbered 3, 6, and 8 co-migrated with three of the 
in vivo labeled peptides found in mitotic Myb (Fig. 3, Mand 
M+p34). Four of the peptides weakly phosphorylated in 
vitro by p34~o2 did not appear to correspond to any in vivo 
phosphopeptides (Fig. 3, arrowheads in p34). Peptide 3 is 
also found in interphase Myb but 6 and 8 are specifically de- 
tected in mitosis (Fig. 3, M, and I§ Of the remaining 
in vivo mitotic phosphopeptides that do not correspond to 
p34 ~c2 phosphopeptides, spots 1, 4, and 2 are also present 
in interphase. Only spot 7 is both specific to mitotic Myb and 
does not correspond to a p34 cd'2 phosphorylation in vitro. 
We had also demonstrated above (Fig. 4) that mitotic phos- 
phorylation of Myb involved introduction of phosphate into 
threonine residues. When we carried out a phosphoamino 
acid analysis of Myb after in vitro phosphorylation by 
p34 ~d~ we also detected phosphorylation on both serine and 
threonine residues (Fig. 4, p34). In contrast, phosphoryla- 
tion by CKII resulted only in phosphorylating serines 
(Liischer et al., 1990). 

Taken together these data indicate that p34 ode2 can phos- 
phorylate peptides which correspond to actual in vivo phos- 
phopeptides present in interphase and mitotic Myb proteins. 
However, Myc does not appear to be a substrate for the mi- 
totic kinase in vitro and, as shown in Fig. 5, we have been 
unable to detect major phosphopeptide differences between 
interphase and mitotic Myc. 

Altered DNA Binding Properties of Mitotic Myb 
and Myc 

Both Myb and Myc have been previously shown to bind to 
double stranded DNA. To test if mitotic phosphorylation 
alters the capacity of Myb or Myc to interact with DNA, 
I-phase and nocodazole-arrested M phase BK3A cells were 
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Figure Z Specific DNA binding of M phase Myb. Myb proteins 
were prepared from logarithmically growing (lane I ) or M phase- 
arrested (lane 2) BK3A cells as described in Materials and Meth- 
ods, and aliquots of these preparations were separated by 10% 
SDS-PAGE, transferred to nitrocellulose, and probed with an anti- 
Myb mAb. The same protein preparations (I-phase, lane 3, 4, and 
7; M phase, lanes 5, 6, and 8) were used in gel mobility shift assays 
using MRE-I (lanes 3-6) or MRE-A (lanes 7and 8). Before the ad- 
dition of probe, the protein samples in lanes 4 and 6 were pretreated 
with alkaline phosphatase (AP). B, bound probe; F, free probe. 

labeled with 32Pi and the proteins extracted in 400 mM NaC1 
after disruption of the cells by sonication. The soluble pro- 
teins were chromatographed on double-stranded calf thymus 
DNA cellulose columns. Myb and Myc were immunoprecip- 
itated from individual fractions using specific antisera. The 
majority of both I phase Myb and Myc were eluted from the 
column between 200-500 mM NaC1 (Fig. 6, lanes I). In 
contrast, the mitotic forms of the two proteins bound less 
tightly to double-stranded DNA cellulose. More than 50% 
of M phase Myb (two thirds of the bound protein) was eluted 
at a salt concentration of 200 raM. The amount of protein 
eluted at 300 and 500 mM salt was reduced by two- and 
sevenfold, respectively, when compared to I phase Myb. For 
Myc we also detected an increase in the amount of M phase 
protein eluting at 200 mM salt and a decrease at 300 and 500 
mM salt compared to I phase Myc. In addition, we observed 
an increase in unbound M phase Myc. These data indicate 
that the specific modifications occurring during mitosis are 
sufficient to reduce the binding of Myc and Myb to DNA. 

To further characterize the effect of M phase specific 
modifications, we compared the specific DNA binding prop- 
erties of Myb immunopurified from either I or M phase cells 
to a Myb response element (MRE) x (Biedenkapp et al., 
1988). Immunoprecipitated proteins were prepared for 

1. Abbreviation used in this paper: MRE, Myb response element. 

DNA binding by first treating with GuHC1 to remove bound 
antibody, and then renaturing by dialysis (Liischer et al., 
1990). The immunopurified proteins were analyzed on im- 
munoblots using a Myb-specific mAb. As shown in Fig. 7 
mitotic Myb resolved into two distinct protein species with 
apparent molecular masses of 76 and 77 kD and displayed 
a reduced mobility compared to I phase Myb (75 kD). Treat- 
ment with alkaline phosphatase of M phase Myb resulted in 
an increased mobility on SDS-PAGE indistinguishable from 
I phase Myb (data not shown). These two protein prepara- 
tions were then tested for their ability to interact with two 
short oligonucleotides containing different MREs (MRE-1 
and MRE-A, respectively; Lfischer et al., 1990). For both 
MRE-1 and MRE-A Myb protein isolated from M phase 
cells showed a reduced specific DNA binding capacity (com- 
pare Fig. 7, lanes 3 and 5, and 7 and 8, respectively). It 
should be noted that we cannot at present distinguish be- 
tween a direct effect of pbosphorylation on DNA binding of 
the M phase form of Myb from an indirect effect (e.g., inap- 
propriate refolding of the protein after the GuHC1 treatment, 
see Materials and Methods). Nonetheless these results sug- 
gest that phosphorylation may have profound effects on 
Myb's structure. 

In an effort to reactivate the DNA binding ability of the mi- 
totic Myb, this protein preparation was pretreated with alka- 
line phosphatase or protein phosphatase type 2a before the 
addition of radiolabeled MRE-1 (Fig. 7, lanes 4 and 6, and 
data not shown). I phase Myb showed increased binding 
which is thought to be the effect of removal of phosphate 
from the NH~-terminal casein kinase II phosphorylation 
site. However, only a modest increase in specific DNA bind- 
ing of the M phase Myb was observed. This is in contrast 
to the casein kinase II specific phosphorylation which can in- 
hibit DNA binding but is almost completely reversed by the 
action of phosphatases (Lfischer et al., 1990). At this point, 
it is unclear if the inability to activate the DNA binding of 
mitotic Myb is a reflection of the relative insensitivity of the 
mitotic specific phosphorylation sites to phogphatases under 
the gel mobility shift conditions used or if other, as yet 
unidentified, M phase-specific modifications interfere with 
DNA binding. 

Discussion 

We have presented evidence that the two nuclear on- 
coproteins Myb and Myc are hyperpbosphorylated during 
mitosis. In addition, their ability to bind to DNA is de- 
creased during mitosis. During nocodazole-induced mitotic 
arrest both proteins display a phosplmtase-reversible de- 
crease in electrophoretic mobility in SDS-PAGE. In the case 
of Myb, the M phase phosphorylation corresponds to a clear 
change in its phosphopeptide map. However, for c-Myc no 
major changes in the phosphopeptide pattern were observed 
(see below). The mitotic forms of both of these proteins ex- 
hibited decreased binding to double-stranded DNA. In addi- 
tion, M phase Myb had a reduced capacity to bind specific 
oligonucleotides containing the Myb response element. 
Thus entry into mitosis may have important consequences 
relating to the posttranslational modification and possibly 
the function of these two putative transcription factors. 

A surprising result of this study is that the mitotic hyper- 
phosphorylation of c-Myc does not result in an altered two- 
dimensional phosphopeptide map relative to I phase c-Myc. 

The J'ournal of Cell Biology, Volume 118, 1992 782 



This is in contrast to c-Myb whose phosphopeptide map 
showed clear differences between I phase and M phase. For 
c-Myc none of the number of different proteolytic enzymes 
and electrophoresis conditions used detected a difference be- 
tween the M phase and I phase forms. Nonetheless, the abil- 
ity ofphosphatase to reverse the shift in M phase Myc's elec- 
trophoretic mobility argues in favor of a difference in 
phosphorylation. Furthermore, a distinct mobility shift was 
detected in peptide 3 (Fig. 5 B) when I phase and M phase 
Myc were compared on a proteinase K one-dimensional 
map. One possible explanation for these data is that phos- 
phorylation sites specific for I phase Myc and for M phase 
Myc are distinct yet located within the same peptide. The 
properties of the small peptide region might be expected to 
be the same when analyzed by two-dimensional fingerprint- 
ing. However, the characteristics in SDS-PAGE of the whole 
protein or the larger fragment produced by partial proteoly- 
sis might be affected. Alternatively, the increased apparent 
molecular weight may be the result of a combinatorial effect 
of several phosphorylation sites. In this model, individual 
c-Myc molecules within the interphase population are phos- 
phorylated at different sites. During mitosis the same sites 
are phosphorylated, but each molecule would now have all 
sites occupied. This would produce identical I phase and M 
phase phosphopeptide maps but may well change the elec- 
trophoretic mobility of the protein population. At present we 
cannot distinguish between these possibilities. We have also 
tested c-Myc and c-Myb for reactivity with the MPM-2 and 
MPM-12 mAbs known to recognize a large subclass of M 
phase-specific phosphorylated epitopes (Davis et al., I983). 
Neither mAb reacted with either I phase or M phase c-Myc 
and c-Myb proteins (13. Lfischer and P. N. Rao, unpublished 
observations). 

Our inability to detect unique M phase phosphorylation 
sites in c-Myc prevents us from definitively determining the 
nature of the kinase involved in the hyperphosphorylation of 
c-Myc. Both c-Myc and c-Myb have been previously shown 
to be phosphorylated by casein kinase II (CKII) (Lfischer et 
al., 1989), glycogen synthase kinase 3 (GSK3) (B. Liischer, 
unpublished results), and MAP kinase (Alvarez et al., 1991), 
all of which are thought to vary in activity in response to cell 
cycle or extracellular signals (Boyle et al., 1991; Carroll and 
Marshak, 1989; Sommercorn et al., 1987; Pulverer et al., 
1991) and could therefore be responsible for M phase phos- 
phorylation of Myc. 

Another candidate for M phase-specific phosphorylation 
is the p34 ~2 kinase. This kinase is a key regulator of mito- 
sis which has been shown to phosphorylate an increasing 
number of substrate proteins (for review see Shalloway and 
Shenoy, 1991). Both Myb and Myc contain sequences that 
resemble the p34 ~ recognition motif (S/T P X K/R) as 
defined in histone H1, lamins, and p60 ~~ (Shalloway and 
Shenoy, 1991). It was therefore of interest to test if Myb or 
Myc could serve as substrates for this kinase. We have used 
both purified p34ce~2-cyclin B complex from HeLa cells and 
p34 '*-2 kinase activity immunoprecipitated from nocoda- 
zole-arrested Manca cells to phosphorylate immunoprecipi- 
tares of either Myb or Myc. Whereas under these conditions 
Myb as well as lamin B~ (Lfischer et al., 1991) were readily 
phosphorylated, Myc was not modified. As in the case of 
chicken lamin I~ (Lfischer et al., 1991), p34 ~ phosphor- 
ylated only a subset of the M phase-specific phosphopep- 
tides on Myb, leaving open the possibility that another ki- 

nase(s) is involved in the M phase-specific phosphorylation. 
It will be of interest to identify such enzymes and to test if 
they are regulated by p34 ~-2 or by some alternative pathway. 

What biological role would mitotic hyperphosphorylation 
of proteins such as Myc and Myb play? One of the major 
events during mitosis is the condensation of the interphase 
chromatin to mitotic chromosomes, a process likely to facili- 
tate efficient segregation of the chromosomes to the two 
daughter cells. During condensation, proteins that are in- 
volved in gene transcription, replication, and DNA repair 
may be released to allow efficient condensation. This process 
may be regulated at least in part by phosphorylation. It has 
been suggested that the mitotic hyperphosphorylation of his- 
tone H1 is important for chromosome condensation (Brad- 
bury et al., 1974a,b; Inglis et al., 1976), however, no direct 
evidence has been obtained in support of this suggestion. Re- 
cently it has been shown that p34 ~ can phosphorylate the 
nonhistone high mobility group I protein in a manner that 
reduces its ability to bind DNA (Reeves et al. 1991). Our 
finding that Myb and Myc, which are involved in gene tran- 
scription, are hyperphosphorylated during mitosis adds 
these proteins to the growing list of M phase-specific sub- 
strates. The release from DNA of Myc and Myb, and possi- 
bly of many other DNA binding proteins, may be important 
in achieving chromosome compaction and possibly in reduc- 
ing transcription during the transition from interphase to mi- 
tosis. Recently a similar observation has been made for Oct-1 
which was shown to have a reduced DNA-binding capacity 
in M phase compared to interphase (Segil et al., 1991). Re- 
duced DNA binding is also compatible with the observation 
that c-Myc is redistributed throughout the cell body during 
mitosis and little or no signal is detected associated with the 
condensed chromosomes (Eisenman et al., 1985; Winqvist 
et al., 1984). 

In a recent series of experiments utilizing cell extracts to 
phosphorylate target proteins in vitro we have been able to 
demonstrate that mitotic, but not interphase extracts, can 
mediate phosphorylation of Myc, Myb, Jun, Fos, MyoD, 
lamin A and C, and the adenovirus Ela and 72-kD DNA 
binding proteins (our unpublished observations). In con- 
trast, none of 10 cytoplasmically localized proteins, with the 
exception of p60 ~-~, were hyperphosphorylated. These pre- 
liminary data indicate that many nuclear proteins may be 
potential substrates for M phase-specific kinases and pro- 
vide support for the hypothesis that hyperphosphorylation 
may be a general mechanism to regulate transcription factor 
function during mitosis. 
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