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Abstract
In patients with low-risk breast cancer, intraoperative radiotherapy (IORT) during breast-

conserving surgery is a novel and convenient treatment option for delivering a single high

dose of irradiation directly to the tumour bed. However, edema and fibrosis can develop

after surgery and radiotherapy, which can subsequently impair quality of life. TGF- β is a

strong inducer of the extracellular matrix component hyaluronan (HA). TGF-β expression

and HA metabolism can be modulated by irradiation experimentally, and are involved in

edema and fibrosis. We therefore hypothesized that IORT may regulate these factors.

Wound fluid (WF) draining from breast lumpectomy sites was collected and levels of TGF-

β1 and HA were determined by ELISA. Proliferation and marker expression was analyzed

in primary lymphatic endothelial cells (LECs) treated with recombinant TGF-β or WF. Our

results show that IORT does not change TGF-β1 or HA levels in wound fluid draining from

breast lumpectomy sites, and does not lead to accumulation of sHA oligosaccharides. Nev-

ertheless, concentrations of TGF-β1 were high in WF from patients regardless of IORT, at

concentrations well above those associated with fibrosis and the suppression of LEC iden-

tity. Consistently, we found that TGF-β in WF is active and inhibits LEC proliferation. Fur-

thermore, all three TGF-β isoforms inhibited LEC proliferation and suppressed LEC marker

expression at pathophysiologically relevant concentrations.

Given that TGF-β contributes to edema and plays a role in the regulation of LEC identity,

we suggest that inhibition of TGF-β directly after surgery might prevent the development of

side effects such as edema and fibrosis.
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Introduction
Radiotherapy is an integral component of cancer treatment, and more than 50% of cancer
patients receive radiotherapy during the course of their disease [1]. The dose of irradiation
given to the tumour directly correlates with the probability that the tumour will be effectively
controlled, yet the dose that can be given is limited by concomitant damage to the surrounding
normal tissue. Recent advances in radiation technologies, treatment planning and treatment
delivery have resulted in increased sparing of normal tissue outside the clinical target volume.
Nevertheless, non-fatal normal tissue responses to irradiation such as edema, fibrosis or
chronic pain inside the target volume can significantly impair the patient’s quality of life [2].

To improve the efficacy and reduce the side effects of radiation therapy, intraoperative radi-
ation therapy (IORT) has been developed to deliver radiation directly to the tumour site fol-
lowing surgery [3, 4]. Compared to conventional radiotherapy, a single dose IORT directly
delivered to the tumour site yields similar rates of local recurrence and preservation of healthy
tissue while at the same time offers the advantages of reduced treatment times [5–8]. Further-
more, IORT can also be used as a boost for patients who receive breast-conserving surgery in
combination with external beam radiotherapy (EBRT), allowing any tumour cells remaining
after surgery to be subjected to radiotherapy during the surgical procedure, without the neces-
sity of a recovery period [9–11]. However, similar to other radiotherapies, side effects have
been reported after IORT, including edema and fibrosis [7, 12–14]. Reducing these side effects
offers the promise of further increasing the benefits of IORT.

Fibrosis is typified by the formation of excess fibrous connective tissue, for example during
the repair of injured tissue. It is caused by the production of excess extracellular matrix proteins
and the accumulation of activated fibroblasts [15]. Transforming growth factor beta (TGF-β) is
recognized as being a central regulator of fibrosis [16]. In experimental animals, expression of
TGF-β increases in a dose-dependent manner in response to irradiation [17–19]. Consistently,
radiation-induced tissue fibrosis is associated with enhanced TGF-β expression in patients [16,
20]. Furthermore, radiation-induced TGF-β expression is functionally involved in the develop-
ment of radiation-induced fibrosis, as in experimental animals administration of anti-TGF-β
antibodies or inhibitors of TGF-β signalling suppressed fibrosis formation subsequent to irra-
diation [21, 22]. Thus inhibition of TGF-β activity may help to reduce fibrosis after radiation
therapy in human patients [20].

Induction of edema in irradiated tissue can compromise the function of the organ con-
cerned, and direct or indirect impairment of the lymphatic vasculature by radiotherapy plays
an important role in this pathology [23–25]. Although TGF-β has been reported to promote
lymphangiogenesis indirectly in some contexts by stimulating VEGF-C expression in certain
epithelial cells [26], evidence has accrued in recent years that the direct effects of TGF-β on
lymphatic endothelial cells (LECs) negatively regulate the lymphatic system by suppressing
lymphangiogenesis and downregulating expression of genes that determine LEC identity [27,
28]. Furthermore, tissue irradiation results in reduced numbers of lymphatic vessels, lymphatic
dysfunction and LEC apoptosis [29, 30]. Notably, blockade of TGF-β activity in an animal
model was found to decrease fibrosis and increase lymphatic function after photon irradiation
[29]. Together, these data support the hypothesis that radiation-induced TGF-β can contribute
to lymphatic dysfunction and thus to the development of edema. Moreover, as TGF-β expres-
sion is increased in cells within lymphedematous tissues [31] the development of edema may
further exacerbate lymphatic dysfunction.

The glycosaminoglycan hyaluronic acid (HA) is comprised of repeating subunits of N-acetyl
glucosamine and glucuronic acid, and is a major component of the extracellular matrix (ECM)
[32]. HA is synthesized as a high molecular weight polymer of up to 107 Da (HMW-HA), but
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during tissue injury and inflammation, enhanced synthesis combined with cleavage of HA, for
example through the activities of hyaluronidases and free radicals, can result in HA fragmenta-
tion and the accumulation of HA oligosaccharides [33–38]. Ionizing irradiation can also frag-
ment HA directly [39]. Enhanced levels of HA are found in irradiated tissues, consistent with
increased expression of hyaluronan synthases in response to irradiation [40, 41]. TGF-β can
increase HA synthesis [42, 43] and can also induce expression of the HA synthases HAS1 and
HAS2 [44]. Together these observations suggest that irradiation has the potential to stimulate
accumulation of small HA (sHA) oligosaccharides (here defined as being of up to 25 disaccha-
rides in length) by increasing both the synthesis and breakdown of HA. We and others have
shown that sHA exerts a number of biological effects not observed with HMW-HA, including
activation of dendritic cells [45], induction of inflammatory responses [46], angiogenesis [47,
48], lymphangiogenesis [48, 49] and increased expression of matrix metalloproteases and cyto-
kines [50, 51]. Importantly, it has been suggested that HA and TGF-β cooperate during fibrosis
[42].

In this study we have addressed the hypothesis that the local edema and fibrosis that can
develop after IORT might be caused by increased TGF-β production, increased HA produc-
tion, and/or accumulation of HA oligosaccharides as a consequence of the irradiation. To this
end we examined levels of these factors in wound fluid (WF) draining from the surgical opera-
tion sites of breast cancer patients whose primary tumour had been removed, and who had
either received or not received IORT. We found that IORT had no significant effect on the lev-
els of these factors in WF. Nevertheless, WF was found to contain substantial levels of TGF-β1
regardless of IORT, at levels well above those associated with fibrosis and impaired lymphatic
function. These data therefore suggest that inhibition of TGF-β activity immediately after sur-
gery may be beneficial for breast cancer patients by suppressing the formation of fibrosis and
maintaining lymphatic function.

Materials and Methods

WF collection and preparation
In this study, 23 patients with low-risk breast cancer were treated with breast-conserving
surgery. Of these patients, 11 received intraoperative radiotherapy in addition using a sin-
gle 20 Gy fraction (50 kV X-ray; Intrabeam, Zeiss, Oberkochen, Germany) as described pre-
viously [5, 7]. The age of the patients at treatment without IORT was 66 ±13, whereas the
age of patients treated with IORT was 60 ± 12. After surgery, WF was drained from the
wound for 24 h as described previously [52]. Thereafter, samples were collected, centri-
fuged with 800×g for 5 min and the supernatant was filtered through 40 μm filters (BD
Falcon, Heidelberg, Germany). After a second centrifugation step (3500×g for 5 min.) the
supernatant was subsequently filtered through 5, 0.8 and 0.22 μm filters and aliquots were
stored at -80°C.

Analysis of TGF-β1, total HA and sHA concentrations in WF
TGF-β1 concentrations were quantified using a commercially available ELISA (R&D Sys-
tems, Wiesbaden, Germany). Total HA concentrations were analysed using an HA ELISA-
like-assay (Echelon, Utah, USA). Concentrations of sHA were determined as recently
described [53]. Briefly, WF was centrifuged through Amicon filters with a cut-off of 10 kDa,
and sHA concentrations in the ultracentrifugation filtrate were determined using the HA
ELISA-like-assay.
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Proliferation assay
Human dermal primary LECs (Promocell, Heidelberg, Germany) were cultivated at 5% O2, 5%
CO2 in EBM-2 MV medium containing growth factors and 5% FCS (Lonza, Basel, Switzer-
land). LECs were seeded into 96-well plates at a density of 1x103 cells per well and cultured for
24 hours. The cells were then cultivated in the absence of growth factors and FCS for a further
16 hours. For blocking experiments, the cells were pre-treated with 20 μg/ml monoclonal
mouse-anti-human TGF-β antibody (R&D Systems, Cat. No. MAB1835) or the corresponding
isotype control antibodies (R&D Systems). Cells were incubated for 72 hours with human
TGF-β1, -β2, -β3 (Reliatech, Wolfenbüttel, Germany) or with 10%WF from patients. They
were then labelled for 16 hours with 1 μCi 3H thymidine. To analyze the amount of incorpo-
rated radioactivity, the cells were trypsinized for 30 min and harvested onto a glass fibre filter
(Wallac, Turku, Finland) using a Harvester 96 cell harvester (Tomtec, Hamden, CT, USA).
The filter-immobilised radioactivity was quantified using MicroBeta TriLux Liquid Scintilla-
tion together with a luminescence counter (Wallac).

SDS-PAGE andWestern Blot
LECs were treated with human TGF-β1, -β2 and β3 for the indicated time points. Lysates were
prepared and subjected to Western blot analysis using 5 μg/ml polyclonal rabbit-anti-human
Prox-1 (Reliatech, Cat. No. 102-PA32AG), 1 μg/ml polyclonal goat-anti-human Lyve-1 (R&D
Systems, Cat. No. AF2089), 0.2 μg/ml polyclonal goat-anti-human VEGF-R3 (R&D Systems,
Cat. No. AF349) and 0.1 μg/ml polyclonal goat-anti-human vimentin (R&D Systems, Cat. No.
AF2105) antibodies. For evaluation of protein loading, the blot was probed with 0.01 μg/ml
monoclonal mouse-anti-human vinculin-specific antibodies (Sigma Aldrich, Taufkirchen, Ger-
many, Cat. No. V9264). For densitometric evaluation, bands for the Prox-1, Lyve-1, vimentin
and VEGFR-3 proteins were normalized to the corresponding loading control using the soft-
ware ImageJ. Values are presented relative to untreated control samples.

Ethical standards
Experiments comply with the current laws of Germany. The study was approved by the Medi-
cal Ethics Commission II of the Medical Faculty of Mannheim, University Heidelberg and was
conducted according to Declaration of Helsinki principles. Specifically, participants were pro-
vided with written information about the proposed use of their biological samples, which was
also explained to them verbally by the attending physician. Thereafter the participants pro-
vided their written consent. This procedure was approved by the ethics committee.

Statistical analysis
The Kruskal-Wallis test was used to determine whether concentrations of TGF-β1, total HA or
sHA were significantly different in WF from patients receiving IORT or not. Statistical signifi-
cance in proliferation assays was determined using the Student’s t-test.

Results
To determine if IORT can lead to the production and accumulation of TGF-β1, HA or sHA,
WF draining breast lumpectomy sites from breast cancer patients treated or not treated with
IORT during surgery was collected. Levels of TGF-β1, HA and sHA were measured in the WF.
IORT had no significant effect on the concentration of any of these factors (Fig 1). The volume
of WF draining from the surgical site was comparable in patients without IORT (39.9
ml ± 39.9) or treated with IORT (34.8 ml ± 34.7). As the volume of WF draining from the
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surgical site differed widely from patient to patient, we determined whether the concentrations
of TGF-β1, HA or sHA in WF correlated with the volume of WF. No correlation between the
concentration of TGF-β1 and the volume of WF collected (correlation coefficient 0.00227) was
observed. Similar results were obtained for HA and sHA levels (correlation coefficients
0.00361or 0.0064, respectively). These results rule out the possibility that differences in the vol-
ume of WF account for variance in the concentrations of TGF-β1, HA or sHA in WF.

Strikingly, high levels of TGF-β were found in the WF of both groups of patients, with con-
centrations up to more than 40 ng/ml, and mean values between 10–20 ng/ml (Fig 1A). As
TGF-β has been reported to suppress lymphangiogenesis and lymphatic identity [27, 28], we
determined whether the concentrations of TGF-β in WF influence LEC proliferation and
expression of lymphatic markers. To this end, the proliferation of primary LECs treated with
different concentrations of recombinant TGF-β1, -β2 and -β3 was measured. All three TGF-β
isoforms significantly inhibited LEC proliferation at concentrations of TGF- β1 found in WF
(Fig 2).

Furthermore, we treated primary LECs with different concentrations of recombinant TGF-
β1, -β2 and -β3 and analysed the expression of different lymphatic markers. Concentration-
dependent and isoform-specific effects were observed (Fig 3). TGF-β1 reduced expression of
Lyve-1, while TGF-β2 potently suppressed expression of Lyve-1, Prox-1 and VEGFR-3. Inter-
estingly, TGF-β3 reduced the expression of Lyve-1 and Prox1 at 10 ng/ml, but higher concen-
trations of between 20–30 ng/ml induced expression. None of the TGF-β isoforms influenced
the expression of vimentin, suggesting that the cells do not acquire a mesenchymal phenotype
as a consequence of TGF-β treatment.

To check if TGF-β present in WF is biologically active, we treated primary LECs with WF
and measured their proliferation in the presence or absence of neutralizing anti-TGF-β anti-
bodies. Neutralization of TGF-β activity in the WF significantly increased the proliferation rate
of the cells in response to WF (Fig 4), indicating that TGF-β is active and suppresses LEC pro-
liferation in the context of WF.

Together these data show that TGF-β1, HA and sHA are present in WF draining from
breast cancer surgical sites but that their levels are not influenced by IORT. Our data also reveal

Fig 1. Levels of TGF- β1, total HA and sHA in wound fluid from breast cancer patients with and without
IORT. Box-plots comparing the concentrations of TGF-β1 (a), total HA (b) and sHA (c) in interstitial fluid
draining from breast lumpectomy sites from patients treated with and without IORT. The upper boundary of the
boxes indicates the 75th percentile; the lower boundary indicates the 25th percentile. The line within the boxes
indicates the median and the dot within the boxes represents the mean. Whiskers above and below the boxes
indicate the 90th and 10th percentile, respectively. The dot lying above the 90th percentile-whisker represents
the maximum and the dot below the 10th percentile-whisker represents the minimum. Differences between
patients with and without IORT were not statistically significant (Kruskal-Wallis test, TGF-β1 p > 0.18; total HA
p > 0.49; sHA p > 0.06).

doi:10.1371/journal.pone.0162221.g001
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that all TGF-β isoforms suppress LEC proliferation and modulate expression of markers of
lymphatic identity at concentrations present in WF.

Discussion
Here we report that IORT during breast cancer surgery does not affect levels of TGF-β1, HA
and sHA in fluid draining from the operative site. Nevertheless, high levels of TGF-β1 are pres-
ent in WF, regardless of IORT. These levels inhibit proliferation of LECs and suppress lym-
phatic identity by down-regulating key LEC markers. We conclude that inhibition of TGF-β
activity following surgical removal of breast cancer may be beneficial for patients by suppress-
ing edema caused by TGF-β-mediated lymphatic dysfunction, and by reducing fibrosis and
scarring.

IORT was established with the aim of delivering a higher effective radiation dose to tumour
sites. Clinical studies have reported that IORT has a similar efficacy and tolerance compared to
conventional EBRT [14] and has a high acceptance by patients [54]. Our finding that IORT

Fig 2. TGF-β1, -β2 and -β3 inhibit the proliferation of LECs. Primary human LECs were incubated with different
concentrations of recombinant TGF-β1, -β2 or -β3 or were left untreated and served as control. Proliferation was
assessed using 3H thymidine incorporation assays. Data represent the mean of triplicate samples, error bars
indicate +/- standard error. Student’s t-test: TGF-β1 relative to untreated control: * p < 0.05, ** p < 0.005,
*** p < 0.001; TGF-β2 relative to untreated control: # p < 0.05, ## p < 0.005, ### p < 0.001; TGF-β3 relative to
untreated control: + p < 0.05, ++ p < 0.005, +++ p < 0.001. The experiment shown is representative of three
independent replicates.

doi:10.1371/journal.pone.0162221.g002
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does not alter levels of TGF-β1, HA or sHA provides further evidence for the efficacy of IORT,
as no additional side effects due to enhanced production of these highly biologically active mol-
ecules are likely to be induced.

The concentration of both total HA and sHA we found in the WF is similar to the levels we
have previously reported in interstitial fluid from normal tissues [53]. Thus although irradia-
tion can increase HA synthesis [40] and directly fragment HA, IORT appears to have no effect
on HA synthesis and breakdown, at least during the first 24 hours following surgery.

Fig 3. TGF-β1, -β2 and -β3 reduce lymphatic marker expression in LECs. Primary human LECs were treated
with 10, 20 or 30 ng/ml TGF-β1, -β2 and -β3 for 72 hours (a) or 100 hours (b). Untreated cells served as a control.
Lysates were prepared and analysed byWestern blot using antibodies specific for Lyve-1, Prox-1, VEGFR-3 or
vimentin. Vinculin served as loading control. The experiment was performed twice with equivalent results. For
densitometry evaluation, protein bands were analysed using the software ImageJ. Bands for the Prox-1, Lyve-1,
vimentin and VEGFR-3 proteins were normalized to the corresponding loading control and are displayed as the
expression level relative to the untreated control samples.

doi:10.1371/journal.pone.0162221.g003
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Importantly, these data suggest that direct fragmentation of HA by therapeutic irradiation does
not lead to accumulation of biologically active sHA oligosaccharides in the milieu of the irradi-
ated tissue, and therefore potential tumour-promoting effects of sHA accumulating as a conse-
quence of irradiation that could foster recurrence can be discounted.

The data in Fig 4 suggest that as yet undefined factors in WF can stimulate lymphatic endo-
thelial cell proliferation. Consistently, high concentrations of growth factors and cytokines
were found in fluid draining subcutaneous wounds [55] and in WF from donor sites for split-
thickness skin grafts [56].

To the best of our knowledge, this is the first study to report TGF-β1 levels in fluid draining
from wounds following surgical removal of tumours. Notably the concentrations of TGF-β1
we found are considerably higher than those previously reported in fluid draining subcutane-
ous wounds [55], from donor sites for split-thickness skin grafts [56] and from burn blister
fluid [57]. Higher levels of TGF-β1 were observed in the WF draining tumour excision sites
compared to other types of wounds. Consistently, enhanced levels of TGF-β are detected in the
blood of breast cancer patients compared to healthy controls, and these levels diminish rapidly
following surgery to normal levels [58–60]. The increased levels of TGF-β found in fluid from
subcutaneous wounds also decay after 24–48 hours [55]. Although we only investigated the
concentrations of TGF-β1 in WF 24 hours after surgery, these observations suggest that high
levels of TGF-β1 in the post-excision wound are likely to be transient.

The functions of TGF-β isoforms often overlap, for example in the induction of fibrosis
[61]. However, there are also marked differences in their roles, as exemplified by the phenotype
of the individual knockout mice [62, 63]. With regard to the regulation of lymphangiogenesis,
TGF-β1 has previously been identified as an anti-lymphangiogenic growth factor [27, 28]. Our
data extend these observations by demonstrating that not only TGF-β1 but also TGF-β2 and
-β3 can inhibit the proliferation of primary LECs with a similar potency. Nevertheless, at

Fig 4. TGF-β in wound fluid is active and inhibits LEC proliferation. Primary human LECs were incubated with
or without 10% wound fluid from a patient and their proliferation measured using ³H thymidine incorporation. The
mean and SE of triplicate samples is shown. Pretreatment with neutralizing TGF-β antibodies increases wound
fluid induced LEC proliferation. Student’s t-test: * p < 0.05, ** p < 0.005.

doi:10.1371/journal.pone.0162221.g004
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concentrations of TGF-β1 present in WF, the three isoforms have distinct effects on lymphatic
marker expression, with TGF-β2 exhibiting the most pronounced suppression of lymphatic
identity, and TGF-β3 showing a concentration-dependent biphasic inhibition and increase of
marker expression. This suggests that the function of lymphatic vessels and lymphatic clear-
ance in vivomight depend on the relative presence of the individual TGF-β isoforms. Although
we analysed here only the concentrations of TGF-β1 in the fluid draining lumpectomy sites,
TGF-β1 is likely to be a predominant isoform because WF from donor sites for split-thickness
skin grafts contains around 15-fold higher levels of TGF-β1 compared to TGF-β2 [56]. Simi-
larly, more than 50-fold higher levels of TGF-β1 compared to TGF-β2 have been reported in
burn blister fluid [57].

The high TGF-β1 levels we found in WF are sufficient to induce fibrosis and impair lym-
phatic function [27, 28], suggesting that TGF-β1 in the milieu of the operative site may signifi-
cantly contribute to the formation of edema and fibrosis observed after breast lumpectomy.
Inhibition of TGF-β immediately after surgery, for example locally, may therefore be beneficial
for breast cancer patients by suppressing scarring and improving lymphatic drainage. While
long-term anti-TGF-βmay lead to unacceptable side effects [64], short-term TGF-β inhibition
immediately following eye surgery has been shown to have clinical utility in suppressing scar-
ring [65]. Our results suggest that similar approaches may prove beneficial following breast
cancer surgery, particularly because high TGF-β levels are likely to be transient (see above).

Pre-clinical studies in animal-models support the notion that interfering with the TGF-β
pathway holds promise for the treatment of edema and fibrosis. Sequestering TGF-β with solu-
ble TGF-β receptor molecules prevents abnormalization of lymphatic vessels and improves
lymphatic drainage in a murine ovarian carcinoma model [66]. In a mouse lymphedema
model, blocking TGF-β improved lymphatic function, and reduced edema and fibrosis forma-
tion [31]. In bleomycin-induced mouse models of skin fibrosis, interfering with the TGF-β
pathway using peptide 144, which blocks the interaction between TGF-β1 and TGF-β1 type III
receptor, reduced fibrosis formation [67]. In addition, interfering with the TGF-β pathway can
diminish the tissue damage that occurs after irradiation, for example by improving lymphatic
function, and by reducing tissue fibrosis, morphological changes and inflammatory responses
[21, 22, 29]. Consistent with the observations, we show here that inhibition of TGF-β augments
WF-induced LEC proliferation.

A number of agents that interfere with TGF-β signalling are being clinically evaluated in the
context of fibrosis and tumour treatment [68, 69], including neutralizing antibodies that abol-
ish ligand receptor interactions, recombinant Fc-fusion proteins containing receptor ectodo-
mains to sequester TGF-β, small molecule inhibitors of the TGF-β receptor kinases, and
antisense oligonucleotides that reduce TGF-β expression. Fresolimumab (GC1008), a pan-
TGF-β neutralizing antibody has been used in clinical trials to treat patients with a variety of
malignancies and with different forms of fibrosis [70]. Blocking TGF- β signalling has been
suggested to reduce radiation side effects and will be tested in a clinical trial using Fresolimu-
mab in combination with stereotactic ablative radiotherapy in NSCLC (clinicaltrials.gov
NCT02581787). In systemic sclerosis patients, treatment with Fresolimumab was able to
reduce skin fibrosis [71]. Trabedersen (AP12009), antisense oligonucleotides that reduce
expression of TGF-β2, have been tested in a phase IIb study in glioma patients, and showed
promising results concerning efficiency and safety [72]. Furthermore, Galunisertib
(LY2157299), a small molecule inhibitor selective for the kinase domain of TGFβ receptor 1
that specifically downregulates the phosphorylation of SMAD2, showed anti-tumour effects in
a first clinical trial [73] and is currently being tested in phase 2 in glioblastoma patients and in
patients with myelodysplastic syndromes [69].
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In conclusion, this study shows that high levels of active TGF-β1 are present in the milieu of
post-operative breast lumpectomy sites. Together the results suggest that inhibition of TGF-β
activity might not only be considered for anticancer therapy, but could also be useful for the
prevention and treatment of the side effects of therapy, such as edema and fibrosis.
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