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ABSTRACT

Many DNA modification and repair enzymes require
access to DNA bases and therefore flip nucleotides.
Restriction endonucleases (REases) hydrolyze the
phosphodiester backbone within or in the vicinity of
the target recognition site and do not require base
extrusion for the sequence readout and catalysis.
Therefore, the observation of extrahelical nucleo-
tides in a co-crystal of REase Ecl18kI with the
cognate sequence, CCNGG, was unexpected. It
turned out that Ecl18kI reads directly only the
CCGG sequence and skips the unspecified N
nucleotides, flipping them out from the helix.
Sequence and structure conservation predict
nucleotide flipping also for the complexes of PspGI
and EcoRII with their target DNAs (/CCWGG), but
data in solution are limited and indirect. Here, we
demonstrate that Ecl18kI, the C-terminal domain of
EcoRII (EcoRII-C) and PspGI enhance the fluores-
cence of 2-aminopurines (2-AP) placed at the
centers of their recognition sequences. The fluor-
escence increase is largest for PspGI, intermediate
for EcoRII-C and smallest for Ecl18kI, probably
reflecting the differences in the hydrophobicity of
the binding pockets within the protein. Omitting
divalent metal cations and mutation of the binding
pocket tryptophan to alanine strongly increase the
2-AP signal in the Ecl18kI–DNA complex. Together,
our data provide the first direct evidence that
Ecl18kI, EcoRII-C and PspGI flip nucleotides in
solution.

INTRODUCTION

Base or nucleotide flipping is the displacement of a base in
regular B-DNA from the helix into an extrahelical

position. First observed by X-ray crystallography for the
bacterial C5-cytosine methyltransferases M.HhaI (1) and
M.HaeIII (2), nucleotide flipping (base extrusion) has
been documented later for other methyltransferases (3–5),
glycosylases (6–9), glycosyltransferases (10,11) and var-
ious DNA repair enzymes (12–17). Some enzymes, e.g. the
methyltransferases, flip a nucleotide of only one DNA
strand (1–5). Others, like endonuclease IV, alter the
backbone conformations of both strands flipping the
deoxyribose and nucleotide at an abasic site (13). Either
way, nucleotide flips occur because enzymes need access to
a DNA base to perform chemistry. For example, DNA
methyltransferases transfer the methyl group to the
extruded base, while glycosylases involved in DNA
repair excise the extrahelical base (18). Typically,
an amino acid side chain is intercalated into the DNA
to fill in the ‘hole’ introduced after the base flipping
event (6,12,19).

Nucleotide flipping in the co-crystals of restriction
endonuclease Ecl18kI with cognate DNA came as a
surprise (20). In a functional sense, Ecl18kI is a ‘standard’
Type II restriction endonuclease (REase): it recognizes
pentanucleotide sequence CCNGG and cuts phosphodie-
ster bonds on the 50 sides of the outer cytosines to generate
5 nt 50-overhangs (21). Although the endonuclease
does not subject the central bases to any kind of
modification, in the crystal structure these bases were
clearly extrahelical and accommodated in pockets on
Ecl18kI made by the side chain atoms of Arg57 on one
face and the indole ring of Trp61 on the other face
(Figure 1). Unlike in other complexes with flipped
nucleotides, there was no ‘hole’ in the DNA and no
amino acid intercalation. Instead, the DNA was com-
pressed, so that the base pairs adjacent to the flipped
nucleotides stacked directly against each other. The
resulting DNA compression reduced the length of the
interrupted 5 bp stretch CCNGG to the length of a 4 bp
stretch CCGG and made the distance between the scissile
phosphates in the Ecl18kI–DNA complex equal to
the distance between the scissile phosphates in the
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NgoMIV complex with a continuous sequence GCCGGC
(20,22). Therefore, we suggested that Ecl18kI uses base
flipping to adapt the conserved sequence readout machin-
ery for the interrupted target site and predicted that the
evolutionary related REases EcoRII and PspGI that cut
the related CCWGG sequence before the first C, might
also flip nucleotides (23–25).

Nucleotide flipping in solution by Ecl18kI, PspGI and
EcoRII remains to be established. So far, it is only
supported by the observation that PspGI accelerates
deamination of the central cytosine in the incorrect
CCCGG sequence, which differs from the canonical
sequence at the center (26). 2-Aminopurine (2-AP) has
often been used as a fluorescence probe to detect base
flipping in solution (27–35). The 2-AP fluorescence is
highly quenched in polynucleotides due to the stacking
interactions with neighboring bases (36) and therefore
increases strongly when the base is flipped out of the DNA
helix (28,29). Here, we use 2-AP as a fluorescence probe
for base flipping and provide the first direct evidence in
solution that Ecl18kI, the C-terminal domain of EcoRII
(EcoRII-C) and PspGI extrude the central base pair while
interacting with their recognition sites.

MATERIALS AND METHODS

Oligonucleotides

2-AP containing oligodeoxynucleotides were obtained
from Integrated DNA Technologies (HPLC grade,
Coralville, USA), non-modified oligodeoxynucleotides
were from Metabion (HPLC grade, Martinsried,
Germany). In order to assemble oligoduplexes, appro-
priate oligodeoxynucleotides (Table 1) containing 2-AP or
non-fluorescent control strands were mixed with a
1.05-fold molecular excess of complementary strands in
the reaction buffer A (33mM Tris-acetate, pH 7.9 at 258C,
66mM potassium acetate), heated to 858C and allowed to
cool slowly over several hours to room temperature. For
the DNA binding and cleavage studies one strand of the
25 bp duplexes was 50-end labeled with [g-33P]ATP

(Hartmann Analytic, Braunschweig, Germany) using a
DNA labeling kit (Fermentas, Vilnius, Lithuania).

Proteins

The wt Ecl18kI, Ecl18kI mutant W61A, EcoRII-C, PspGI
and MvaI proteins were purified and concentrations were
determined by measuring absorbance at 280 nm as
described in (24,25,37,38). All protein concentrations are
indicated in terms of the dimer, except for MvaI, which is
a monomer in solution (38).

Mutagenesis

The W61A mutant of Ecl18kI was obtained by the
modified QuickChange Mutagenesis Protocol (39).
Plasmid pET21b(+)_R.Ecl18kI [ApR] (20) was amplified
by PCR using Pfu DNA polymerase (Fermentas, Vilnius,
Lithuania) and two complementary (partially overlap-
ping) primers obtained from Metabion (desalt grade,
Martinsried, Germany) containing the desired mutation.
After PCR the methylated parental (non-mutated) plas-
mid was digested with DpnI (Fermentas, Vilnius,
Lithuania). Escherichia coli BL21(DE3) cells carrying the
plasmids pVH1 [KnR] (with lacIq) and pHSG415ts [CmR]
bearing the ecl18kIM gene (20) were transformed with
the PCR product by the CaCl2 method. Plasmid DNA was
isolated by the alkaline lysis procedure and purified using
the GeneJETTM Plasmid Miniprep Kit (Fermentas,
Vilnius, Lithuania). Sequencing of the entire gene of the
mutant confirmed that only the designed mutation had
been introduced.

Gel mobility shift assay

Gel shift analysis of DNA binding by wt proteins and
Ecl18kI W61A mutant protein was performed by titrating
33P-labeled 25 bp oligoduplex (see Table 1) at 0.1 nM
concentration with increasing amounts of protein.
Kd values were evaluated as described elsewhere (40).

DNA cleavage activity

The DNA cleavage activities of wt Ecl18kI, Ecl18kI
mutant W61A, EcoRII-C and PspGI were monitored
using a 25 bp oligoduplex containing a 33P-label either in
the top or the bottom DNA strand (Table 1). Cleavage
rates of both strands were evaluated separately. Ecl18kI
cleavage reactions were conducted at 208C in the reaction
buffer A, containing 10mM MgCl2 and 0.1mg/ml BSA

Table 1. Oligoduplexes used in this study�

Sequence Oligoduplex

50 CGCACGCCTTCCTGGAAGCACACTA 30 Oligoduplex I
30 GCGTGCGGAAGG2CCTTCGTGTGAT 50

50 CGCACGCCTTCCTGGAAGCACACTA 30 Oligoduplex II
30 GCGTGCGGA2GGACCTTCGTGTGAT 50

50 CGCACGCCTTCCTGGAAGCACACTA 30 Oligoduplex III
30 GCGTGCGGAAGGACCTTCGTGTGAT 50

�Ecl18kI/EcoRII-C/PspGI/MvaI recognition site is in boldface;
2, 2-aminopurine, is in boldface and underlined.

Figure 1. Flipped nucleotides in the Ecl18kI–DNA complex structure
(2FQZ). (A) General view of the Ecl18kI dimer–DNA complex. Protein
is shown in spacefill. Residues 60–69 and 91–136 are removed for
clarity. DNA is depicted in red. (B) Binding ‘pocket’ for the flipped out
base. A flipped adenine base is accommodated in the ‘pocket’ made by
the side chain atoms of Arg57 on one face and the indole ring of Trp61
on the other face.
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using 200 nM of oligoduplex and 300 nM of protein.
EcoRII-C and PspGI cleavage reactions were performed
in the same buffer A at 258C using 200 nM of oligoduplex
and 1000 nM of protein. Aliquots were removed at timed
intervals and quenched by mixing with loading dye [95%
(v/v) formamide, 0.01% (w/v) bromphenol blue, 25 mM
EDTA] before denaturing gel electrophoresis. The samples
were analyzed and quantified as described in (41).

Fluorescence spectroscopy

All fluorescence measurements were acquired in photon
counting mode on a Fluoromax-3 (Jobin Yvon, Stanmore,
UK) spectrofluorometer equipped with Xe lamp. Sample
temperatures were maintained at 258C by a circulating
water bath. Oligoduplexes I or II were used as 2-AP
labeled DNA (Table 1). Emission spectra (340–420 nm)
were recorded at an excitation wavelength �ex=320 nm
with excitation and emission bandwidths of 2 and 8 nm,
respectively. At least two scans were averaged for each
spectrum. Sample emission spectra were collected
in reaction buffer A in the presence and absence
of calcium acetate on 250 nM DNA alone or 250 nM
DNA mixed with a 5-fold excess of the protein to ensure
saturation of the fluorescence signal. Control spectra
used for the background subtraction corrections were
collected under identical conditions except that oligodu-
plex III was used instead of the fluorescent DNA.
The fluorescence emission value of the corrected spectrum
was determined at the emission maximum (see
Supplementary Table S1) for each sample. For the
oligoduplex titration experiment, emission spectra of the
250 nM oligoduplex I with protein in a 0–2000 nM range
were collected.

RESULTS

Probes for Ecl18kI triggered nucleotide flipping

We have used the 2-AP fluorescence assay to monitor base
flipping in the Ecl18kI–DNA complex in solution.
A number of 25 nt oligoduplexes that contain the
fluorescent base analog 2-AP at different positions were
designed (Table 1). In the oligoduplex I, 2-AP was
incorporated within the CCNGG sequence instead of A
in the central base position. In the oligoduplex II, 2-AP
was introduced immediately adjacent to the target site.
Like most restriction enzymes, Ecl18kI requires Mg2+

ions for DNA cleavage. In the absence of divalent cations,
it forms a rather weak complex with cognate DNA
(Supplementary Table S2). Addition of Ca2+ ions that do
not support cleavage significantly increased Ecl18kI–
DNA complex stability (24). Gel shift experiments
revealed that 2-AP incorporation into the target sequence
had no effect on the affinity of Ecl18kI for cognate DNA
in the presence of Ca2+ ions (Figure 2). In the buffer
supplemented with Mg2+ ions, Ecl18kI cleaved 2-AP
containing and lacking oligoduplexes at identical rates
(data not shown).

Ecl18kI in the presence of Ca2+ ions

We titrated the 2-AP containing oligonucleotides with
Ecl18kI in the binding buffer supplemented with Ca2+

ions and monitored the change of the 2-AP fluorescence
intensity at 367 nm (Figure 3A, Supplementary Table S1).
The free oligoduplex containing 2-AP at the central
position showed low signal because the fluorescence
was quenched due to base stacking interactions
(Figure 3B). When Ecl18kI bound at saturating concen-
trations to oligoduplex I, which contains 2-AP in the
central position, the fluorescence intensity increased
6.5-fold. In contrast, only small changes were observed
with oligoduplex II, which carries 2-AP outside of the
target site (Figure 3B and C). The change of fluorescence
intensity for the oligoduplex I suggests that the 2-AP
stacking with DNA bases is disrupted. It is compatible
with nucleotide flipping, which has been shown to
enhance 2-AP fluorescence to varying extents in different
systems (27-35).

Ecl18kI in the absence of Ca2+ ions

Gel shift analysis showed highly decreased binding of
Ecl18kI to cognate DNA in the absence of Ca2+ ions
(see, Supplementary Figure S1). However, we found that
at much higher enzyme and DNA concentrations used in
the fluorescence titration experiments, Ecl18kI formed a
binary complex with cognate DNA in the absence of Ca2+

ions (Figure 3D). The Kd value obtained from the titration
data was 52� 12 nM. In the Ca2+-free buffer, Ecl18kI
binding to the oligoduplex I containing the 2-AP in
the central position increased the fluorescence intensity
�28.5-fold at saturating protein concentrations, while
only small changes were observed with oligoduplex II
(Figure 3E and F). The 2-AP signal in the buffer without

Figure 2. Gel mobility shift analysis of the interactions between
Ecl18kI and oligoduplexes. (A) Ecl18kI binding of the oligoduplex III
containing the recognition sequence. (B) Ecl18kI binding of the cognate
oligoduplex I containing 2-AP instead of the central A base. The
binding reactions contained 33P-labeled 25 bp oligoduplex (0.1 nM) and
the Ecl18kI at concentrations as indicated by each lane. Samples were
analyzed by PAGE under non-denaturing conditions (see, Material and
Methods Section). Gels were run in the presence of 5mM of Ca2+ ions.
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Ca2+ ions was �4 times higher than the signal in the
buffer supplemented with Ca2+ (Figure 3D). These results
suggest that the structure of the complex formed in the
presence of Ca2+ ions may differ from that formed
without Ca2+.

Ecl18kIW61Amutation

2-AP fluorescence is often quenched in the hydrophobic
environment of a protein (30,31,42,43). In the crystal-
lographic complex of Ecl18kI with DNA, the flipped
nucleotides are accommodated in pockets that are lined by
tryptophan Trp61. In order to test whether Trp61
quenches 2-AP fluorescence, we replaced this residue
with alanine. The Ecl18kI W61A variant did not cleave
cognate oligoduplex III or the 2-AP containing oligodu-
plex I radioactively labeled at either strand, but it retained
the ability to bind both oligoduplexes albeit at �10-fold
decreased affinity according to the gel shift assay (see,
Supplementary Table S2). Binding of Ecl18kI W61A to
oligoduplex I in the presence of Ca2+ ions increased the
2-AP fluorescence intensity �125-fold (Figure 4) suggest-
ing that the mutant was able to flip out the central
nucleotide. 2-AP fluorescence in the ternary W61A–
DNA–Ca2+ complex was �20 times higher than in the
wt Ec18kI–DNA–Ca2+ complex (Figure 4). Thus, the
W61A mutant data support the assumption that low 2-AP
fluorescence in the ternary complex with the wt protein is
due to the quenching of the extruded base by stacking
interactions with the Trp61 residue. However, one cannot

exclude that increased space in the binding pocket of the
W61A mutant may allow a different orientation of the
extrahelical 2-AP and affect the fluorescence intensity.

EcoRII-C and PspGI

The C-terminal domain of the EcoRII restriction enzyme
and the PspGI restriction enzyme are specific for the
CCWGG sequence (where W stands for A or T)
and cleave it before the first C. It was suggested that

Figure 3. Fluorescence study of base flipping by Ecl18kI in solution. Titration of 250 nM 2-AP containing oligoduplex I with increasing amounts of
Ecl18kI in the presence (A) and absence (D) of Ca2+ ions, respectively. Corrected 2-AP emission spectra of Ecl18kI–DNA complexes (1250 nM
Ecl18kI and 250 nM oligoduplexes I or II) in the presence (B) and absence (E) of Ca2+ ions (see Materials and Methods Section for the details).
Diagrams in (C) and (F) illustrate the maximum fluorescence intensity values of the corrected fluorescence emission spectra presented in (B) and (E),
respectively.

Figure 4. 2-AP fluorescence in the ternary complexes of the wt Ecl18kI
and W61A mutant. Diagrams illustrate the fluorescence intensity values
of the corrected fluorescence emission spectra at fluorescence maximum
(367 nm for wt, 365 nm for W61A and 370 nm for oligoduplexes).
Reactions contained 1250 nM protein and 250 nM oligoduplexes I or II
and were measured in the presence of Ca2+ ions.
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Ecl18kI and EcoRII-C/PspGI may be evolutionarily
related (23–25). This raises the intriguing question of
whether EcoRII-C and PspGI also flip the central W
nucleotides while interacting with their target sites.
The EcoRII structure, which was solved in the absence

of DNA (44) shows a very similar fold to Ecl18kI (20)
except that it has an extra N-terminal regulatory domain
(Figure 5). Structural comparison between Ecl18kI and
the C-terminal domain of EcoRII reveals that Arg57 and
Trp61, which sandwich the flipped bases in the Ecl18kI–
DNA cocrystal structure, spatially coincide with the
Arg222 and Tyr226 of EcoRII suggesting that EcoRII
may flip the central base similarly to Ecl18kI (20).
Therefore, we analyzed base flipping by EcoRII-C in
solution using the 2-AP fluorescence assay. EcoRII-C
turned out to bind to the oligoduplex I containing the
2-AP in the central position (see, Supplementary Table S2)
and binding was accompanied by �12-fold increase of
fluorescence (Figure 6), suggesting that the base is
extruded from the double helix.
The structure of the PspGI enzyme which recognizes

the same CCWGG sequence as EcoRII but lacks the
extra N-terminal domain is not yet known, but modeling
studies (26) suggest significant similarities to Ecl18kI
(Figure 5). Moreover, genetic studies support the PspGI
model and provide indirect evidence that PspGI may flip
central nucleotides within a sequence that matches its
target site except for the presence of a G-C pair instead of
the A-T pair at the center (26). We found that 2-AP at the
central position of the recognition site does not change
PspGI binding affinity (see, Supplementary Table S2).
PspGI titration of 2-AP-containing oligonucleotide
I showed an increase of 2-AP fluorescence and resulted
in a 64-fold increase of the signal at saturation in
comparison to the free oligoduplex (Figure 6). Thus,
according to the 2-AP assay, PspGI should flip central
nucleotides while interacting with its recognition site
like Ecl18kI and EcoRII-C.

MvaI

Recently, we have solved the crystal structure of MvaI
restriction enzyme that recognizes the CC/WGG sequence
identical to that recognized by EcoRII and PspGI
but cleaves it before the W nucleotide as indicated by

the ‘/’ (38). In the MvaI–DNA complex structure, the
DNA conformation does not deviate essentially from
the canonical B-form and there is no evidence for
base flipping. Binding studies in solution revealed
that MvaI binds 2-AP-containing oligonucleotide I
(see, Supplementary Table S2), however, this did not
lead to an increase of 2-AP fluorescence (Figure 6).

DISCUSSION

Enzymes typically flip nucleotides to gain access to
otherwise poorly accessible bases. Based on crystallo-
graphic information and sequence analysis, we have
suggested that the restriction endonucleases Ecl18kI,
EcoRII and PspGI employ base flipping in a novel way
to achieve specificity for their targets and to adjust their
cleavage patterns.

2-AP as a probe

Here, we used 2-AP fluorescence as a probe to monitor
base flipping by Ecl18kI, EcoRII-C and PspGI in solution.
Fluorescence probes to monitor nucleotide flipping in
solution have to balance the conflicting requirements for
mimicry of natural nucleotides and environment-sensitive
fluorescence in a wavelength range not obscured by
background signal from the other nucleotides and protein.
2-AP represents a good compromise in this respect.
At neutral pH it makes a Watson–Crick base pair
with T, which is only slightly weaker than the natural
A-T pair (45). We have found that Ecl18kI, EcoRII-C and
PspGI binding is not sensitive to the modification, hence
2-AP is a good surrogate for A in experiments with these
enzymes.

Evidence for Ecl18kI-triggered nucleotide flipping

2-AP fluorescence is strongly quenched if the base is
stacked in DNA and increases when the stacking is
perturbed. Therefore, a 2-AP fluorescence does not neces-
sarily indicate nucleotide flipping, since it could also be
attributed to a less drastic DNA unstacking deformation.

Figure 6. 2-AP fluorescence in the ternary complexes of EcoRII-C,
PspGI and MvaI. Diagrams show the fluorescence intensity values of
the corrected fluorescence emission spectra at fluorescence maximum
(360 nm for EcoRII-C and PspGI, 370 nm for MvaI and oligoduplexes).
Reactions contained 1250 nM protein and 250 nM oligoduplexes I or II
and were measured in the presence of Ca2+ ions.

Figure 5. Ecl18kI, EcoRII and PspGI monomer structures. Central
b-sheets are colored in red. N-terminal effector domain which is unique
to EcoRII (44), is shown in gray. PspGI structural model (26) is shown.
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However, the much higher 2-AP fluorescence increase in
the W61A–DNA–Ca2+ ternary complex compared to the
wt–DNA–Ca2+ ternary complex (Figure 4) strongly
suggests that in the latter complex the fluorophore
comes close to the indole ring of Trp61 for efficient
quenching. Moreover, the lack of activity of the Ecl18kI
W61A mutant in the presence of Mg2+ ions and the nearly
10-fold reduced affinity to DNA are also consistent with a
loss of interactions between the flipped nucleotide and the
indole ring of Trp61.

In contrast to the effect of the W61A mutation, which
can be readily attributed to the different hydrophobicities
of tryptophan and alanine, the effect of Ca2+ ions on the
2-AP fluorescence is more difficult to interpret. According
to the gel shift assay, the binary Ecl18kI–DNA complex is
much weaker than the ternary Ecl18kI–DNA–Ca2+

complex (Supplementary Table S2). Nevertheless, 2-AP
fluorescence in the binary complex is much higher than in
the ternary complex in presence of Ca2+ ions (Figure 3).
Moreover, the fluorescence increase in the binary com-
plexes of wt Ecl18kI and W61A mutant is comparable
(data not shown). Perhaps the flipped bases are firmly
trapped in the quenching pockets of the enzyme in the
presence of Ca2+ ions, but retain mobility and therefore
higher fluorescence in the absence of Ca2+ ions?

Evidence for EcoRII and PspGI-triggered nucleotide flipping

Ecl18kI and EcoRII/PspGI are evolutionarily related and
recognize target sequences that differ only in the central
base pair. The strong 2-AP fluorescence increase upon
addition of EcoRII-C and PspGI supports the idea that
these enzymes also flip the central nucleotides of their
target sequences. The 2-AP fluorescence intensity differ-
ences (Figure 6) likely reflect the nature of the enzyme
pockets that accommodate the flipped bases. A structure-
based alignment indicates that these pockets are lined by
Trp61 in Ecl18kI, Tyr226 in EcoRII and Phe64 in PspGI.
In the absence of crystal structures of DNA complexes of
EcoRII and PspGI, it remains unclear whether the
differences in 2-AP fluorescence in the enzyme–DNA
complexes are purely due to different hydrophobicities, or
whether changes in the orientation of the aromatic side
chains or other alterations around the flipped nucleotides
contribute to the observed effects.

Unlike Ecl18kI, which accepts any base pair at the
center of its recognition sequence, EcoRII and PspGI
cleave only target sequences with a central A-T pair.
Modeling argues against the possibility that discrimina-
tion against a G-C pair could be due to the base-specific
hydrogen bonding interactions in the EcoRII/PspGI
DNA complexes. Instead, the strength of the hydrogen
bonding interaction of the central base pair may determine
specificity. Cytosine deamination experiments, however,
provide indirect evidence that PspGI flips the central
nucleotides in the sequence CCCGG, which is not
efficiently cleaved by PspGI (26). As rates for flipping
and back-flipping are not yet known, it is conceivable
that the detailed balance between these two processes
decides which substrates are cleaved by Ecl18kI,
EcoRII and PspGI.

SUMMARY

The results of the 2-AP fluorescence assay provide direct
evidence that Ecl18kI, EcoRII and PspGI unstack bases at
the center of their recognition sequences and flip them into
pockets that are formed by the enzymes (20). The new
results show that prior findings from the co-crystal
structure of Ecl18kI with DNA are relevant in solution.
Moreover, the new results complement genetic experi-
ments on PspGI, which had provided indirect evidence
that this restriction enzyme flips the central cytosine in
the sequence CCCGG, which is related to the PspGI
target sequence, but not cleaved by PspGI. Finally,
the change of the 2-AP fluorescence signal upon
Ecl18kI/EcoRII-C/PspGI binding paves the way for
stopped flow experiments to measure base flipping in
real time (27,30,31,33–35,46–50) and time resolved fluor-
escence studies (43,51) to identify possible intermediates
on the base flipping pathway.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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