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Background: The transforming growth factor-b (TGF-b) pathway plays a vital role in driving cancer cell epithelial–mesenchymal
transition (EMT). Zonula occludens-1 (ZO-1), which is downregulated in response to TGF-b, is able to control endothelial cell–cell
tension, cell migration, and barrier formation. However, the molecular mechanism of how TGF-b regulates ZO-1 expression
remains unclear.

Methods: Breast cancer cells were treated with TGF-b to induce an EMT progress. Chromatin immunoprecipitation and dual-
luciferase reporter assay were performed to investigate direct relationship between Snail and RNA binding motif protein 38
(RBM38). The RNA immunoprecipitation combined with RNA electrophoretic mobility shift assay and dual-luciferase reporter
assay were conducted to testify direct relationship between RBM38 and ZO-1. The ZO-1 siRNA was transfected to breast cancer
cells that overexpress RBM38 and the control, followed by transwell and Matrigel invasion assays to examine cell migratory and
invasive ability.

Results: Transforming growth factor-b induced a remarkable downregulation of RBM38 in breast cancer that was directly
regulated by transcription repressor Snail targeting the E-box elements in promoter region of RBM38 gene. Additionally, RBM38
positively regulated ZO-1 transcript via directly binding to AU/U-rich elements in its mRNA 30-UTR. Moreover, by magnifying
RBM38 expression, cell migration and invasion mediated by knockdown of ZO-1 in breast cancer were reversed.

Conclusions: All the results clarified a linear regulation relationship among Snail, RBM38, and ZO-1, implicating RBM38 as a
pivotal mediator in TGF-b-induced EMT in breast cancer.

Breast cancer is the most common malignancy in females
worldwide (Chen et al, 2016; Siegel et al, 2016), and the metastasis
accounts for the majority of deaths from breast cancer. One
potential mechanism for invasion and metastasis in breast cancer is

due to the occurring of epithelial–mesenchymal transition (EMT)
that allows the polarised epithelial cells to assume elevated
migratory capacity, invasiveness, enhanced resistance to apoptosis,
and stem cell properties (Kalluri and Weinberg, 2009; Thiery et al,
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2009). Though recent studies suggest that EMT may be dispensable
for the carcinoma metastatic cascade (Fischer et al, 2015; Zheng
et al, 2015), it is still not ruled out as a driver of cancer progression
for its pivotal role in helping epithelial cancer cells to invade (Li
and Kang, 2016; Nieto et al, 2016).

The first steps of EMT are the disassembly of epithelial cell–cell
contacts. Epithelial cells associate with each other through laterally
located, specialised cell–cell contact structures including tight
junctions (TJ), adherens junctions (AJ), desmosomes, and gap
junctions (Xu et al, 2009; Lamouille et al, 2014). Zonula occludens-
1 (ZO-1, also known as tight junction protein 1) is a critical
regulator of TJ assembly that regulates AJ function by coordinating
the assembly or dynamics of the cortical cytoskeleton (Fanning and
Anderson, 2009).

The EMT is triggered by multiple extracellular signals, including
components of the extracellular matrix like collagen and
hyaluronic acid, soluble growth factors such as transforming
growth factor-b (TGF-b), fibroblast growth factor (FGF), and
epidermal growth factor (EGF) (Thiery and Sleeman, 2006).
Transforming growth factor-b is one of the best known inducer of
EMT. Elevated levels of TGF-b in malignant mammary cells
enhance breast cancer invasion, migration, and evasion of
immunity. Each of these functions plays a vital role in tumour
progression and eventually takes part in the metastatic process
(Padua and Massague, 2009). In response to TGF-b, the type II
TGF-b receptor phosphorylate the type-I TGF-b receptor, which
then initiates downstream signalling through either Smad-
mediated canonical signalling or Smad-independent noncanonical
signalling (Shi and Massague, 2003). Via interaction with Smad
complex, multiple transcription factors are initiated so as to induce
EMT. It is widely testified that TGF-b induced a phenotypic
change with decreased expression of epithelial markers E-cadherin
and ZO-1 (Miettinen et al, 1994; Tian and Phillips, 2002) that
belong to AJ and TJ, respectively. Unlike the well-illustrated
mechanism of E-cadherin regulated by TGF-b (Takano et al, 2007;
Fransvea et al, 2008; Yu et al, 2015), it still needs much effort to
uncover how TGF-b affects the expression of ZO-1.

RNA binding proteins (RBPs) regulate mRNA splicing, export,
stability, or translation mainly by the interaction with a particular
sequence of target gene mRNA (Yan et al, 2012), and multiple
mRNAs are co-mediated by one or more sequence-specific RBPs
(Keene, 2007). Previous studies showed that ZO-1 mRNA 30-
untranslated regions (30-UTRs) readily associated with cytoplasmic
RBPs including auxin upregulated F-box protein 1 (AUF1) (Chen
et al, 2008), human antigen R (HuR) (Yu et al, 2011), and TIA-1-
related protein (TIAR) (Xiao and Wang, 2014; Yang et al, 2014).
Previously, our group found that the RNA binding motif protein
38 (RBM38, also called RNPC1), a tumour suppressor in breast
cancer, participated in the EMT process (Xue et al, 2014).
Meanwhile, it regulated expression of various target genes through
binding to AU/U-rich elements (AREs) in their mRNA 30-UTR
(Cho et al, 2012; Xu et al, 2013; Shi et al, 2015).

In breast cancer, reduction of ZO-1 level is correlated with
decreased tumour differentiation and poor prognosis (Itoh and
Bissell, 2003; Martin et al, 2004). The ZO-1 possesses several AREs
in its mRNA 30-UTR, presenting as a potential target of RBM38.
Furthermore, the promoter region of RBM38 gene contains several
E-box DNA sequences (50-CANNTG-30) that can be recognised by
Snail (Batlle et al, 2000; Park et al, 2012), a prominent mediator of
TGF-b-induced EMT that displays a broad spectrum of biological
functions in tumour progression, including cancer metastasis, drug
resistance, and tumour recurrence (Wang et al, 2013). Snail,
together with Slug and less explored Smuc, pertains to the Snail
family. Although the three members all encode transcription
factors of the zinc-finger type and bind to the E-box elements, Snail
displays a higher affinity with the target sequences (Nieto, 2002;
Bolos et al, 2003). Here we put forward the hypothesis that TGF-b

promoted Snail expression that then acts as a transcriptional
repressor on RBM38 expression. Additionally, decreased RBM38
level mediated ZO-1 post-transcriptional regulation, thus forming
a new pathway that delivered the signals from TGF-b to ZO-1 and
eventually modulated EMT progression.

MATERIALS AND METHODS

Cell culture. The human breast cancer cell lines, MCF7, BT474,
and MDA-MB-231, were obtained from the American Tissue
Culture Collection (ATCC, Manassas, VA, USA). For TGF-b
treatment, MCF7 and BT474 cells were exposed to 10 ng ml� 1 of
TGF-b1 (PeproTech, Rocky Hill, NJ, USA) over different time
points (1–5 days). Cells were then harvested for protein or gene
expression analysis. For experiments using inhibitor, MCF7 and
BT474 cells were pretreated with 10 mM of SB431542 (Selleckchem,
Houston, TX, USA) (Taipaleenmaki et al, 2012), a specific
inhibitor of TGF-b type I receptor, for 30 min and then stimulated
with TGF-b1 (10 ng ml� 1) for 72 h.

Lentivirus transfection. Lentivirus constructs of RBM38 over-
expression and knockdown were obtained from GenePharma
(Shanghai, China) and generated as in our previous study (Shi et al,
2015). Briefly, cells were plated in 6-well dishes at 30–40%
confluence and infected with the retroviruses. Stable pooled
populations of breast cancer cells were generated by selection
using puromycin (3mg ml� 1) for 14 days.

Small interfering RNA (siRNA) and plasmid transfection. The
expression vectors encoding wild-type ZO-1 were constructed as
described previously (Brysse et al, 2012). Plasmids and siRNAs
(GenePharma) and were transfected into breast cancer cells using
Lipofectamine 3000 (Invitrogen Co., Carlsbad, CA, USA) accord-
ing to the manufacturer’s instructions. The cells were cultured in a
6-well plate for 24 to 48 h and the expression level was detected by
western blot and qRT–PCR to determine the interference
efficiency.

For TGF-b treatment, the medium was supplemented with
TGF-b1 (10 ng ml� 1) for another 72 h before siRNA transfection.

Western blot analysis. Cells were lysed and analysed by western
blotting as described previously (Shi et al, 2015). The primary
antibodies were used as follows: anti-rabbit RBM38 (Santa Cruz
Biotechnology, Dallas, TX, USA), ZO-1, Snail (Cell Signaling
Technology, Danvers, MA, USA), anti-mouse b-actin (Cell
Signaling Technology). The anti-rabbit and anti-mouse secondary
antibodies were from Cell Signaling Technology. The antibodies
were diluted according to the manufacturer’s instructions.

Chromatin immunoprecipitation assay (ChIP). The ChIP assay
was performed by chromatin immunoprecipitation kit (17-371,
EZ-ChIP, Millipore, Bedford, MA, USA) according to the
manufacturer’s instructions. Briefly, MDA-MB-231 and MCF7
cells (with or without TGF-b stimulation) were plated in 15 mm
culture dishes, the proteins were crosslinked with DNA by 37%
formaldehyde, and then stopped by adding 10� glycine solution.
Sonication of cell lysate was performed with the condition of 200
cycles/burst, 5.0 duty factor at 70.0 peak power (Covaris S220,
Woburn, MA, USA) to shear the chromatin to an average size of
500 bp. The supernatant fractions were diluted and incubated with
protein G agarose for 1 h at 4 1C. As Input, 10 ml (1%) of the
supernatants was preserved. Then, protein G agarose was pelleted
and supernatants were reincubated with 5mg primary antibody:
anti-Snail (Santa Cruz Biotechnology) or normal mouse IgG, at
4 1C overnight with rotation. After this, the supernatants were
reincubated with protein G agarose for 1 h at 4 1C. After washing
the beads, the protein/DNA complexes were eluted twice. Crosslink
was reversed by adding 5 M NaCl and incubation at 65 1C
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overnight. The immunoprecipitated DNAs were purified by
treatment with RNase A and proteinase K as well as the Input.
Purified DNA was evaluated and analysed by PCR with specific
primers listed in the Supplementary Table 1.

Luciferase reporter assay. Luciferase reporter assay was per-
formed with the Dual-Luciferase Reporter Assay System (E1910,
Promega, Madison, WI, USA). Briefly, 5 ng of Renilla luciferase
vector (pRL-TK; Promega), an internal control, and 200 ng of a
pGL3 reporter that contained various target regions were co-
transfected into breast cancer cells. At 48 h after transfection, cells
were harvested to measure the luciferase activity.

RNA isolation, reverse transcription, and qRT–PCR. Total RNA
was isolated using Trizol reagent (TaKaRa, Kusatsu, Japan), and
cDNA synthesis was performed using Primescript RT Reagent
(TaKaRa) according to the manufacturer’s instructions. The qRT–
PCR was performed using FastStart Universal SYBR Green Master
(Roche, Reinach, Switzerland) and then conducted using a
StepOnePlus Real-Time PCR system (Applied Biosystems, Foster
City, CA, USA), and the abundance of target mRNAs was
normalised based on b-actin. The primers used here are listed in
Supplementary Table 2 of Supplementary Material.

Immunohistochemical (IHC) staining and analysis. The breast
cancer sample tissue microarrays (BC08118) for IHC analysis were
purchased from Biomax (Rockville, MD, USA). The same tissue
samples were stained with RBM38 and ZO-1 antibody respectively.
The RBM38 antibody (LifeSpan Biosciences, Seattle, WA, USA)
was used at the dilution of 1 : 300. The ZO-1 antibody (Abcam,
Cambridge, MA, USA) was used with a concentration of
10 mg ml� 1. The IHC staining was conducted and analysed as
previously described (Shi et al, 2015).

Immunofluorescence (IF). Immunofluorescence assay was per-
formed as described previously (Lou et al, 2017). Primary
antibodies were used as follows: RBM38 (Santa Cruz Biotechnol-
ogy) and ZO-1 (Abcam). The FITC-conjugated secondary anti-
rabbit antibody (Jackson ImmunoResearch, West Grove, PA, USA)
and Alexa 594-conjugated secondary anti-goat antibody (Jackson
ImmunoResearch) were applied. The nuclei were stained with 4,6-
diamidino-2-phenylindole (DAPI).

RNA immunoprecipitation (RIP). RNA immunoprecipitation
was carried out as previously described (Shi et al, 2015). The
cytosolic extract from MCF7 cells was prepared with RNA
immunoprecipitation lysis buffer (Millipore), and then incubated
with 5 mg of anti-RBM38 (Santa Cruz Biotechnology) or non-
immunised rabbit IgG at 4 1C overnight. The mRNA-protein
immunocomplexes were brought down by protein A/G magnetic
beads, followed by RT–PCR and qRT–PCR analysis.

Recombinant protein purification and RNA probes. The
recombinant RBM38 proteins were expressed and purified as
described previously (Lou et al, 2017). To generate RNA
electrophoretic mobility shift assay (REMSA) probes, various
regions (A–D) in ZO-1 mRNA 30-UTR were amplified by PCR
with T7 promoter sequence (50-TAATACGACTCACTATAGGG-
30). The primers for probes A–D are listed in Supplementary
Material Table 3. Biolabelled RNA probes were made from in vitro
transcription with a MEGA shortscript Kit (Ambion, Waltham,
MA, USA) in the presence of biotin-16-UTP (Roche) according to
the manufacturer’s instructions.

RNA electrophoretic mobility shift assay. The REMSA was
performed with a LightShift Chemiluminescent RNA EMSA Kit
(Thermo, Waltham, MA, USA) following the manufacturer’s
instruction. Briefly, 4 mg ml� 1 RBM38 and 2 nM biotin-labelled
RNA probe were mixed in a REMSA binding buffer (10 mM
HEPES (pH 7.3), 20 mM KCl, 1 mM MgCl2, 1 mM dithiothreitol)

and incubated for 30 min at room temperature. To prevent
nonspecific binding, 10 mg ml� 1 of tRNA was added in the
reaction system. The RNA/protein complexes were then electro-
phoreticed by 4% native polyacrylamide gel and transferred to
nylon membrane (Thermo). The RNA was crosslinked with a UV
lamp at a distance of 0.5 cm from the membrane for 3 min. The
membrane was blocked in blocking buffer for 15 min and then
replaced for the blocking buffer with conjugate/blocking buffer
(stabilised streptavidin-horseradish peroxidase conjugate 1 : 300
dilution). After washing with 1� wash buffer for 3 times, the
membrane was incubated in substrate equilibration buffer for
5 min. Then, the membrane was incubated in substrate working
solution for 5 min and exposed.

Cell migration and invasion assay. Cell invasiveness was
conducted using 24-well transwell inserts (Millicell Hanging Cell
Culture Insert, PET 8 mm, Billerica, MA, USA) coated with 50 ml of
Matrigel (1 mg ml� 1; BD Biosciences, Franklin Lakes, NJ, USA).
Inserts were seeded with 5� 104 cells in 200 ml DMEM
supplemented with 0.1% FBS, and 500 ml of medium with 10%
FBS was added to the lower chamber. Cell migration assay was
carried out without the Matrigel. Cells were incubated at 37 1C for
36 h, after which noninvading cells were wiped from the upper side
of the membrane. The number of invading or migrating cells was
counted under the microscope in five independent fields and the
average number of cells per field was represented in the graphs.

Statistical analysis. All experiments were repeated in triplicate,
unless otherwise specified. The data were analysed using the SPSS
20.0 software (Chicago, IL, USA). The w2 test was used to assess the
correlation between RBM38 and the clinicopathological parameters.
For all the continuous variables, Student’s t-test was used to analyse
the statistical significance of the differences between groups, and
Po0.05 was considered to indicate a statistical significance.

RESULTS

Repression of RBM38 expression during TGF-b-induced EMT
in breast cancer. To explore the alteration of RBM38 expression
during TGF-b-induced EMT, MCF7 and BT474 cells were cultured
in the absence or presence of TGF-b over 5 days and monitored for
a phenotypic switch (Figure 1A). The EMT induction was
confirmed by the activation of Smad3, Snail, Slug, as well as the
reduction of ZO-1 in protein level (Figure 1B). Notably, RBM38
expression showed a significant decrease in response to TGF-b
(Figure 1B). The reduction of RBM38 level was also observed in
BT474 cells when treated with TGF-b to induce EMT (Figure 1C).
The expression of an activated version of the TGF-b type I receptor
could be inhibited via the potent and selective chemical inhibitor
(i.e., SB431542) that blocks EMT and promotes an enhanced
epithelial phenotype in cell culture (Xu et al, 2009). We blocked
TGF-b signalling by SB431542 that evidently inhibited down-
regulation of RBM38 protein levels (Figure 1D and E) by TGF-b.
These data demonstrated that RBM38 expression was markedly
reduced in breast cancer cells undergoing EMT and functioned as a
mediator in TGF-b signalling pathway.

Snail caused reduction of RBM38 levels in breast cancer. We
transfected MDA-MB-231, a cell line that relatively expressed Snail
highly (Dong et al, 2012), with small interfering RNAs (siRNAs)
targeting Snail. It was found that RBM38 expression was evidently
increased by knockdown of Snail at protein and mRNA levels
(Po0.05; Figure 2A). The reduction of RBM38 in MCF7 cells that
were treated with TGF-b was also restrained with Snail knockdown
(Po0.05; Figure 2B), whereas the phenomenon was not observed
in MCF7 cells with Slug knockdown (Supplementary Figure S1A
and 1B).
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Snail repressed RBM38 expression via directly targeting E-box
elements in the promoter of RBM38 gene. Then, we noticed that
the RBM38 promoter region contained six Snail-binding E-boxes
(50-CANNTG-30). A ChIP assay was performed by using three sets
of primers each containing two E-box elements (Figure 2C). Snail
showed a stronger ability to associate with E-box-1 and E-box-2 in
the promoter region of RBM38 gene in MCF7 cells that had
undergone TGF-b-mediated EMT (Figure 2D). Additionally, endo-
genous Snail bound to the same region of RBM38 promoter in
MDA-MB-231 cells (Figure 2E). We next cloned two RBM38
promoter-luciferase constructs, I (� 1880 to � 1672) and II (� 1221
to � 1028), based on the location of E-box-1 and E-box-2
(Figure 2F). With Snail knockdown in TGF-b-treated MCF7 cells,
RBM38 promoter activity significantly increased (Po0.05;
Figure 2G). Meanwhile, knockdown of Snail in MDA-MB-231 cells
raised RBM38 promoter luciferase as well (Po0.05; Figure 2H).
These evidences indicated that Snail directly repressed RBM38
expression by binding to E-box elements in its promoter region.

RBM38 overexpression counteracted cell migration and inva-
sion induced by TGF-b in breast cancer cells. To further
investigate whether RBM38 took part in TGF-b-mediated cell
migration and invasion, RBM38-overexpressed MCF7 cells and the
control were exposed or not to TGF-b. We found that cell
migration and invasion process induced by TGF-b were distinctly
attenuated via the overexpression of RBM38 (Figure 3A and B).
Quantified data were the fold change of cell number with the
exposure of TGF-b divided by that with the control, indicating that
TGF-b-mediated migration was dropped from 1.66 to 1.29 with
RBM38 overexpression and the invasion was decreased from 2.10
to 1.61 with RBM38 overexpression.

RBM38 regulated the expression of ZO-1 in breast cancer. In
TGF-b-treated MCF7 cells, overexpression of RBM38 blocked the
reduction of ZO-1 induced by TGF-b (Figure 3C). Similar result
was obtained in BT474 cells (Figure 3D). Next, MCF7, BT474, and
MDA-MB-231 cells were transfected with lentivirus to stably
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Figure 1. The RBM38 expression decreased during TGF-b-induced EMT. (A) Morphological contrast photos of MCF7 and BT474 cells treated
without or with TGF-b1 (10 ng ml�1) for 5 days. Cells showed a more mesenchymal morphology than that in the absence of TGF-b. Scale bars
indicated 50mm. (B) The MCF7 cells and (C) BT474 cells were exposed to TGF-b1 (10 ng ml� 1) for 0, 1, 2, 3, and 5 days. The EMT progress was
confirmed by monitoring ZO-1, Snail, Slug, and p-Smad3 expression. Meanwhile, expression of RBM38 was remarkably reduced. (D) The MCF7
and (E) BT474 cells were cultured without (con) or with TGF-b1 (10 ng ml� 1) followed by the addition of selective inhibitor SB431542 (10mM). After
72 h of treatment, the reduction of RBM38 expression induced by TGF-b was restored by the addition of SB431542.
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overexpress or knock down RBM38. The ZO-1 expression was
increased in MCF7 cells alongside upregulation of RBM38 at both
protein and mRNA levels (Po0.05; Figure 3A). Additionally, there
was a significant decrease in ZO-1 protein and transcript
expression in RBM38-knockdown MCF7 cells (Po0.05;
Figure 3C). It indicated that RBM38 positively affected ZO-1
expression in breast cancers cells. Similar results were observed in
BT474 (Figure 3B and D) and MDA-MB-231 cells (Supplementary
Figure S2A–D). These data suggested that RBM38 positively
regulated ZO-1 expression in breast cancer cells.

IHC staining of RBM38 and ZO-1 in human breast cancer
tissues. To identify correlation of location and expression between
RBM38 and ZO-1 in breast cancer tissues, IHC analysis was
performed in 90 breast cancer tissues. Both RBM38 and ZO-1 were
mainly expressed in the cytoplasm (Supplementary Figure S3A).
The ZO-1 staining was obviously stronger in RBM38 high-
expressed breast cancers compared with RBM38 low-expressed
breast cancers (Po0.05; Supplementary Figure S3B). The correla-
tion between RBM38 expression and clinicopathological features
was analysed as shown in Supplementary Table 4. The RBM38 and

ZO-1 cellular localisation in breast cancer cells was confirmed
using immunofluorescence (Supplementary Figure S4).

RBM38 enhanced ZO-1 mRNA stability in breast cancer. To
further explore whether RBM38 promotes ZO-1 expression by
regulating its mRNA stability, RBM38-overexpressed MCF7 and
the control were treated with 5 mg ml� 1 actinomycin-D (ActD), a
transcription inhibitor, for various times. We found that over-
expression of RBM38 prolonged the half-life of ZO-1 transcript
from 2.1 to 4 h (Figure 4A). Knockdown of RBM38 shortened the
half-life of ZO-1 transcript from 3.3 to 2 h (Figure 4C). Similar
results were also found in BT474 cells (Figure 4B and D). These
data indicated that RBM38 could increase ZO-1 mRNA stability.

RBM38 directly bound to the AREs in the ZO-1 mRNA 30-
UTR. To determine whether RBM38 physically binds to ZO-1
transcript, RNA immunoprecipitation assay was employed. The
RBM38 antibody and control IgG were applied to immunopreci-
pitate RBM38-RNA complex in extracts from MCF7 cells. As
Input, 10% of cell extracts were utilised. The ZO-1 was detected in
RBM38 rather than in the control IgG by RT–PCR (Figure 4E) and
qRT–PCR (Figure 4F). Both HuR and p21 were detected as positive
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RBM38 gene. (G) The luciferase activity for the reporter carrying RBM38 E-box-1 and -2 was increased in TGF-b-treated MCF7 cells by knockdown
of Snail. (H) The luciferase activity for the reporter carrying RBM38 E-box-1 and -2 was increased by interfering with the level of Snail in MDA-MB-
231 cells (231). Data represented mean±s.d. of three independent experiments. *Po0.05.
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controls, in accordance with the previous reports (Shu et al, 2006;
Cho et al, 2010). No obvious b-actin band presented in either
RBM38 or control IgG. Similarly, in BT474 cells, ZO-1, HuR, and
p21 transcripts existed in RBM38 rather than in the control IgG
(Figure 4G and H). These results indicated that RBM38 could
physically bind to ZO-1 mRNA.

Using bio-UTP-labelled probes (probes A, B, C, and D),
REMSA was performed containing various fragments of ZO-1
mRNA 30-UTR (Figure 5A) to find out potential RBM38 binding
site in ZO-1 mRNA. Bio-UTP-labelled p21 probe was utilised as a
positive control. The RBM38 protein was able to form RNA-
protein complexes (RPCs) with probe B, but not probes A, C, and

D. Formation of the complex was weakened with the addition of
p21 cold probe (Figure 5B).

To validate that AREs in ZO-1 mRNA 30-UTR were required for
RBM38 to promote ZO-1 expression, a dual-luciferase assay was
performed using pGL3 control reporter or pGL3 reporters with ZO-1
30-UTR-A, -B, -C, and -D downstream, whose sequences were identical
to probes A, B, C, and D, respectively (Figure 5C). We found that the
reporter carrying 30-UTR-B and -D exhibited a relatively stronger
luciferase activity in RBM38-overexpressed MCF7 cells (Po0.05;
Figure 5D). Although the luciferase activity for a reporter carrying
fragment B or D in ZO-1 30-UTR was obviously increased by RBM38,
the REMSA assay for fragment D was not definite when p21 cold probe
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was added and not vice versa. Altogether, we concluded that ZO-1 30-
UTR-B was the binding site of RBM38 in ZO-1 mRNA 30-UTR.

RBM38 overexpression rescued cell migration and invasion
induced by knockdown of ZO-1. ZO-1 is proved to be a tumour
suppressor in breast cancer, controlling endothelial cell–cell
tension, cell migration, and barrier formation (Martin et al,
2004; Tornavaca et al, 2015). To examine the role of RBM38 on
ZO-1-mediated cell migration and invasion, we silenced ZO-1 via
transfecting with siRNAs, termed as Z-siRNA1 and Z-siRNA2, in
MCF7 cell lines that expressed ectopic RBM38 and the control
(Figure 6A). Then, Z-siRNA1 was selected for further study. Upon
silencing of ZO-1 expression by Z-siRNA1, both RBM38-over-
expression group and the control had stronger ability of migration
and invasion. Moreover, by the overexpression of RBM38, MCF7
cell migration and invasion were evidently alleviated (Figure 6C
and D). The fold change is the ratio of cell number with the
transfection of Z-siRNA1 divided by that with the control,
indicating that interfering of ZO-1-mediated migration was
dropped from 1.98 to 1.43 with RBM38 overexpression. Further-
more, invasion was reduced from 2.57 to 1.79 with RBM38
overexpression. We obtained similar events in BT474 cells
(Figure 6E and F). Cell migration was decreased from 1.76 to
1.20 with RBM38 overexpression. In addition, cell invasion was
lessened from 2.03 to 1.69 with RBM38 overexpression. All the
results suggested that overexpression of RBM38 had a stronger

effect on inhibiting migration and invasion that would reverse the
same biological process mediated by ZO-1 knockdown. To explore
whether overexpression of ZO-1 counterbalanced silencing of
RBM38 in vitro, we inversely transfected MCF7 and BT474 cells
with vector encoding the ZO-1 (Supplementary Figure S5A–5C).
However, the effect of ZO-1 on RBM38 mediated cell migration
was not that clear (Supplementary Figure S5B–D).

DISCUSSION

In this study, we elucidated a new pathway of RBM38 involved in
TGF-b-induced EMT. The RBM38 could stabilise ZO-1 mRNA by
directly binding to AREs in ZO-1 mRNA 30-UTR and therefore
inhibited cell migration and invasion. In addition, with active TGF-
b signalling, RBM38 expression remarkably reduced that was
directly regulated by transcription factor Snail targeting E-box
elements in promoter region of RBM38 gene.

Our previous study demonstrated that RBM38 affected EMT
process in breast cancer (Xue et al, 2014). Here, we identified a
distinct reduction of RBM38 in mammary cells undergoing TGF-
b-mediated epithelial dedifferentiation. Meanwhile, the blockage of
TGF-b signalling by selective inhibitor SB431542 restored RBM38
expression levels, suggesting that RBM38 expression was modu-
lated by TGF-b. Considering the importance of Snail in TGF-b-
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induced EMT, the work was focussed on the relationship between
Snail and RBM38. By interfering the expression of Snail, RBM38
level was accumulated. Furthermore, as six E-box elements, the
Snail recognising sequences, exist in RBM38 promoter region, the
ChIP assay and dual-luciferase reporter assay were conducted and
proved that Snail bound to E-box-1 and E-box-2 in promoter
region of RBM38 gene and therefore restrained the RBM38
expression.

With the enhanced expression of Snail induced by TGF-b, TJ
proteins, including claudin-1, occludin, and ZO-1, were down-
regulated (Ohkubo and Ozawa, 2004; Li et al, 2011). Additionally,
Zhang et al (2013b) reported that the Rho/ROCK signalling
pathway mediated by TGF-b played a role in the dissolution of TJs
during EMT. Here we found that enhanced expression of RBM38
prevented the loss of ZO-1 expression stimulated by TGF-b,
indicating that ZO-1 might be the downstream of RBM38. We
further investigated a significant correlation between RBM38 and
ZO-1 expression in breast cancer cells. Overexpression of RBM38
increased ZO-1 expression, whereas RBM38 knockdown decreased
ZO-1 expression. The RBM38 was able to increase ZO-1 mRNA
stability by prolonging its half-life, whereas RBM38 knockdown
obviously decreased the stability of ZO-1 transcript. We further
confirmed that RBM38 could bind to ZO-1 transcript directly by

RIP assay. Previous studies found that RBM38 bound to mRNA 30-
UTR of many target genes and altered the stability of the
transcripts that all contain multiple AREs (Zhang et al, 2010,
2013a; Yin et al, 2013; Cho et al, 2015; Li et al, 2017). Consistent
with this, ZO-1 mRNA 30-UTR contains several AREs that can be
bound by RBPs (Chen et al, 2008; Nagaoka et al, 2012). Our results
indicated that RBM38 directly bound to fragment B in ZO-1
mRNA 30-UTR. Binding of ZO-1 AREs within its 30-UTR by
RBM38 led to enhanced stability of ZO-1 transcript. Here we
uncovered a novel mechanism that RBM38 is a positive post-
transcriptional regulator of ZO-1 in breast cancer.

Accordingly, TJs in epithelial cells function in an adhesive
manner and prevent cell dissociation, being the first barrier that
cancer cells must overcome for metastasis (Martin and Jiang,
2009). As a member of the ZO family, ZO-1 contains multiple
domains with numerous binding partners (Fanning and Anderson,
2009) that controls endothelial cell–cell tension, cell migration,
angiogenesis, and barrier formation (Tornavaca et al, 2015). Here
we demonstrated that the cell migration and invasion progression
caused by the loss of ZO-1 was rescued by upregulation of RBM38.
However, it is not obvious that ZO-1 counterbalances silencing of
RBM38 in vitro. Altogether, we proposed that under stimulation of
TGF-b, RBM38 was downregulated through transcription
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suppressor Snail, and low level of RBM38 led to decreased
expression of ZO-1, and then contributed to cell invasion and
migration (Figure 6G).

Considering the fact that TGF-b activates various signalling
pathways, and the interactions among these pathways are quite
complex (Gonzalez and Medici, 2014), the mechanism through
which TGF-b controls the expression of RBM38 requires
further investigation. Furthermore, more researches are required
to clarify RBM38 regulation networks so as to explore the
utility of RBM38 as a biomarker for breast cancer diagnosis and
prognosis.
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