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Abstract
The manuscript discusses the application of CT pulmonary angiography, ventilation–perfusion scan, and magnetic resonance 
angiography to detect acute pulmonary embolism and to plan endovascular therapy. CT pulmonary angiography offers high 
accuracy, speed of acquisition, and widespread availability when applied to acute pulmonary embolism detection. This imag-
ing modality also aids the planning of endovascular therapy by visualizing the number and distribution of emboli, determining 
ideal intra-procedural catheter position for treatment, and signs of right heart strain. Ventilation–perfusion scan and magnetic 
resonance angiography with and without contrast enhancement can also aid in the detection and pre-procedural planning of 
endovascular therapy in patients who are not candidates for CT pulmonary angiography.

Keywords Acute pulmonary embolism · Computed tomography pulmonary angiography · Ventilation–perfusion scan · 
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Introduction

Acute pulmonary embolism (PE) is a frequently encoun-
tered disease associated with high morbidity and mortality 
[1]. Most cases of acute PE originate from lower extremity 
deep vein thrombosis [2]. The thirty-day mortality rate is 
estimated to be 4%, and the one-year mortality rate is esti-
mated to be 13% [3]. The incidence of acute PE is higher 
in males (56 per 100,000 people) compared to females (48 
per 100,000 people) [4–6]. Advanced age is correlated with 
increased incidence of acute PE [5, 7].

Clinical evaluation of suspected acute PE

Acute PE presents with variable severity [8–11]. This can be 
explained by the varying degrees of pulmonary vasculature 
obstruction secondary to venous thromboembolism. Gradual 
increases in pulmonary artery pressure can be seen when 
greater than 30–50% of an arterial bed’s cross-sectional area 
is occluded as a result of stressed endothelial cells releasing 
thromboxane and other vasoactive mediators [12]. Increased 
pulmonary artery pressure resulting from acute PE obstruc-
tion increases right heart strain secondary to elevated right 
ventricular afterload [13]. Right ventricular dysfunction can 
be observed acutely as a result of the increased afterload as 
well as myocardial ischemia [2]. Continued stress on the 
ventricles can cause protracted contractions, ischemia, and 
desynchronization of the left and right ventricles [14]. Pro-
longed elevation of pulmonary vascular pressures can also 
cause pulmonary hypertension that lasts beyond the origi-
nal event [15]. Dyspnea, pleuritic chest pain, and cough are 
the most common presenting symptoms of acute PE, while 
other signs of acute PE include unilateral leg edema, sinus 
tachycardia, and tachypnea [16, 17].

Initial testing for patients with suspected acute PE 
should include brain natriuretic peptide, troponin, and ECG 
(Table 1). These investigations can be helpful in narrowing 
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down the differential diagnosis. These tests also provide 
prognostic data when acute PE is present [9, 10, 18–29].

The Wells score is used to determine the pre-test prob-
ability of acute PE in hemodynamically stable patients. A 
patient’s Wells score categorizes them as having a low, inter-
mediate, or high pre-test probability of acute PE [1, 2, 32, 
33]. The low, intermediate, and high risk categories cor-
respond to 5.7%, 23.2%, and 49.3% pre-test probability of 
acute PE, respectively based on a 2010 meta-analysis [34]. 
A Wells score of zero essentially excludes the possibility 
of acute PE with a low false-negative rate and a high sen-
sitivity. The modified Geneva score may also be used to 
determine the pre-test probability of acute PE. This scoring 
system utilizes clinical variables to categorize a patient into 
low, intermediate, or high risk groups that corresponded to 
8%, 28%, and 74% prevalence of acute PE in one study [35]. 
A simplified version of the modified Geneva score has been 
found to maintain diagnostic accuracy and has been exter-
nally validated [36, 37].

Patients who are categorized as having a low or interme-
diate pre-test probability of acute PE can be assessed with 
a laboratory d-dimer test. A negative d-dimer test result in 
these patients essentially excludes the possibility of acute 
PE. A meta-analysis found that patients with a negative 
d-dimer and without a high pre-test probability of acute PE 
had a 0.14% 3-month incidence of venous thromboembolism 
[38]. It is important to consider that the d-dimer can also 
be nonspecifically elevated in certain conditions, such as 
pregnancy, recent hospitalization, active neoplastic disease, 
and other chronic inflammatory states. A prospective longi-
tudinal study of 100 patients with systemic lupus erythema-
tosus with recurrent activity found that unexplained, per-
sistent elevation of d-dimer levels, especially above 2.0 µg/
mL, were associated with elevated risk of thrombosis [39]. 
Another study found that D-dimer levels in patients with 
estimated glomerular filtration rate of 30–60 mL/min were 
100% sensitive in ruling out acute PE although they were 
not specific enough to diagnose acute PE in this population 
[40]. Increased age has been associated with elevations in 
d-dimer concentrations, and a greater age-adjusted d-dimer 
threshold was found to be more specific (64% versus 54%) 

although less sensitive (93% versus 98%) in detecting acute 
PE in patients greater than 50 years old [41].

Patients with a high pre-test probability and occasionally 
those with intermediate pre-test probability require imaging 
to assess for acute PE. Computed tomography pulmonary 
angiography (CTPA) is usually the non-invasive imag-
ing modality of choice. CTPA offers 83% sensitivity, 96% 
specificity, and 96% positive predictive value when diagnos-
ing acute PE in patients considered to have a high pre-test 
probability [42]. A positive d-dimer test result also requires 
CTPA imaging to confirm or exclude acute PE [2, 32, 43].

The simplified Pulmonary Embolism Severity Index 
(sPESI) is a sensitive clinical prediction score used to risk 
stratify diagnosed acute PE patients [2, 44, 45]. This tool 
considers the variables of age > 80 years old, history of can-
cer, chronic cardiopulmonary disease, heart rate ≥ 110 beats 
per minute, systolic blood pressure < 100 mmHg, and arte-
rial oxyhemoglobin saturation < 90%. A patient is scored by 
receiving one point per variable present [46]. A score of 0 
is considered low-risk with an associated 1.0–1.5% 30-day 
mortality rate while a score of ≥ 1 is considered high-risk 
with a 10.7–10.9% 30-day mortality rate [46, 47]. Stratifying 
diagnosed acute PE patients by prognostic risk can be help-
ful in identifying low-risk patients who may benefit from 
outpatient therapy and revealing higher risk patients who 
should receive inpatient treatment [48]. The 2019 European 
Society of Cardiology PE guidelines utilize the sPESI in 
addition to right ventricular strain on echocardiogram or 
CT, elevated troponin levels, and hemodynamic instabil-
ity to classify patients with PE as low-, intermediate-low, 
intermediate-high, and high-risk PE [49]. Other prognostic 
scoring systems including the Bova and FAST scores utilize 
clinical, imaging, and laboratory data to estimate risk of 
early PE-associated mortality although their implications 
for clinical decision-making have not yet been elucidated 
[50–55].

Endovascular treatment of acute PE

The performance of endovascular therapy for acute PE 
treatment is evolving and gaining increasing interest. End-
ovascular treatment enables the removal of thromboem-
bolic material from the pulmonary arterial system through 

Table 1  Utility of tests in assessing acute PE

Test Value

Brain natriuretic peptide Elevated levels associated with short-term mortality in hemodynamically stable patients with acute PE [22, 23]
Troponin Elevated levels associated with greater in-hospital and short-term mortality in patients with acute PE [30, 31]
Electrocardiogram Abnormalities associated with acute PE (nonspecific) [9, 24] and greater risk of death in patients with acute PE [25, 

28]
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catheter-directed lysis or aspiration thrombectomy. Endo-
vascular treatment can be especially beneficial in patients 
with persistent hypotension or shock secondary to acute 
PE [56]. This treatment has the potential to improve right 
ventricular function by relieving elevated pulmonary vas-
cular pressures and stabilizing hemodynamics [33].

A pulmonary embolism response team can help decide 
on the best therapy for a patient with acute PE [57–59]. 
Endovascular therapy can be considered in patients with 
contraindications to systemic thrombolysis who have 
submassive acute PE, evidenced by elevated troponin and 
brain natriuretic peptide, and right heart strain [33, 60, 
61]. Endovascular therapy of acute PE usually involves 
placing a side hole infusion catheter through the throm-
boembolism and infusing tissue plasminogen activator 
(tPA). One mg of recombinant tPA per hour per catheter 
for a maximum total of 24 mg is a typical dosage per the 
SEATTLE protocol [62]. The ULTIMA trial found that 
10–20 mg of recombinant tPA over 15 h in addition to 
unfractionated heparin reversed right ventricular dila-
tation at 24 h greater than unfractionated heparin alone 
[63]. These doses are lower than that used in systemic 
thrombolysis and are therefore thought to be associated 
with a lower risk of intracranial or other hemorrhage [33]. 
Aspiration thrombectomy with immediate removal of the 
offending thromboembolic material from the pulmonary 
arterial system is another endovascular treatment approach 
[33]. Aspiration thrombectomy is specifically beneficial 
for patients with contraindication to systemic or catheter 
directed thrombolysis secondary to elevated bleeding risk 
[64, 65].

The PERFECT registry prospectively enrolled 101 
patients receiving catheter-directed therapy for acute PE 
in a multicenter registry. The study showed that catheter-
directed therapy for acute PE decreased right-sided heart 
strain and pulmonary artery pressures without causing 
major bleeding events [66].

The OPTALYSE PE trial was a prospective, multi-
center, parallel-group trial that included 101 patients with 
acute PE treated with ultrasound-assisted catheter-directed 
thrombolysis. The patients were randomized to 4 groups 
that varied by tPA dose (range of 4 to 12 mg) and infu-
sion duration (range of 2 to 6 h). The endpoints of RV/
LV diameter ratio and thromboembolic burden were sig-
nificantly decreased in the treatment groups. Major bleed-
ing occurred in only 4% of patients, and one intracranial 
hemorrhage event was attributed to ultrasound-assisted 
catheter-directed thrombolysis [67].

Studies have confirmed that endovascular treatment of 
acute PE is safe and effective with regard to short term 
hemodynamic stabilization. Additional studies should be 
done to assess the effect of catheter-directed therapy on 

long-term sequela of PE namely CTED and CTEPH with 
right ventricular failure.

CT pulmonary angiography 
for pre‑procedural planning

Computed tomography pulmonary angiography (CTPA) 
is the current non-invasive imaging modality of choice to 
assess acute PE. Its strengths include its accuracy, speed of 
acquiring images, and widespread availability. CTPA may 
reveal alternative diagnoses contributing to a patient’s pres-
entation if acute PE is not visualized [68]. A prospective 
randomized trial assessing acute PE detection with CTPA 
compared to pulmonary angiography as gold standard found 
CTPA to have 91% accuracy [69]. CTPA also offers supe-
rior spatial resolution and multi-planar reconstruction [68]. 
Wide-array CT scanners can cover substantial length per 
rotation and are associated with reduced motion artifacts. 
Dual-energy CT can help to rule out acute segmental and 
sub-segmental PE by color-coding perfusion based on the 
iodine concentration (iodine or Z-effective mapping) [70].

Dual-energy CTPA involves using two distinct energy 
levels to capture the image [71]. This technique enables dif-
ferentiation between tissues with similar attenuation values 
using various processing techniques such as iodine maps, 
virtual non-contrast (VNC) and virtual monochromatic 
images (VMI). Iodine maps accentuate iodine-containing 
tissue and improve the sensitivity of perfusion defects. VNC 
images imitate non-contrast images by virtually removing 
iodine and can be used for calcium scoring or as a substitute 
for true non-contrast images. VMI imitate an X-ray beam 
with one energy level and are created by a linear combi-
nation of basis pair images in different proportions. VMI 
can decrease artifacts and thereby improve specificity [71, 
72]. Lung perfusion maps can be derived from iodine maps 
(Figs. 1 and 2) [33]. A pulmonary perfused blood volume 
(PBV) map color codes parenchymal tissue by iodine con-
centration [73, 74]. Perfusion defects are normalized to the 
vascular iodine concentration, and areas that do not fall 
within this attenuation range are excluded. Hence, lung 
abnormalities appear dark on PBV maps. PBV maps can also 
be merged with conventional CT images to better analyze 
the lungs’ form and function [75, 76].

Dual-energy CT can salvage suboptimal studies and 
reduce the contrast exposure to patients. This is accom-
plished by using low-energy VMI less than 70 keV, which 
exhibits greater photoelectron attenuation and thus greater 
contrast [77]. As many as 10% of regularly acquired CTPA 
studies are non-diagnostic, and 40% of those are caused by 
poor contrast enhancement [78]. While poorly enhanced 
studies often require repeat contrast doses and repeat scan-
ning with associated radiation exposure, low energy VMI 
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avoids this by virtually increasing vessel attenuation and 
contrast-to-noise ratio (CNR). The subjective image qual-
ity was found to be best at 70 keV VMI when compared to 
polyenergetic images in one study [79]. Another study found 
that 60 keV produced the greatest CNR and sound-to-noise 
ratio (SNR) while maintaining image quality and using 35% 
of the typical iodine concentration [80]. Dual-energy CT 
has also been found to produce high SNR, and CNR while 
requiring only 40% of the typical iodine based contrast agent 
dose [81].

High-energy VMI has the ability to reduce artifacts, with 
100 keV producing the least artifacts [80]. Beam harden-
ing artifacts originating from dense contrast in the superior 
vena cava is especially reduced with high-energy VMI [71]. 
The high-pitch helical mode of dual-source scanners also 
results in diagnostic image quality by requiring decreased 
breath hold duration and thus leading to reduced motion arti-
facts. This mode is also associated with decreased radiation 
and contrast exposure to the patient [82]. A retrospective 

study of ultra-high-pitch dual-source CTPA in patients with 
suspected PE found that a reduced voltage (100 kV) com-
pared to a standard voltage (120 kV) resulted in significantly 
reduced radiation dose, greater subjective image quality, and 
improved SNR and CNR. Diagnostic agreement between 
readers for the reduced voltage was very high (κ = 0.891) 
[83]. Iterative reconstructive algorithms can further reduce 
patients’ radiation exposure [84]. A retrospective study of 
4011 patients divided into three groups differentiated by CT 
optimization technique found that iterative reconstruction 
resulted in a significant radiation dose reduction of 16–31% 
when combined with automated tube current modulation. 
The same study found that iterative reconstruction improved 
levels of objective noise [85]. Another study found that itera-
tive model reconstruction could reduce radiation doses up to 
50% while preserving image quality [86].

CTPA can be helpful in the planning stages of endovas-
cular therapy for acute PE. In the coronal orientation, it can 
reveal both the number and distribution of emboli. During 

Fig. 1  80-year-old female with known ANCA-negative, medium-
size-vessel vasculitis presenting with progressive dyspnea over a 
period of 4 weeks. a Dual-energy CTPA demonstrates filling defects 
of several subsegmental arteries, one of them illustrated in this axial 
plane (arrow). b Z-effective map of the dual-energy CTPA demon-
strating iodine distribution with blue colors representing high iodine 

concentration and yellow and red colors representing low iodine con-
centration. This axial plane at the same level shows a wedge-shaped 
area of low iodine concentration (arrows) corresponding to an area 
of reduced perfusion caused by the embolus seen in a. Further perfu-
sion defects can be appreciated on the same plane (arrowheads) cor-
responding to more emboli not detected with regular CTPA imaging

Fig. 2  64-year-old male with 
hepatocellular carcinoma. a 
Dual-energy CTPA demon-
strates filling defects of several 
subsegmental arteries, one of 
them illustrated in this axial 
plane (arrow). b Z-effective 
map of the dual-energy CTPA 
illustrates a wedge-shaped area 
of low iodine concentration at 
the same level corresponding 
to an area of reduced perfusion 
(arrow)
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the procedure coronal reconstruction can be correlated to 
CTPA images to ensure proper catheter position within 
the acute thromboembolic material. Right heart strain is a 
common pathology associated with acute PE, and CTPA 
reveals signs of right heart strain including increased RV/
LV diameter ratio of 0.9 or greater, interventricular sep-
tal bowing towards the left ventricle, contrast reflux into 
the hepatic vein as well as inferior vena cava (IVC), and 
increased IVC diameter compared to baseline [87]. Captur-
ing the pulmonary artery size allows its comparison to prior 
CTs and may show an acute enlargement secondary to PE. 
CTPA also enables characterization of the venous anatomy 
including proximal IVC and the patency of the central veins. 

This information is important for access planning purposes 
(Figs. 3 and 4).

Dual-energy CT perfusion images simulate true perfu-
sion by allowing the comparison of a tissue’s innate physical 
density with its enhancement during acquisition [88]. These 
perfusion images do not require changing the CTA proto-
col, which confers the benefits of not requiring additional 
radiation or contrast and thereby minimizing motion mis-
registration from repeated acquisitions [88]. The resulting 
images correlate well with those of scintigraphic perfusion 
images. PBV images have shown modest correlation with 
lung scintigraphy in CTEPH patients [89]. One study of 
dual-energy CT perfusion images compared to scintigraphy 
showed 96% sensitivity and 76% specificity [90]. Another 

Fig. 3  69-year-old male with a massive pulmonary embolism status 
post cardiac arrest with ROSC achieved after CPR. a Coronal view 
CTPA showing bilateral pulmonary artery emboli extending into 
segmental branches. b Digital subtraction angiography of pulmo-
nary arteries via right common femoral vein access with 5 Fr flush 
pigtail drainage catheter in main pulmonary artery showing bilateral 
acute PE, predominantly on the right side. Correlation between coro-
nal CTPA and DSA images is helpful to determine extend of disease. 
c–e Signs of right heart strain and acute PE on axial CTPA imaging 

including reflux of contrast into hepatic veins and IVC (c), acute dil-
atation of main pulmonary artery (d) as well as RV to LA ratio of 
more than 1 with straightening of the interventricular septum. f and 
g are representative coronal and axial CTPA slices showing patent 
SVC and patent bilateral internal jugular veins. This information can 
be gained from the CTPA and is helpful for procedure planning pur-
poses, particularly if the endovascular treatment approach will be pur-
sued via internal jugular vein access
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study comparing dual-energy CT perfusion images to scin-
tigraphy at the segmental level showed 83% sensitivity and 
99% specificity [91].

Acute and chronic PE present differently on CTPA. 
Acute PEs are typically located at vessel bifurcations and 
may completely or partially obstruct pulmonary vascula-
ture [13, 32]. A complete obstruction is characterized on 
CTPA as a hypoattenuating contrast defect occupying a ves-
sel’s entire lumen and can be seen in acute PE. The vessel 
diameter at the obstruction level is usually maintained or 
increased slightly. Partial obstructions may be located cen-
trally (indicative of acute PE) or eccentrically (indicative of 
chronic PE). Complete obstruction in the setting of acute PE 
can cause distal infarcts that appear on CTPA as a triangular 
subpleural consolidation or ground-glass opacity with fine 
reticular changes.

Chronic PE appearance varies based on the extent of 
obstruction and degree of chronicity. Complete obstruc-
tion presents as a lack of contrast distal to the obstruction 
and an immediate narrowing of the vessel diameter. Partial 
obstruction is characterized by a narrow diameter and par-
tially attenuated vessel or dilation distal to the obstruction. 
Chronic nonobstructive PE manifests as a narrow vessel, 
irregular intima, and intraluminal bands and webs [13]. 
The abrupt narrowing of vessels is caused by recanalization 
of the thrombus. Thrombi along a vessel wall can become 
endothelialized or “laminated” and will appear as an irregu-
lar intimal surface contour that forms obtuse angles with 
the contrast column. Laminated thrombi often present with 
calcifications. Bands are linear structures that run along 
the long axis of a vessel and may appear in the setting of 
chronic PE. Webs are networks of bands that are often found 

at vessel bifurcations in chronic PE and are associated with 
distal neovasculature [13, 92, 93].

Chronic PE raises vascular resistance and is characterized 
by dilation of the central pulmonary arteries secondary to 
pulmonary hypertension. The main pulmonary artery (MPA) 
diameter at the level of its bifurcation lateral to the ascend-
ing aorta is used to assess for the presence of pulmonary 
hypertension. MPA diameters greater than 28 mm in men 
and 27 mm in women are typical predictive cut-offs for pul-
monary hypertension [94]. A greater cut-off of 31.6 mm has 
also been suggested [95]. A MPA-to-ascending aorta diam-
eter ratio greater than 1 is also a reliable method of assessing 
for pulmonary hypertension. This measurement offers 70% 
sensitivity, 92% specificity, 96% positive predictive value, 
and 52% negative predictive value [96]. In CTEPH pulmo-
nary arteries can appear tortuous with calcified walls [13].

Chronic PE can present with right ventricular hypertro-
phy evidenced by ventricular wall thickness greater than 
4 mm [13]. Development of right ventricular dysfunction 
causes right ventricular enlargement [87]. Right ventricular 
enlargement can dilate the tricuspid valve annulus leading 
to tricuspid regurgitation. The lung parenchyma distal to the 
occlusion or stenosis of chronic PE presents with a mosaic 
perfusion pattern that appears as well-demarcated hypoat-
tenuated tissue with narrow vasculature contrasted with the 
hyperattenuated tissue being in possession of larger vascu-
lature of well-perfused lung parenchyma. Areas of infarc-
tion can resolve in the long-term to form peripheral nodules, 
cavities, subpleural scars, or irregular peripheral lines [13].

Right heart strain is important to recognize on CTPA and 
has characteristic signs on imaging as previously described 
(Fig. 5). A RV/LV diameter ratio ≥ 0.9 is predictive for poor 
clinical outcomes after acute PE [43, 97, 98]. A study of 457 

Fig. 4  48-year-old female 
presenting with severe short-
ness of breath and chest pain. 
The patient has a history of 
metastatic breast cancer. a–c 
Coronal CTPA slices showing 
pulmonary embolus in right 
and left pulmonary arteries 
extending into multiple seg-
mental branches. d RV to LV 
of 1.0 suggestive of right heart 
strain. e In this case there is no 
significant contrast reflux into 
suprahepatic inferior vena cava 
and / or hepatic veins
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patients found that RV/LV diameter ratio ≥ 0.9 was an accu-
rate predictor of in-hospital death or clinical deterioration 
[87]. A meta-analysis found that right ventricular dilation is 
associated with elevated 30-day mortality, increased risk of 
death from PE, and increased 3-month mortality rate (OR 
4.65) [99].

Ten to fifteen percent of acute PEs cause infarction of the 
lung. This appears as a wedge-shaped peripheral lung opac-
ity, often referred to as a “Hampton hump,” on CTPA. These 
opacities can have a central ground glass appearance [33].

CTPA has its inherent limitations secondary to artifacts. 
Patient breathing causes motion artifacts that particularly 
affects the lower lung zones. Cardiac motion may also dis-
rupt the pericardial zone image quality. Attenuation along 
a vessel may be disturbed by beam hardening artifacts from 
contrast originating from abutting vasculature, wires, or 
medical devices [33]. Studies have found 0.5% to 12.1% of 
CTPA studies to be non-diagnostic [78, 100–112].

Ventilation/perfusion scan

Ventilation/Perfusion (V/Q) scanning was the mainstay diag-
nostic method for acute PE before the development of newer 
CT techniques [113]. This imaging modality can be valuable 
when estimating the probability of an acute PE [114, 115]. 
Patients who are pregnant, have renal failure or contrast 
allergies, or cannot fit into a CT scanner also particularly 
benefit from V/Q scans. V/Q scans expose patients’ breasts 
to 50 times less radiation compared to CT, which helps to 
reduce breast cancer risk in young women [116–118]. The 
fetal radiation dose associated with V/Q scans has been 
estimated to be 3.4–6 times higher than the fetal radiation 
dose associated with low-dose CTPA. While V/Q scans are 
associated with a greater fetal risk for childhood cancer com-
pared to CTPA, their aggregated radiation risk for a pregnant 
patient and her fetus is lower compared to CTPA. This dif-
ference in aggregated radiation risk increases with greater 
maternal body mass index and increased gestational age and 

suggests that V/Q scans are more dose-efficient than CTPA 
for pregnant patients [119, 120].

V/Q scan is the indicated diagnostic test for acute PE in 
pregnant patients with a normal chest radiograph. A retro-
spective study of 304 pregnant or postpartum women sus-
pected to have an acute PE found that the patients with a 
normal chest radiograph were more likely to have a diagnos-
tic image from V/Q scanning compared to CTPA. Various 
retrospective studies have found that 75–93% of V/Q scans 
of pregnant patients suspected to have acute PE resulted in 
diagnostic studies [11, 121–127]. CTPA has also been asso-
ciated with a significantly higher incidence of sub-optimal 
studies for assessing acute PE in pregnant patients compared 
to age-matched non-pregnant controls [128]. This further 
contributes to the evidence supporting V/Q scan as the diag-
nostic test of choice in pregnant patients with a normal chest 
radiograph who are suspected to have acute PE.

V/Q scans make use of ventilation agents labeled with 
technetium-99 m (Tc-99 m) or radioactive noble gases such 
as Xenon-133 or Krypton-81 m. Technetium-99 m-labeled 
diethylenetriaminepentaacetic acid (DTPA) is the most com-
monly used agent [115].

Tc-99 m-labeled macro-aggregated albumin (MAA) is 
injected intravenously to image perfusion for V/Q scans. 
The patient is positioned upright for the scan, which acquires 
multiple planar images. Single-photon emission computed 
tomography (SPECT)/CT using a low-dose CT technique 
may also be performed to better localize abnormalities [115].

The perfusion scan may be acquired before or after the 
ventilation scan. Imaging perfusion first guides the projec-
tion used for ventilation scans using Xenon-133. A normal 
perfusion scan can preclude the need for a ventilation scan, 
which is particularly valuable for patients requiring mini-
mization of radiation exposure such as the pregnant patient 
population. Some authors have proposed primarily using 
perfusion-only scintigraphy in the diagnostic assessment of 
acute pulmonary embolism to reduce potential viral trans-
mission by aerosolization in the setting of the current global 
COVID-19 pandemic [129].

Fig. 5  45-year-old male patient with acute dyspnea. a CTPA shows 
emboli in the left pulmonary artery bifurcation and the lower lobe 
segmental artery on the right side (arrows) b Significant enlargement 
of the right ventricle with a nearly inversed configuration of the inter-

ventricular septum, consistent with right heart strain. c A less spe-
cific, but also typical sign of right heart strain is the reflux of contrast 
material into the inferior vena cava and hepatic veins
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V/Q scans are interpreted with a corresponding chest 
radiograph taken within 12–24 h of the scan. Acute PE 
is often visualized as peripheral wedge-shaped perfusion 
defects in a lobar, segmental, or sub-segmental distribution 
in the absence of an associated ventilation abnormality. This 
mismatched defect can also be found with other conditions 
including malignancy, vascular abnormalities, vasculitis, 
veno-occlusive disease, and mediastinal lymphadenopathy 
and therefore a chest radiograph is valuable for comparison 
purposes [43].

The most commonly used criteria for interpretation of 
V/Q scans for acute PE are the modified Prospective Inves-
tigation of Pulmonary Embolism Diagnosis (PIOPED) II and 
prospective investigative study of acute pulmonary embo-
lism diagnosis (PISAPED) criteria [115, 130]. Patients can 
be categorized as high probability, intermediate probability, 
very low probability, normal, and non-diagnostic using the 
modified PIOPED II criteria. A normal scan is characterized 
by diffusely homogenous radiotracer activity in the lungs on 
ventilation and perfusion scans while a high probability scan 
is characterized by two or more large segmental mismatch 
defects or segmental defect equivalents. A very low prob-
ability scan will appear as a non-segmental defect [115].

The PIOPED II criteria have found V/Q scans to have 
85% sensitivity and 93% specificity for acute PE, and the 
PISAPED criteria found to have 80% sensitivity and 97% 
specificity for diagnosing PE [113, 130]. Utilizing SPECT 

can improve V/Q scan sensitivity and specificity by enabling 
three-dimensional visualization of the lung. The addition of 
SPECT has been found to offer a 97% sensitivity and 91% 
specificity for diagnosing acute PE [131].

Magnetic resonance angiography

Magnetic resonance angiography (MRA) is an evolving 
imaging modality that can be used for evaluating the pos-
sibility of acute PE in certain patient populations. Pregnant 
or young patients may benefit from MRA instead of CTPA 
if acute PE is suspected due to the lack of ionizing radiation 
exposure. Patients with history of anaphylactoid reactions to 
iodine contrast media and those with chronic kidney disease 
may benefit from MRA as well [132].

MRA assessment for acute PE includes axial and coronal 
static steady-state free precession (SSFP) sequences, con-
trast-enhanced 3D MRA using T1-weighted GRE sequences, 
and an optional time-resolved contrast-enhanced 3D MRA 
for dynamic perfusion imaging [133].

The static SSFP sequences are acquired during free 
breathing or inspiratory breath-hold. These sequences can 
detect acute PE without the use of IV contrast due to the 
bright blood signal (Fig. 6). A non-contrast MRA is espe-
cially valuable for pregnant patients who ideally should not 
receive gadolinium contrast [33, 134]. The 3D-balanced 

Fig. 6  62-year-old female 
patient with acute dyspnea. a 
Static SSFP sequence acquired 
in coronal orientation shows a 
filling defect in the right upper 
lobe artery (white arrows). 
b and c Contrast-enhanced 
3D MRA acquired in coronal 
orientation in the pulmonary 
arterial phase (b) and 25 s 
later (c) confirms the findings 
of the SSFP sequence (white 
arrows). d Time-resolved, 
contrast-enhanced 3D MRA 
demonstrates a corresponding 
perfusion defect in the right 
upper lobe (black arrows) as 
well as further perfusion defects 
in the right and left basal seg-
ments (black arrow heads, cor-
responding thromboemboli not 
illustrated in this figure)



351The International Journal of Cardiovascular Imaging (2021) 37:343–358 

1 3

SSFP sequence is commonly used. It creates T2/T1 weight-
ing with radiofrequency pulse phase alteration and gradient 
echo refocusing that results in a steady state. A long T2 with 
high signal contrast causes blood to appear bright which 
facilitates thrombus detection [134]. This sequence offers 
high sensitivity for field heterogeneity and requires only a 
short repetition time to minimize artifacts [135]. Balanced 
SSFP has also been shown to provide fast, accurate meas-
urement of pulmonary artery diameters [136]. Arterial spin 
labelling makes use of slice selective acquisition with repeat 
imaging after an initial inversion pulse. It can be particu-
larly valuable when combined with faster sequences. This 
technique acquires an image with upstream blood tagged 
by an inversion radiofrequency pulse and another image 
without such tagging [134]. A subtraction between these 
images depict signal solely from the tagged blood and helps 
with visualizing vessels and tissue perfusion [137]. The 
fresh blood imaging technique makes use of the EKG-gated 
3D partial Fourier fast spin echo technique. This sequence 
makes arterial blood in systole appear dark because of flow 
void and in diastole appear bright because of slows flow. 
Veins produce some intensity in systole and diastole due to 
slow flow [134]. An image with high signal intensity in the 
arteries and low signal intensity in the veins can be created 
by subtracting the systolic and diastolic images [137]. How-
ever this sequence is not commonly used to diagnose PE due 
to its susceptibility to misregistration [134].

Contrast-enhanced 3D MRA offers high spatial resolution 
of the pulmonary vasculature (Fig. 7). This technique utilizes 
intravenous gadolinium contrast that causes T1 shortening 

in adjacent tissues leading to a high signal intensity in MRA 
images [134]. Coronal images are typically acquired dur-
ing inspiratory breath-holds. Usually pre-contrast images 
for subtraction purposes are obtained, followed by arterial 
phase images, and late arterial phase images [133]. Timing 
the acquisition accurately achieves high SNR and allows 
separation of the arterial and venous phase [134]. The time 
at which the pulmonary arteries show maximum contrast 
enhancement is assessed utilizing a bolus-tracking technique 
(Fig. 6) [33]. Bolus-tracking techniques include utilization 
of dynamic low resolution magnetic resonance fluoroscopy 
and starting the acquisition just before contrast enters the 
pulmonary arterial tree. One could also utilize a test bolus 
injection of 1 to 2 mL of contrast to assess the time required 
for the contrast to reach the target vasculature [134].

3D T1-weighted spoiled gradient echo sequence acquisi-
tion uses values of TR = 2.5–3 ms, TE = 1.0–1.5 ms, flip 
angle = 30–40°, matrix = 40 × 192 × 256, FOV = 460 mm, 
and parallel imaging factor (R) = 2 [138]. Acquiring data 
in an oval area of k-space and zero-filling corners enables 
isotropic spatial resolution. Fractional echo read-out can 
reduce TE and TR. This sequence can achieve 2 mm spatial 
resolution in phase encoded direction and 1.5 mm spatial 
resolution in frequency encoded direction [139]. Time-
resolved contrast-enhanced 3D MRA is performed with 
repeated rapid volumetric sequences that sample the center 
of the k-space more frequently than the periphery [140, 141]. 
Data that are missing at each time point are shared between 
k-spaces by applying a variety of techniques [142–145]. The 
images are captured during shallow breathing after the first 

Fig. 7  69-year-old male 
with acute dyspnea. a and b 
Contrast-enhanced 3D MRA 
acquired in coronal orientation 
demonstrates filling defects, 
among others a long filling 
defect in the left lower lobe 
artery with a “railway sign” (a, 
white arrows) and the filling 
defect is shown as a “polo mint 
sign” on the axial reconstruc-
tion of the same data set (b, 
white arrow). c Time-resolved, 
contrast-enhanced 3D MRA 
reveals extensive wedge-shaped 
perfusion defects in the left 
upper and lower lobes (black 
arrows)
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pass of a gadolinium contrast bolus. There is some evidence 
that time-resolved contrast-enhanced MRA during patient 
free-breathing may achieve accurate diagnoses and vessel 
measurements, which could make this sequence especially 
beneficial in the pediatric population and in patients with 
severe dyspnea [146]. When using power injectors this tech-
nique is particularly helpful for visualizing perfusion defects 
when pursuing subtraction images (Fig. 6d and 7c) [147, 
148].

Conclusion

Imaging plays a crucial role in the assessment of acute pul-
monary embolism (PE) prior to endovascular intervention. 
CTPA is the modality of choice for the diagnosis of acute 
PE given its availability as well as excellent sensitivity and 
specificity. This imaging modality facilitates detection and 
characterization of the extent of the pulmonary embolus 
(particularly helpful in coronal view to correlate with angi-
ography in the case of endovascular treatment) and enables 
assessment of right heart strain. Further, CTPA allows evalu-
ation of the access route for endovascular interventions to 
ensure patency of the central venous system. MRI offers a 
limited role in the diagnosis of acute PE in certain patient 
populations, specifically in pregnant patients. In current clin-
ical practice 3D MRA largely relies on Gadolinium based 
contrast administration for diagnosis of acute PE. However, 
non-contrast MRA sequences such as SSFP are evolving for 
the assessment of the pulmonary arterial vasculature.
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