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Abstract: Soil salinity is one of the most limiting stresses for crop productivity and quality worldwide.
In this sense, jasmonates (JAs) have emerged as phytohormones that play essential roles in mediating
plant response to abiotic stresses, including salt stress. Here, we reviewed the mechanisms underlying
the activation and response of the JA-biosynthesis and JA-signaling pathways under saline conditions
in Arabidopsis and several crops. In this sense, molecular components of JA-signaling such as MYC2
transcription factor and JASMONATE ZIM-DOMAIN (JAZ) repressors are key players for the JA-
associated response. Moreover, we review the antagonist and synergistic effects between JA and
other hormones such as abscisic acid (ABA). From an applied point of view, several reports have
shown that exogenous JA applications increase the antioxidant response in plants to alleviate salt
stress. Finally, we discuss the latest advances in genomic techniques for the improvement of crop
tolerance to salt stress with a focus on jasmonates.

Keywords: salt stress; jasmonates; jasmonate signaling pathway; crosstalk; exogenous jasmonate
applications; GWAS

1. Introduction

Salinity is a serious hazard for agriculture since most of the crop plants are salt-
sensitive [1]. Current data show that global soil salinization increased by more than 100
Mha between 1986 and 2016 and it is expanding on a global scale, approximately at a
rate of 2 Mha per year [2]. Thus, the future of food supplies for animals and humankind
is threatened [3]. Natural processes such as geological deposits due to parent rock con-
stituents, salinized groundwater, marine transgressions, storm flood events, tsunamis,
and recurrent drought events and the general increase in temperature [4,5] cause soil salin-
ization. Unfortunately, human interventions have also promoted the increment of saline
lands. Wrong irrigation practices, poor drainage conditions [6], the use of fertilizers [7],
mismanagement of treated wastewater [8], industrial [9], and mining operation effluents
enriched with a salt contribute to the salinity increment in the soil and water [10].

Under salt stress conditions, physiological and metabolic activities are impaired by
osmotic-, ionic-, and oxidative stresses, nutritional imbalance, or a combination of these
factors [11]. In fact, plant growth and development are limited by salt stress due to the
negative influences through the ionic and osmotic components on various biochemical reac-
tions and physiological processes such as photosynthesis, antioxidant metabolism, mineral
nutrient homeostasis, osmolyte accumulation, and hormonal signaling [12]. Most species,
including crops, activate tolerance mechanisms only after exposure to salt stress. Acti-
vation of the tolerance program drives plants to acclimatize under the saline condition
and involves altered physiological responses, redirection of metabolism, reinforcement of
defense and repair, and changes in developmental programs to adapt morphological and
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anatomical characteristics [1,13]. Complex coordination of several signaling pathways is
needed to activate the plant responses to salt stress. Phytohormone-mediated signaling,
for instance, is crucial in the induction of gene networks related to salt tolerance [14].

Among abiotic stress-related hormones, abscisic acid (ABA) is well known to be the
key phytohormone in endogenous signaling that allows plants to survive adverse environ-
mental conditions [15]. The role of ABA for salinity adaptation has long been intensively
studied and documented [16–18]. More recently, the biological relevance of jasmonate
(JA) and its derivatives in the induction of tolerance to abiotic stresses has been demon-
strated [19–21]. JAs are critical signaling molecules in various development and defense
processes of plants [22,23] and play essential roles in plant response to salt stress [24–26].
Similar to ABA, accumulation of JAs has been reported in salt-tolerant crops compared
to sensitive cultivars [27]. Salt stress has been observed to cause increased levels of JA in
leaves and roots and the induction of JA biosynthesis-related genes [28–30]. In addition,
exogenous application of JA significantly reduces the Na+ ion content in salinity-tolerant
rice and wheat [27,31] and recovers salt-induced defects in seedling development and
photosynthetic activity [32,33]. All this evidence is highly correlated with a positive role
of JA in the plant response to salt stress. JA-crosstalk with other phytohormones has
aroused the interest of researchers since the interaction among multiple plant hormone
signaling integrates environmental and development cues. In this sense, JA has been
proposed as a core signal in the phytohormone signaling network [34] because it regulates
the balance between plant growth and defense [35,36]. The JA signaling components
JASMONATE ZIM-DOMAIN (JAZ) and MYC2 have been identified as the main nodes in
the orchestration of JA interplay with other hormone signaling pathways [37,38]. How-
ever, the cross-coordination between JA and the other phytohormone is far from being
completely understood.

Currently, many strategies have been implemented to obtain tolerant plants to salt
stress including classical plant breeding and genetic engineering approaches [39]. However,
the complexity of the salt tolerance trait requires more in-depth studies to be understood.
Exploring germplasm that possesses genetic variability across a wide spectrum of salt
tolerance-related traits could provide valuable information. The study of biparental map-
ping populations and diversity panels has allowed the discovery of beneficial genetic
variants (or alleles) that can be examined for traits that have significant components of
salt stress tolerance and their associated quantitative trait loci (QTL) [40]. The analysis of
these traits by phenotyping and genotyping techniques could reveal new insights into the
biological mechanisms underlying the salt tolerance phenotypes [41]. A widely employed
approach to identify the association between each genotyped marker and a phenotype of
interest that has been scored across several individuals is the genome-wide association
study (GWAS) [42]. It offers some advantages such as more accurate positioning and map-
ping, simultaneous assessments of multiple alleles at a locus, no requirement for linkage
group construction [43,44] and can serve as a basic experiment to identify candidates for
mutagenesis and transgenics [45].

With the possibility of performance-specific and predictable genetic modifications
through genome (or gene) editing (GE) tools, the information obtained by GWASs becomes
more valuable for plant breeding and crop improvement efforts. Among GE methods,
the CRISPR-Cas9 system has been used to enhance salt tolerance in some crops like rice and
tomato [46,47]. Given that JA regulates processes associated with growth, development,
and salt response, the components of JA-biosynthesis, metabolism, and signaling can be
targets for phytohormone engineering to produce salt-resilient crops with high yields.
Furthermore, increased knowledge of the signals and molecular mechanisms involved
in the plant salinity response would pave the path to obtain salt-tolerant crops without
productivity penalties.

In this review, we update the information of the role of JA in the salt stress response,
mainly in the topics related to JA-crosstalk with other phytohormones in salinity conditions,
although limited information about JA-crosstalk during salt stress is available, here we
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bring together the latest studies on this topic. Finally, we reviewed the use of genome-
associated tools to improve salt tolerance by manipulation of JA signaling.

2. Jasmonate Metabolism, Signaling, and Response during Salt Stress
2.1. JA Biosynthesis, Signaling, and Catabolism

The JA hormones have traditionally been studied in several plant species in the
regulation of aspects regarding development, metabolism, and adaptation to biotic stress.
However, JAs have lastly been associated with plant responses to several abiotic stresses,
adding to JAs extra functions in plant adaptation [20,48]. The JA pathway consists mainly
of the JA-associated biosynthesis, signaling, catabolism, and response. According to the
information obtained in Arabidopsis, JAs are oxylipins, which biosynthesis begins in the
plastids. The α-linolenic acid fatty acid, produced by the action of A1-type lipases (PLIP and
PLA1), is transformed into several intermediates by reactions catalyzed by 13-lipoxygenase
(13-LOX), allene oxide synthase (AOS), and allene oxide cyclase (AOC), leading to 12-oxo-
phytodienoic acid (OPDA) [49,50]. OPDA is translocated to the peroxisome where 12-oxo-
phytodienoate reductase 3 (OPR3) and several β-oxidation cycles give rise to jasmonic
acid (JA) [51]. The biosynthesis of methyl jasmonate (MeJA) and jasmonoyl-isoleucine
(JA-Ile) from JA is catalyzed by jasmonic acid methyltransferase (JMT) [52] and jasmonic
acid-amide synthetase 1 (JAR1) [53], respectively. Meanwhile, the reconversion of MeJA
and JA-Ile to JA is catalyzed by methyl jasmonate esterase (MJE) [54] and JA-Ile hydrolase
1 (JIH1) [55], respectively.

The JA-Ile molecule is the bioactive JA responsible for the activation of JA responses [56].
The physiological effects mediated by JA-Ile require activation of the JA signaling path-
way, which has been well characterized in Arabidopsis [57]. The F-box CORONATINE
INSENSITIVE1 protein (COI1) is part of the Skp-Cullin-F-box-type E3 ubiquitin ligase
complex (SCFCOI1) and together with JAZ proteins form the JA-Ile receptor [58–62]. In Ara-
bidopsis, when JA-Ile level is low, JAZ proteins repress MYC transcriptional activity by
recruiting NOVEL INTERACTOR OF JAZ (NINJA) and TOPLESS corepressors [63,64]
and by obstructing the association of the coactivator protein mediator complex subunit
25 (MED25) with the transcription initiation complex [65–67]. However, once the JA-Ile
level rises, it mediates the COI1-JAZ interaction leading to JAZ proteins ubiquitination
and degradation by the 26S proteasome. Then, MYC2 and additional transcription factors
(TFs) induce the expression of early JA-responsive genes such as JAZs, MYCs, and JA
biosynthetic ones [58,68]. MYC2 is a key transcription factor in the JA pathway and acts as
a regulatory hub for several biotic and abiotic stress-related responses. Its homologs, MYC3,
MYC4, and MYC5, also act alternatively in the JA pathway in Arabidopsis [57,69,70]. MYC2
contains a conserved basic helix-loop-helix (bHLH) domain [71], which is required to form
homo- or heterodimers with MYC3 and MYC4 [69], although the strongest activation of
JA-regulated genes is provided by the MYC2 tetramer [72]. The basic region of MYC2
protein is involved in binding to the sequence 5′-CACGTG-3′, known as G-box, which is
present in the MYC2 target promoters [73]. The G-box contains many other variants and
weaker binding sequences [74,75]. Furthermore, MYC2 N-terminal contains a putative
transcriptional activation domain (TAD) [69], and a JAZ interaction domain (JID) through
which interacts with the C-terminal Jas domain of JAZ proteins [58,69]. In several JA-
dependent functions, MYC2 regulates many secondary TFs by binding to their promoters,
which, in turn, activate downstream gene promoters, creating a hierarchical transcriptional
network of JA-mediated response [76–78].

Recently, an OPR3-independent pathway for JA synthesis has been described.
Chini et al. [79] isolated and characterized the complete knockout mutant of the opr3-
3 allele. Similar to wild-type (WT) plants, the opr3-3 mutants were resistant to necrotrophic
pathogens and insect feeding and activated COI1-dependent JA-mediated gene expression.
Through OPDA derivatives analysis the 4,5-didehydro-JA (4,5-ddh-JA) was identified to
act as a precursor for JA and JA-Ile biosynthesis in OPR3 absence. The authors demon-
strated that in the lack of OPR3, OPDA could enter the peroxisomal β-oxidation pathway
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to produce 4,5-ddh-JA, which after leaving the peroxisome, is reduced by the cytosolic
12-oxo-phytodienoate reductase 2 (OPR2). This pathway takes place naturally in WT plants
and is maximized in the opr3 mutant [79].

Together with JA biosynthetic and signaling genes, the JA-Ile catabolic genes are
strongly coregulated indicating the importance to maintain JA homeostasis [80]. There are
two JA-catabolic pathways: one is defined by CYP94B3/B1 and CYP94C1, members of
the cytochrome P450 enzymes of the subfamily 94 (CYP94) [81–83], and the other one
involves the IAA-alanine resistant 3 (IAR3) and IAA-amino acid hydrolase ILR1-like 6
(ILL6) enzymes, members of the amidohydrolase (AH) family [84]. CYP94B3 and CYP94B1
are JA-Ile ω-hydroxylases that generate 12OH-JA-Ile, and CYP94C1 catalyzes a more
complete JA-Ile oxidation to 12COOH-JA-Ile [82]. Meanwhile, IAR3 and ILL6 prompt JA-Ile
to deactivate by deconjugation reactions [55]. All these enzymes diminish specifically JA-Ile
hormone pools to weaken JA signaling as many loss and gain-of-function experiments have
demonstrated [85]. The proper regulation and termination of JA-mediated processes are
essential to avoid the harmful metabolic effects of a JA amplified response trigger by biotic
and abiotic stress. However, it is necessary to highlight that lately, a role of 12OH-JA-Ile in
JA signaling has been described [86,87]. Exogenous application of 12OH-JA-Ile mimicked
several JA-Ile effects including JA-marker gene expression, anthocyanin accumulation,
and trichome induction in Arabidopsis [86]. In silico and in vitro assays showed that 12OH-
JA-Ile could interact with some COI1-JAZs coreceptors and function as an active jasmonate
signal, but more weakly comparing with JA-Ile. It has been proposed that after a strong
immune response mediated by JA-Ile, 12OH-JA-Ile modulates JA-Ile activated processes
contributing to wound and defense plant response [87].

In Figure 1, a schematic diagram of the biosynthesis, signaling, and catabolism of JAs
is presented.

Figure 1. Overview of the jasmonate (JA) pathway including the major molecular players involved in biosynthesis, signaling,
and catabolism. Black, blue, and green fonts show the main metabolites, enzymes, and proteins, respectively, for each
section of the pathway. Scheme made based on [49,58,80]. For more details, see the text.

2.2. Salt Stress and JA Response

Earlier reports have shown the induction of some JA biosynthetic genes in Arabidopsis
roots under salt stress conditions [88,89]. In sweet potato, Zhang et al. [90] studied the
root transcriptomes of a salt-sensitive variety and a salt-tolerant line revealing a signifi-
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cant upregulation of the genes involved in the JA biosynthesis and signaling pathways
under salt stress. The upregulation in the salt-tolerant line was greater than the sensitive
line indicating the essential role of JA in the response of sweet potato to salt stress [90].
The Arabidopsis lipoxygenase3 (LOX3) was dramatically induced under salt treatment and
the lox3 mutant exhibited salt hypersensitivity. The lox3 mutant salt sensitivity phenotype
was rescued by the MeJA application indicating the association between JA and salt tol-
erance [91]. The TaAOC1 gene from bread wheat responds to salinity and its constitutive
expression in both bread wheat and Arabidopsis enhanced their level of tolerance to salt
stress [92]. On the contrary, the impaired function of AOC in the OPDA-deficient rice
ALLENE OXIDE CYCLASE mutants (cpm2 and hebiba) conferred salt tolerance [93]. It is not
clear what causes this tolerance, the lack of JA or JA-Ile, or the absence of their precursor
12-OPDA [19].

Several studies in Arabidopsis have demonstrated the essential role of MYC2 in salt
response mediated by JA signaling [94,95]. The salt and ABA inducible gene responsive to
dehydration 22 (RD22) is regulated by MYC2. The RD22 promoter region contains the MYC
and MYB recognition sites [96] and the AtMYC2 and AtMYB2 TFs specifically interact with
them, respectively. The atmyc2 mutant and MYC2 overexpressing (OE) plants treated with
ABA showed different RD22 expression levels, the latter increased the RD22 expression at
low ABA concentration (500 nM) while the former increased RD22 expression at higher
ABA concentration (1 µM) [94]. MYC2 also has an important role in the activation of JA
signaling by salt stress on the inhibition of cell elongation in Arabidopsis primary roots [95].
Additionally, the salt stress-mediated activation of MYC2 by the MAPK cascade regulates
the proline biosynthesis through the delta1-pyrroline-5-carboxylate synthase1 (P5CS1)
gene, which is a rate-limiting enzyme in the proline biosynthesis pathway [97]. Moreover,
Seo et al. [98] demonstrated that the E3 ubiquitin ligase PLANT U-BOX PROTEIN 10
(PUB10), which regulates MYC2 stability [99], positively regulates salt and osmotic stress
tolerance during seed germination. It was suggested that PUB10 acts as a negative regulator
of ABA signaling through MYC2 and participates in the fine-tuning of ABA signaling and
JA crosstalk in the abiotic stress tolerance in plants [98].

In turn, COI1, a core component of the JA-Ile coreceptor [59], is essential for JAZ
transcript upregulation in the roots during the response to salt stress [95]. The JAZ up-
regulation mediated by salt stress in a COI1-dependent manner observed in the roots
is likely to follow the canonical JA signaling pathway [100], with proteasome-mediated
degradation of JAZ proteins. In this sense, JAZ proteins, the negative regulators of JA
signaling, play an important role in the plant response to salt stress. Several JAZ homol-
ogous genes were upregulated by NaCl treatment in cotton, Arabidopsis roots, tomato,
and wheat [95,101–103]. Moreover, the OsJAZ9 overexpression in rice resulted in a higher
tolerance to salt stress [104] mainly through regulating the expression of ion transporters
for K+ homeostasis [105]. Similarly, enhancing the expression of OsJAZ8 transcripts as-
sured better performance of transgenic rice lines under salt stress [106]. Furthermore,
the rice nuclear factor, RICE SALT SENSITIVE3 (RSS3), forms a ternary complex with
class-C bHLH TFs and JAZ proteins and regulates root cell elongation during adaptation to
salinity [107]. Remarkably, JAZ genes from Glycine soja (GsJAZ2), Malus domestica (MdJAZ2),
Triticum durum (TdTIFY11a), and Pohlia nutans (PnJAZ1) introduced in Arabidopsis, granted
greater tolerance to salinity [103,108–110]. The introduction of GaJAZ1 from Gossypium
arboreum into Gossypium hirsutum (upland cotton) significantly increased salt tolerance in
upland cotton compared to the WT strain. GaJAZ1-transgenic and WT plants showed
many differentially expressed genes involved in JA signaling and biosynthesis, salt stress,
and other hormone pathways. In GaJAZ-OE plants, the expression level of JAZ1/3/6/8
and JAZ10 were upregulated without NaCl treatment compared to the WT, but under
salt conditions they were first downregulated (after 6 h and 12 h of treatment) and then
upregulated again (24 h of treatment), indicating a sophisticated regulation of these genes
in GaJAZ1-OE plants. Moreover, MYC2 was significantly upregulated while JAR1 was
downregulated in GaJAZ1-OE plants. JA biosynthesis was also affected in GaJAZ1-OE
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plants since various JA synthesis-related genes (e.g., LOXs, AOS, AOC4, and JMT) changed
their expression compared to the WT. Additionally, several salt stress-related genes encod-
ing for a vacuolar-associated protein (VSR1), an osmotic protein (OSM34), and a plasma
membrane ion exchanger (CHX18) among others showed significant downregulation re-
sulting in the accumulation of osmolytes that protect the plant from salt stress damage.
Furthermore, some phytohormone-related genes besides JA-related genes reprogrammed
their expression in GaJAZ1-OE plants compared to the WT including those related with
ethylene- (ACS, ERF2, and ERF4); ABA- (ABR1, ABA2, CBF4, and RD26); and auxin- (GH3.6)
pathways. In general, these results suggested that ectopic overexpression of GaJAZ1 affects
JA-related genes to increase salt tolerance in G. hirsutum plants albeit it also depends on
other factors including hormone-crossing signal and salt-inducible genes [111].

Recently, JA-Ile catabolic genes have also been related to salt stress tolerance. Thus,
OsCYP94C2b overexpression enhanced the viability of the transgenic rice under saline
conditions and delayed the salt stress-induced leaf senescence [112]. Similarly, a higher
CYP94C2b expression has been observed in some salt-tolerant rice varieties indicating that,
at least in part, CYP94C2b may account for salt tolerance [113]. Hazman et al. [85] analyzed
the accumulation of JAs and catabolic compounds in leaves from salt-exposed and control
seedlings. OPDA and JA levels were increased by NaCl (100 mM) at most time evaluated
points. Correspondingly, the JA-Ile catabolites 12OH-JA-Ile and 12COOH-JA-Ile were
enhanced in response to salt exposure. Then, they explored the rice CYP94 and AH gene
families and examined the transcriptional response of a gene subset under salt exposure.
Among the evaluated CYP94 genes, only OsCYP94C2a was induced by salt stress while the
transcripts of the AH genes fluctuated marginally. Apparently, OsCYP94C2a is the main
player of JA-Ile oxidation upon salt stress in rice [85,112,113].

The apparent incongruity in the JA contribution to salt adaptation due to the positive
effects of JA exogenous application (see Section 4), the upregulation of JA biosynthesis,
and the induction of negative regulators of JA signaling and JA-Ile catabolism, indicates
that timing and control of JA are maybe more important than its presence or absence [19,24].
Thus, detailed studies are required to reveal the underlying mechanism of efficient fine-
tuning of jasmonate signaling in salt adaptation. Table 1 summarizes the findings regarding
the main molecular components of the JA pathway associated with salt tolerance.

It is necessary to highlight that JA does not work independently in the improvement of
plant tolerance to salt stress. Instead, its tightened coordination with other phytohormone
signaling pathways allows the expression of multiple genes and flux of various metabolic
pathways to adjust plant response to stress severity, specifically, in the appropriate time
and tissue [18,34].
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Table 1. Participation of jasmonate (JA) pathway-associated molecular components in salt stress responses of different plants.

Protein Function Salt Stress Response Species References

Lipoxygenase3 (LOX3) JA biosynthesis Induced under salt stress. Methyl jasmonate (MeJA) rescued the salt
sensitivity phenotype of the lox3 mutant Arabidopsis thaliana [91]

Allene oxide cyclase (AOC) JA biosynthesis Constitutive expression enhances tolerance to salt stress Triticum aestivum
A. thaliana [92]

cpm2 and hebiba mutants display salt tolerance Oryza sativa [93]

MYC2 JA signaling

Transcriptional activator of the salt- and abscisic
acid(ABA)-responsive gene RD22 A. thaliana [94,96]

An important role in salt-mediated JA-dependent inhibition of cell
elongation in the elongation zone of primary root A. thaliana [95]

Its salt stress-mediated activation by MAPK cascade regulates
proline biosynthesis A. thaliana [97]

Mediates the negative regulation of ABA signaling by PUB10,
which acts as a positive regulator for salt and osmotic

stress tolerance
A. thaliana [98,99]

Jasmonate ZIM-domain (JAZ) JA signaling

Induced under salt stress
A. thaliana

Gossypium hirsutum
Solanum lycopersicum

[95]

PnJAZ1 inhibited expression of ABA-dependent genes related to
seed germination and shoot growth under high salt conditions

A. thaliana
Physcomitrella patens [110]

OsJAZ9 and OsJAZ8 overexpression enhanced salt tolerance O. sativa [104]
Heterologous expression of GsJAZ2 and MdJAZ2 enhanced

tolerance to salinity A. thaliana [114]

Overexpression of TdTIFY11a variants confer salt tolerance to
Arabidopsis seedlings A. thaliana [103]

GaJAZ1 overexpression significantly increased salt tolerance G. hirsutum [111]
GbWRKY1 overexpression negatively affects salt tolerance through

an interaction network involving JAZ1 and ABI1 A. thaliana [115]

Cytochrome P450 family
(CYP94C2b) JA catabolism OsCYP94C2b overexpression enhanced viability under salt

conditions and delayed the salt stress-induced leaf senescence O. sativa [112]
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3. Crosstalk between JA and Other Plant Hormones during Salt Stress

In JA signaling, the proteins MYC, JAZ, and COI1 have been established as the core of
the pathway and have been pointed to serve as a link between different hormone signal-
ing [116]. Thus, the JA crosstalk with other phytohormones involves these components.

3.1. JA and ABA

Several studies have reported the combined action of JA and ABA in the plant response
to salt stress. Although an earlier study described that ABA and JA antagonistically regulate
the expression of transcripts inducible by salt stress in rice (Oryza sativa) [28], in more recent
studies the synergistic action of both phytohormones has been observed. For instance,
the application of ABA together with different concentrations of JA activated the protection
mechanism against NaCl-associated stress in strawberry plants (Fragaria × ananassa) [117].
Likewise, ABA and JAs had a synergistic effect on the inhibition of seed germination under
salinity conditions [110]. Moreover, Yang et al. [118] confirmed the cooperation between JA
and ABA in the tolerance to salt stress mediated by phytochromes. Albeit the evidence of
the concerted action of JA-ABA, the cross-coordination that exists between their signaling
pathways is just beginning to be understood [119].

MYC2 seems to be an essential point for JA-ABA crosstalk as demonstrated in several
studies. Accordingly, MYC2-OE Arabidopsis plants and the myc2 mutant show boosted
and decreased ABA sensitivity, respectively [94,120]. Additionally, the expression of the
salt- and ABA-responsive gene RD22 is promoted by MYC2 [94,96]. MYC2 and ABI5 (a
transcription factor activated by the ABA signaling pathway) are modulated at the protein
level through MED25, which is a multifunctional subunit of the Arabidopsis mediator com-
plex [121]. In turn, the ABA receptor PYL6 directly interacts and alters the transcriptional
activity of MYC2 [122]. Meanwhile, PYL4 is involved in the coregulatory effects of ABA
and JA on plant growth and metabolism [123]. Furthermore, the induction of MYC2 by
ABA seems to depend on the JA-Ile COI1 receptor according to Lorenzo et al. [120]. Re-
cently, it has been reported that the application of ABA to strawberry plantlets involves the
upregulation of the MYC2 gene (FabHLH80) from 0.5 to 12 h post-treatment [124].

Some studies highlight the importance of JAZ proteins as key nodes of JA-ABA
crosstalk. The ubiquitin ligase E3 KEEP ON GOING (KEG), a known ABI5 repressor in the
ABA signaling pathway, directly interacts with JAZ12 and modulates its stability [125]. Fur-
thermore, JAZ3 interacts with ABI5 in vivo and represses its transcriptional activity [126].
The overexpression of PnJAZ1 (isolated from the moss P. nutans) in Arabidopsis plants inhib-
ited the expression of genes of the ABA-dependent pathway related to seed germination
and shoot growth under high salt conditions [110]. Furthermore, the transcription factor
GbWRKY1 (from Gossypium barbadense) negatively regulated ABA signaling through an
interaction network involving JAZ1 and ABI1 (the negative regulator of ABA signaling),
in the response to salt and drought stress [115]. The evidence demonstrates the role of JAZs
in the response to salt stress and JA-ABA crosstalk, however, the mechanisms of action in
which these proteins participate in salt tolerance remain to be fully elucidated.

3.2. JA and Other Phytohormones

The nature of jasmonate crosstalk with other phytohormones in salt stress cannot be
clearly described due to limited experimental data. At the molecular level, little is known
about the convergence points of JA signaling and other phytohormone pathways. Due to
the well-established central role of ABA under abiotic stress, more evidence of JA-ABA
crosstalk is available [19]. In recent years, the crosstalk among different phytohormone
mediating salt stress responses has been described [18]. However, it is necessary to deepen
the JA crosstalk with other phytohormones to regulate salt stress tolerance in plants.

3.2.1. JA and Ethylene (ET)

JA–ET crosstalk can be complex and depends on the specific situation. A synergistic
effect has been observed in promoting leaf senescence [127,128], but antagonistic interac-
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tion was found in controlling apical hook curvature [129]. JA–ET interactions in response
to pathogen infections, herbivore attacks, and environmental stress are context-specific.
The ET-stabilized transcription factor ETHYLENE-INSENSITIVE3 (EIN3) physically in-
teracts with MYC2 and inhibits its DNA binding activity attenuating JA-regulated plant
defense against generalist herbivores [129]. Since the jaz decuple mutant showed robust ac-
tivation of insect and fungal pathogen defenses, the JA–ET crosstalk seems to be mediated
via EIN3/ETHYLENE INSENSITIVE 3-like 1 (EIL1) along with JAZs-MYC2 [35]. The two
TFs ETHYLENE RESPONSE FACTOR1 (ERF1) and OCTADECANOID-RESPONSIVE ARA-
BIDOPSIS AP2/ERF 59 (ORA59) were previously implicated in integrating JA and ET
signaling in Arabidopsis [130,131]. Recently, a new convergence-point of JA–ET signaling
has been reported. OsLOX9, a JA biosynthetic pathway-related gene, is regulated by
OsEIL1 in response to piercing-sucking insect attacks [132].

In salt stress, the synergistic activation of the Arabidopsis ERF1 by JA and ET is required
for inducing tolerance [133]. Moreover, a rice root-specific pathogenesis-related protein
(RSOsPR10), induced by high salt and other abiotic stresses, promotes root growth and
root mass increasing salt tolerance [134]. JA and ET also induce RSOsPR10, while sali-
cylic acid (SA) almost completely suppresses its induction [135,136]. JA-inducible and
OsERF87-dependent expression of RSOsPR10 were strongly repressed by the SA-inducible
OsWRKY76 transcription factor [137]. As OsERF87 and OsWRKY76 bind at the RSOsPR10
promoter, they antagonistically regulate RSOsPR10 expression. This mechanism represents
a fine-tuning balance between JA/ET and SA signaling in plants under environmental
challenges. The description of the molecular components of the synergistic JA–ET crosstalk
in the regulation of RSOsPR10 expression requires investigation. Another gene activated
by salt stress and treatment with MeJA or ethephon (an ethylene releasing compound) is
GmCYP82A3, a gene from the soybean CYP82 family. Transgenic Nicotiana benthamiana
plants overexpressing GmCYP82A3 exhibited strong pathogen resistance and enhanced
salinity tolerance. Besides, an increased expression of the JA/ET signaling pathway-related
genes was observed in the transgenic plants [138]. How GmCYP82A3 is involved in JA–ET
crosstalk under salt stress could be an interesting topic to be approached.

3.2.2. JA and SA

The JA–SA antagonism is well known in plant defense pathways and key components
of JA–SA crosstalk have been identified. Recently, many of the molecular components
in the JA–SA crosstalk that regulate the plant immune network at transcriptional and
protein levels are reviewed by Aerts et al. [139]. Among them, MAPKs are involved in the
convergence of these phytohormone pathways [140–142]. AtMPK4 negatively regulates
the activation of SA- and the repression of JA-mediated defenses under biotic stress [140].
Besides, MPK4 positively regulates the glutaredoxin GRX480 in the SA signaling pathway
and negatively regulates MYC2 in the JA signaling pathway, which is necessary for JA
responsive genes (PDF1.2 and THI2.1) [100]. SA-induced NON EXPRESSOR OF PR GENE
(NPR1) activates GRX480, which can block the JA response gene expression mediated
by TGA (a D group of Arabidopsis bZIP TFs), confirming SA–JA antagonism [143]. Addi-
tionally, SA-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK),
which are rapidly activated after perception of herbivory, regulate herbivory-induced JA
levels and JA-mediated defense metabolite accumulations. WIPK-signaling is associated
with large fitness costs in competing Nicotiana attenuata plants, while SIPK acts as an im-
portant regulator of plant fitness, possibly modulating SA-JA crosstalk through ethylene
signaling [142].

The role of JA and SA in salt stress tolerance has been explored previously [144],
but their relationship under salinity is not well known yet. Several reports show that SA
and JA can alleviate the hazardous effect of salt stress on plants. In strawberry, improved
physiological characters such as increased antioxidant activity and a reduced Na+/K+ ratio
were observed on MeJA and SA treatments [145]. Likewise, soybean performance under
salinity was improved by foliar spraying of JA and SA [146]. Treatment of soybean plants
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with SA plus JA stimulated H+-ATPase activity of tonoplast, nutrient uptake, and salt toler-
ance [147]. Additionally, exogenous applications of JA and SA decreased the concentration
of Na+ in soybean under different salt stress levels [148]. Moreover, MeJA treatment can
protect plants from salt-induced damage by acting role as an antioxidant and cooperating
with SA [149]. All the evidence invites a deepening in the JA–SA interplay under salinity
conditions for identifying the molecular components of their crosstalk.

3.2.3. JA and Gibberellins (GA)

JA and GA signaling pathway interaction has been described that occurs by the key
GA signaling proteins DELLAs and JAZs since they directly interact [150]. The JAZ–
DELLA interaction would interfere with the inhibition of MYC2 by JAZ proteins resulting
in the activation of MYC2 downstream genes. In presence of GA, DELLA proteins are
degraded and JAZs bind MYC2 to inhibit JA signaling [150,151]. On the other hand,
the della mutant is less sensitive to the plant growth inhibition mediated by JA suggesting
that JA delays the degradation of DELLA mediated by GA [152]. Curiously, JA signaling
upregulates the transcription of RGL3, a DELLA gene, which the promotor is a target
of MYC2 [153]. Additionally, RGL3 physically interacts with JAZ1 and JAZ8 [64,153]
suggesting the JA-mediated degradation of JAZ1 and consequent release of MYC2 to induce
the RGL3 expression, which in turn binds the non-JA degradable JAZ8 enhancing the MYC2-
dependent JA responses [153]. Recently, it was reported that JA and GA synergistically
promote fiber cell initiation of cotton (G. hirsutum) possibly mediated by the GhJAZ3 and
GhSLR1 (a DELLA protein) interaction [154].

The interplay of JA and GA under salt conditions has not been studied in depth.
However, there is evidence that in salt-stressed plants of basil (Ocimum basilicum) the GA
concentration significantly decreased and in non-stressed plants treated with JA. Stressed
plants treated with JA also showed a significant decrease in GA concentration [155] showing
the antagonistic effect of JA in the GA level under salt stress. The effects of the combination
of MeJA and NaCl treatment on the growth regulation and defense response of Nitraria
tangutorum, a desert halophyte, have been recently investigated [156]. Compared with
NaCl treatment alone, MeJA treatment aggravated the growth inhibition of seedlings
by antagonizing growth-related hormones like GA. It was demonstrated that the tran-
script levels of GA-responsive genes NtPIF3, NtGAST1, and NtGSAT4 were suppressed by
MeJA [156]. More studies are needed to find out the components of JA–GA crosstalk under
saline conditions.

3.2.4. JA and Cytokinin (CK)

Interactions between JA and CK could grant some developmental flexibility under
stress conditions since they mediate stress response and developmental processes. Al-
though there are scarce reports on JA–CK crosstalk, some data indicate that their inter-
action could be negative or positive [157,158]. Antagonistic effects of JA and CK have
been observed in different processes such as senescence, photosynthesis, RNA and pro-
tein synthesis, and vascular formation [157,159–161]. In contrast, a positive interplay
between these phytohormones in delaying senescence of the Iris flower (Iris × hollandica)
has been reported [158]. Moreover, CK treatments promoted gene expression of JA-amino
synthetase in Arabidopsis and tomato plants [162] suggesting an interaction between the
JA–CK pathway.

Recently, Avalbaev et al. [163] demonstrated the influence of exogenous MeJA on
endogenous CK content in wheat plants under normal and salinity conditions. Low concen-
trations of MeJA (0.01–1 µM) increased wheat seedling growth while higher concentrations
(10 and 100 µM) inhibited it. The hormonal balance of wheat seedlings was shifted by
exogenous application of 0.1 µM MeJA. In response to salt stress, MeJA-untreated wheat
plants increased the ABA level and gradually decreased indole acetic acid (IAA) and CK
contents. Meanwhile, MeJA-pretreated seedlings were characterized by a diminution of
ABA accumulation and IAA decreased level induced by salinity. Noticeably, a salinity-
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induced decline in the CK content was completely preventive by MeJA, which eventually
resulted in the maintenance of the wheat seedlings growth rate under salt stress. It was
suggested that MeJA application influences CK metabolism since cytokinin oxidase (CKX)
gene expression and enzyme activity decreased after 1 h of MeJA treatment [163]. CKX cat-
alyzes the degradation of CKs and controls the CK content in plants [164]. Similar results
were obtained on almond rootstocks when MeJA application (0.025–0.05 mM) increased
CK concentration in the leaf due to restriction of CKX activity and its gene expression [165].
MeJA-induced protection against salinity was found to be reached by modulating the ac-
tivity of the antioxidant system and accumulation of osmoprotectants [165,166]. However,
the mechanism by which exogenous MeJA mitigates the effect on the growth of salt-stressed
plants as a result of the inhibition of CK decline under salt stress is largely unknown.

3.2.5. JA and Auxin (AUX)

The JA–AUX crosstalk was early reported by the identification of the auxin-resistant1
(axr1) mutants with altered jasmonate responsive gene expression [167]. Moreover, a link
between JA signaling and AUX homeostasis was evidenced through the JA-mediated
modulation of YUCCA8 and YUCCA9 gene expression, which are involved in AUX biosyn-
thesis [168]. JA and AUX interaction also involves the ETHYLENE RESPONSE FACTOR109
(ERF109) during JA-induced lateral root formation [169]. Recently, Xu et al. [170] reviewed
the novel progresses on the integration of JA and ethylene into AUX signaling in regulating
root development of Arabidopsis thaliana [170]. Besides, Zhang et al. [171] provided an
example of metabolic-level crosstalk between the JA and AUX signaling pathways by
demonstrating that wounded leaves JA-inducible amidohydrolases (ILR1, ILL6, and IAR3)
contribute to regulate active IAA and JA-Ile levels, promoting AUX signaling while attenu-
ating JA signaling [171].

The transcription factor WRKY57, which is upregulated by IAA, but downregulated
by JA, has been described as a convergence node of JA and IAA-mediated signaling.
The JAZ4/8 and IAA29 (an AUX/IAA protein) repressors of JA and IAA signaling, re-
spectively, have an opposite function in WRKY57 regulation since both competitively
bind WRKY57 during JA-induced leaf senescence in Arabidopsis [172]. In earlier work,
Jiang et al. [173] found that the Arabidopsis adt mutant, which is constitutive to expressing
the WRKY57 gene, exhibited drought, osmotic, and salt tolerance. The enhanced tolerance
of the adt mutant to these stresses was associated with an increment of ABA content con-
sistently with the upregulation of RD29A, NCED3, and ABA3 genes. It was demonstrated
that WRKY57 could directly bind the W-box of RD29A and NCED3 promoter sequences,
suggesting that WRKY57 could regulate their expression. Since WRKY57 is regulated by
JAZ4/8 and IAA29 repressors [172], it could be interesting to evaluate their role in the
plant response to salt stress. Perhaps, it would shed light on the JA–AUX interplay under
salinity conditions.

The main molecular/physiological effects related to phytohormone crosstalk are
summarized in Table 2.
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Table 2. Molecular and physiological effects of the jasmonate (JA) crosstalk with abscisic acid (ABA), ethylene (ET), salicylic
acid (SA), gibberellins (GA), cytokinin (CK), and auxin (AUX) in different plants under salt stress conditions. For more
details, see the text.

Crosstalk Molecular/Physiological Effects Species References

JA-ABA

JA and ABA applications in conjunction activate the antioxidant
mechanism against salt stress Fragaria × ananassa [117]

Synergistic effect on the inhibition of seed germination under
salinity conditions Arabidopsis thaliana [110]

Synergism in the salt tolerance mediated by phytochrome
A and B Nicotiana tabacum [118]

JA–ET

Synergistic upregulation of AtERF1 required to induce
salt tolerance A. thaliana [133]

Synergistic upregulation of RSOsPR10 which promotes root
growth and increases salt tolerance Oryza sativa [136]

Synergistic upregulation of GmCYP82A3 which enhances
salinity tolerance

Glycine max
Nicotiana benthamiana [138]

JA–SA

Methyl jasmonate (MeJA) and SA application increases
antioxidant activity and reduced the Na+/K+ ratio F.× ananassa [145]

JA and SA application protects plants from salt-induced
damage and improves plant performance under salt conditions G. max [146]

JA and SA application stimulates H+-ATPase activity of
tonoplast, nutrient uptake, and salt tolerance G. max [147]

JA-GA
JA application decreases GA content in salt-stressed plants Ocimum basilicum [155]

MeJA application suppresses the transcript levels of the
GA-responsive genes NtPIF3, NtGAST1, and NtGSAT4 Nitraria tangutorum [156]

JA-CK
MeJA application prevents the salinity-induced decline of

endogenous CK by reducing the cytokinin oxidase enzymatic
activity and its related gene expression

Triticum aestivum
Prunus dulcis [163]

JA-AUX
An opposite function of JAZ4/8 and IAA29 repressors on the
regulation of WRKY57. Constitutive activation of WRKY57 in

adt mutant confers salt tolerance
A. thaliana [172,173]

4. Effects of JA-Exogenous Applications for Improving Salt Stress Tolerance

Exogenous jasmonate applications have effects on different physiological aspects,
including protection against biotic and abiotic stresses [174–176]. Methyl jasmonate (MeJA)
application induces protection against oxidative stress as has been reported in different
species and conditions [176–179].

In Arabidopsis thaliana, the total activities of catalase (CAT), peroxidase (POD/POX),
superoxide dismutase (SOD), and glutathione reductase (GR) increased considerably in
response to MeJA [180]. In crops, such as strawberry, MeJA applications during the
preharvest period increase the anthocyanin and ascorbic acid contents, CAT, and ascorbate
peroxidase (APX) activities in fruits at postharvest storage [176]. In this sense, increased
activity of the antioxidant enzymes, together with higher levels of antioxidant compounds,
as a result of MeJA treatment reinforces the antioxidant response of plants to reactive
oxidative species (ROS) caused by abiotic stresses, like high salt.

From a physiological point of view, salt stress increases free proline content, pho-
torespiration, and stomatal resistance among others, while decreasing net photosynthetic
rates, transpiration, protein, and relative water content (RWC) [181,182]. Pretreatment with
0.1 mM MeJA helps the pea seedlings to counteract the salt stress since RWC and protein
content of the treated seedlings were higher in comparison to NaCl-treated seedlings.
Moreover, MeJA-treated pea seedlings present a decrease of Na+ and Cl− accumulation
in the shoot [183]. In another experiment, pretreatment with 0.1 mM MeJA for 3 days
before salt treatment diminished the inhibitory effect of NaCl on the rate of 14CO2 fixa-
tion, and activity and content of ribulose-1,5-bisphosphate carboxylase/oxygenase [184].
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Additionally, in rapeseed (Brassica napus), exogenously applied MeJA counteracted the
inhibitory effects of NaCl by increasing RWC, soluble sugar content, and photosynthesis
rate [174]. The application of 0.25 mM MeJA was the most effective treatment to enhance
salt tolerance at a concentration of 60 mM NaCl in strawberry (F. × ananassa ‘Camarosa’)
seedlings [145]. In almond rootstocks, application of MeJA in optimal concentrations of
0.025–0.05 mM alleviated the adverse effect of salt stress by increasing the photosynthetic
rate, activity of antioxidant enzymes (APX, SOD, and POX), root and shoot dry mass,
and cell membrane integrity [165]. Alleviation of moderate salinity (40 mM NaCl) by foliar
application of 5 mM MeJA has also been reported in broccoli [185]. Pretreatment of cowpea
seeds with 0.05 mM MeJA improves plant tolerance to salt stress [186].

In other plants, like Limonium bicolor, which is a typical recretohalophyte with salt
glands in the epidermis, 300 mM NaCl led to a dramatic inhibition of seedling growth that
was significantly alleviated by the application of 0.03 mM MeJA, resulting in biomass close
to that of plants not subjected to salt stress [187]. Even in high salt concentrations such
as 500 mM NaCl, MeJA applied at 0.1 mM has a protective role in the defense response
of Robinia pseudoacacia especially with a marked increase in the activity of antioxidant
enzymes and related gene expression [188]. In another study, foliar applications of 0.5 mM
MeJA increased the essential oil content and the antioxidant activities of basil (O. basilicum
‘Genove’) on 30 mM NaCl and have noticeable effects on the main components of the
oils [189]. In Glycyrrhiza uralensis exposed to 100 mM NaCl, 0.025 or 0.05 mM MeJA
increased the root length of salt-stressed G. uralensis seedlings but decreased root diameter,
stem length, and stem diameter, enhancing peroxidase activity and ascorbate content [190].

In wheat seedlings, NaCl salt stress caused a significant increase in the malondi-
aldehyde (MDA) content and H2O2 concentrations and a concomitant decrease in SOD,
POD, CAT, and APX activities. Exogenous JA pretreatment (2 mM) combined with NaCl
treatment (150 mM) produced a significant decline in MDA and H2O2 concentrations and
an increase in SOD, POD, CAT, and APX activities. Moreover, a marked upregulation of
SOD, POD, CAT, and APX genes was observed in the JA–NaCl combined treatment in
comparison to NaCl treatment alone. Additionally, exogenous JA remarkably increased
glutathione (GSH) concentration in wheat seedlings treated with NaCl and decreased the
deleterious effect of salt stress on the growth of wheat [31]. These results indicate that
exogenous JA can effectively scavenge ROS by enhancing the activities of antioxidant en-
zymes and the concentration of antioxidant compounds in wheat seedlings under salt stress
and consequently play an important role in decreasing lipid peroxidation and increase the
ability of wheat to resist salt stress [31].

In roselle (Hibiscus sabdariffa), the exogenous JA treatment protected roselle seedlings
against salt-induced harms through enhancing the activities of both enzymatic and non-
enzymatic antioxidants, such as APX, pyrogallol peroxidase (PPX), and PPO, and the
accumulation of metabolites non-reducing sugars, total phenols, anthocyanins, flavonoids,
and proline. The JA-treated roselle exhibited a significant increase in growth parameters
under salt conditions compared to the WT [191]. In forage sorghum (Sorghum bicolor), at a
high salinity level (200 mM), seeds treated with 10 mM JA showed a positive effect on
various growth and physiological parameters such as emergence percentage, emergence
rate, shoot length, total fresh weight, salt tolerance index, and total chlorophyll among
others [192]. Similarly, seed priming and foliar application with JA enhanced salinity stress
tolerance of soybean (Glycine max) seedlings. Improved water and osmotic potentials,
water use efficiency, net photosynthetic, transpiration rate, stomatal conductance, and total
chlorophyll content were observed in JA-primed and treated soybean seedlings compared
to the untreated ones. Besides, JA treatment resulted in a reduction of Na+ concentration
and an increment of K+ concentrations in the leaf and root of the analyzed cultivars despite
salinity stress [193].

Although the exogenous application of JA and its derivates constitute a suitable
approach to improve the plant response to salt stress, this strategy has some limitations.
Due to the JA–SA antagonism during the plant defense response [194], an increment in
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JA content by its exogenous application will negatively affect the SA-mediated response
to biotrophic pathogens. In addition, JA can inhibit plant growth by reprogramming
plant metabolism to produce diverse defense compounds [35], thus the growth-defense
trade-off is also an issue. Moreover, the high economic cost of MeJA application in field
treatments [176] could prevent its use to mitigate the salt-induced damage in crop plants.
It is necessary to keep in mind that the activation of JA-beneficial effects in plant response
to salt stress depends on the JA levels and therefore, field experiments will be required to
analyze the cost-effective JA doses for exogenous applications.

5. Application of Genome-Associated Tools for Salt Tolerance Mediated by JA

Salt stress tolerance is a complex trait regulated by polygenes [195]. In this context,
QTL mapping and GWASs provide a suitable opportunity to identify genes responsible for
quantitative trait variation such as salt tolerance. In this regard, genetic factors associated
with salt stress have been previously investigated in several crops, such as rice [41,196,197],
barley [198,199], wheat [200,201], chickpea [202], sesame [203], cotton [204,205], and soy-
bean [206].

GWAS and QTL mapping have been implemented to identify the genetic factors
involved in both osmotic and ionic components of salinity stress. A typical GWAS workflow
to identify genes related to salt stress (and genes conferring salt tolerance) in crops is
represented in Figure 2. Four main steps can be distinguished: (1) plant genotyping;
(2) plant phenotyping based on morphological and physiological traits related to salt stress;
(3) identification of marker–trait associations (MTAs); and (4) identification of candidate
genes involved in the salt stress response. A diverse panel is genotyped using DNA
markers, i.e., single nucleotide polymorphisms (SNPs), diversity arrays technology (DArT),
or RNA-sequencing (RNA-seq) for the identification of genetic variants that affect the gene
expression level in a specific tissue. Parallelly, this panel is phenotyped for different traits
regarding the objectives of the study. In the context of salt stress in plants, the phenotyping
is generally carried out considering several morphological and physiological traits, such as
leaf area, root and shoot dry weight, seed germination rate, salt stress index (SSI), Na+/K+

ratio, chlorophyll content, and MDA, and, remarkably, changes in the phytohormone levels
such as JAs. Particularly, these traits are evaluated in plants or seedlings that have been
subjected to salt treatment. Subsequently, the genotypic and phenotypic data are combined
to associate alleles with particular traits using classical GWAS models, which significantly
detect molecular markers associated with the studied traits. Posteriorly, the MTAs can
serve as a starting point for the mining of candidate genes. Gene Ontology (GO) annotation
of the putative candidate genes can be carried out using BLAST tools.

In a GWAS for salt tolerance (or salt stress), the candidate genes are usually associated
with gene annotations, such as abiotic stress-related, anion transport, Ca+ binding and sig-
naling, phytohormone response elements, and others [207–209]. In this way, many TFs and
downstream genes related to phytohormones biosynthesis and signaling have been charac-
terized, including ABA, SA, JA, ET, and others considered as growth promotion hormones,
including AUX, GA, and brassinosteroids [41,205,209–213]. Additionally, the candidate
genes associated with salt stress or tolerance can be validated by quantitative reverse
transcription PCR (RT-qPCR) analysis.
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Figure 2. Genome-wide association study (GWAS) pipeline to identify jasmonate pathway-associated genes involved in
the salt stress response and salt tolerance in crops. GBS, SSI, GLM, and MLM correspond to genotyping by sequencing,
salt stress index, general linear model, and mixed linear model, respectively. For more details, see the text.

To our knowledge, several studies have analyzed the JA response to different stresses,
but few have explored JA-dependent genetic mechanisms taking into account natural
genetic variation. To et al. [214] performed a GWAS to identify genetic variants associated
with exogenous JA treatment responses in rice. They found a high natural variability for
the shoot and root growth (in a panel of 150 rice accessions) in response to JA treatment.
This GWAS revealed about 230 candidate genes, including several JA-responsive TFs
known to play a stress response role. Several GWASs have elucidated the participation
of JA in salt tolerance in plants. In this sense, Li et al. [203] reported potential candidate
genes related to drought and salt-induced stress in sesame. In this GWAS, the SiOPR3 gene
(detected for drought stress in sesame) is the ortholog of the Arabidopsis OPR3 gene an
essential component of the JA biosynthesis.

Besides, Rohila et al. [41] detected several candidate genes associated with seedling
stage salt tolerance by the GWAS approach in a rice core-collection. Particularly, one SNP
(on chromosome 3) was located close to the ALLENE OXIDE CYCLASE 1 (AOC1) gene.
This gene has been related to salt and other abiotic stresses, and it is a key gene in the
JA biosynthetic pathway in Arabidopsis [215]. Yuan et al. [205] combined the association
mapping and RNA-seq analyzes to explore candidate genes for salt-tolerance in cotton at
the germination stage. At least nine genes were associated with signaling or a response
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to signal factors, such as SA, GA, and JA. In other GWASs, genes related to the JA biosyn-
thesis and signaling pathways have been indirectly identified, in which upstream genes
from the JA signaling events and JA-regulated genes during salt stress were detected.
For instance, An et al. [216] carried out a GWAS to identify associations conferring salt
tolerance in rice. In this study, a significant SNP for seedling length was located on the
promoter of a salt stress-related gene (RSOsPR10), which has been proposed to be induced
by biotic and abiotic stresses, via the JA signaling pathway [135]. Sun et al. [204] reported
DNA polymorphisms associated with salt tolerance candidate genes at the cotton seedling
stage. Additionally, the expression levels of six genes were reported using salt-tolerant
and salt-sensitive varieties. Interestingly, the expression of Gh_A10G1756, a homolog of
the Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE 1 (AtCPK1) gene, had higher
expression in the salt-sensitive than salt-tolerant types [204]. The AtCPK1 gene medi-
ates pathogen resistance in Arabidopsis and plays a positive role in salt/drought-stress
response [217]. According to Coca and San Segundo [218], AtCPK1-OE plants showed
activation of two components of the chloroplastic pathway for JA biosynthesis (AOS and
AOC genes), which could support the idea that JA is a key element for triggering different
responses to salt stress in plants. Patishtan et al. [208] implemented a GWAS using a
diversity panel of 306 rice accessions treated with different salt concentrations. The au-
thors characterized more than 30 candidate genes for short, medium, and long-term NaCl
treatment. Notably, among these genes, a DNA polymorphism was associated with the
WRKY70 gene, which plays a pivotal role in an antagonistic interaction between SA and JA
responses [210,219].

Due to the above-mentioned studies, GWAS and association studies have successfully
identified many novel genes associated with traits of interest. These findings will be useful
towards the developing of varieties tolerant to salt stress, using new genomic techniques,
such GE; an aspect that has not been addressed in depth. In this sense, GE systems
provide the ability to modify genes and generate new possibilities for crop improvement
precisely. The RNA-guided CRISPR/Cas9 technology is simple to use across different
genome editing technologies [220] and has been generally used in major crops such as
wheat [221], maize [222], soybean [223], and many others. Even more, the highly efficient
multiplex editing toolkit based on an intron-optimized zCas9i gene, which allows assembly
of nuclease constructs expressing up to 32 sgRNAs [224], can enable simultaneously
targeting of multiple independent loci to generate complex genotypes or to functionally
interrogate groups of candidate genes such as those involved in phytohormones signaling.

To improve the salt tolerance in crops employing the CRISPR/Cas9 system with a
focus on phytohormones, an example is the targeting of the OsRR22 gene, which encodes a
transcription factor involved in CK signaling, which has effectively enhanced salt tolerance
in rice [46]. Recently, Liu et al. [225] enhanced drought tolerance in tomato (Solanum lycop-
ersicum) by CRISPR/Cas9 targeted mutagenesis of the SlLBD40 gene. SlLBD40 encodes an
organ boundaries domain transcription factor, which is highly induced by polyethylene
glycol (PEG), salt, and MeJA treatments. The analysis of the SlLBD40 expression in the
jasmonic acid-insensitive1 (jai1) mutant (a mutant in the JA-Ile tomato receptor COI1) and
MYC2-silenced plants demonstrated that SlLBD40 depends on JA signaling for its activation
and it might be downstream of SlMYC2 [225]. The previous works offer a good background
for targeting key components of the JA pathway to obtain high salinity tolerance in crops
using GE tools.

6. Concluding Remarks

Besides the role of development and abiotic stress responses, the jasmonate pathway is
certainly involved in plant salt stress responses. Several JA-biosynthetic genes are induced
under salt stress, although the lack of jasmonates is also related to this tolerance. Key JA-
associated molecular components such as the transcription factor MYC2 and the repressor
JAZ seem to be crucial in salt tolerance. Remarkably, overexpression of JAZ genes confers
salt tolerance in transgenic plants. Regarding phytohormone crosstalk between JA and
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others in a salt stress context, certainly, more information exists about JA-ABA crosstalk,
focused on MYC2 and JAZ interactions with the ABA signaling-components.

In terms of future applied perspectives, on the one hand, several reports demonstrate
the positive effects of JA exogenous applications on the physiological status against salt
stress. It should be considered as complementary crop management to face not only salinity-
derived damages but also all abiotic stresses in a global change framework. On the other
hand, genomic tools such as GWAS could help to reveal several JA pathway-associated
genes that can serve as a guide in breeding programs and targets in genome editing systems,
such as CRISPR/Cas9, to get salt-resistant crops. Surely, the next years will be promising
in discoveries and applications related to the role of jasmonates against salt stress in plants.
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