nogmmepocswy . COMPUTATIONAL
sl ANDSTRUCTURAL
oo BIOTECHNOLOGY

Tioioian « JOURNAL

Volume No: 4, Issue: 5, January 2013, 201301013, http://dx.doi.org/10.5936/csbj.20130101 3

SPECTRAL DECONVYOLUTION FOR GAS CHROMATOGRAPHY MASS SPECTROMETRY-
BASED METABOLOMICS: CURRENT STATUS AND FUTURE PERSPECTIVES

Xiuxia Du *", Steven H Zeisel®

Abstract: Mass spectrometry coupled to gas chromatography (GC-MS) has been widely applied in the field of metabolomics. Success of this

application has benefited greatly from computational workflows that process the complex raw mass spectrometry data and extract the qualitative

and quantitative information of metabolites. Among the computational algorithms within a workflow, deconvolution is critical since it

reconstructs a pure mass spectrum for each component that the mass spectrometer observes. Based on the pure spectrum, the corresponding

component can be eventually identified and quantified. Deconvolution is challenging due to the existence of co-elution. In this review, we focus
P y q ging

on progress that has been made in the development of deconvolution algorithms and provide thoughts on future developments that will expand

the application of GC-MS in metabolomics.
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Introduction

Metabolomics is  the and/or
quantitative study of a metabolome (the set of metabolites synthesized

Comprehensive qualitative
by an organism, tissue, or cells) and as such provides measurements
essential for systems biology approaches for the study of health and
disease. It has benefited greatly from advances in analytical
technologies including nuclear magnetic resonance (NMR)) and mass
spectrometry (MS) coupled to separation techniques. The advantages
of NMR are the minimal requirements for sample preparation and
the non-discriminating and non-destructive nature of the technique.
However, the low sensitivity of NMR makes it difficult to detect
low-abundance metabolites that could constitute key discoveries of
new biomarkers or biological mechanisms. Mass spectrometry-based
metabolomics offers high selectivity and sensitivity and, more
importantly, the potential to identify metabolites. Combining MS
with separation techniques reduces the complexity of the mass spectra
due to metabolite separation in the time dimension and provides
additional information about the physical and chemical properties of
the metabolites [1,2]. Due to these advantages, the MS-based
metabolomics approach is being widely used in food and nutrition
research [3], plant science [4], marine science [5], environmental
science [6], drug development and toxicology studies [7,8], and many
others.

Obtaining a full coverage of the metabolome generally requires
multiple separation approaches since metabolites are heterogeneous,
low molecular-weight components (less than 1,500 Da) that are
characterized by a wide variation in physical and chemical properties
(e.g., polarity, volatility, and solubility) [9]. Three types of separation
techniques are commonly used in MS-based metabolomics: liquid
chromatography (LC), gas chromatography (GC), and capillary
electrophoresis (CE).
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GC combined with electron ionization (EI) mass spectrometry
allows for the identification and quantification of volatile and
thermally stable compounds of low polarity from sources such as
biological tissues and foods [10]. The fragmentation of metabolites
during EI are highly characteristic of the chemical structure, allowing
these mass spectra to be used for identification of compounds from
mass spectral libraries [II]. Due to its high reproducibility,
chromatographic peak resolution, and the existence of libraries of
mass spectra, GC-EI-MS is regarded as the gold standard for
metabolomics research [12]. However, GC-MS is incompatible with
thermally labile

derivatization methods have been developed to make these

nonvolatile and compounds. As a result,

metabolites less polar, more volatile and/or thermally stable so that
they can be analyzed on GC-MS.

Complementary to GC-MS, LC-MS enables identification and
quantification of high polarity compounds including organic acids,
fatty acids, amino acids, and steroids. LC-MS-based metabolomics is
generally performed using soft ionization techniques such as
electrospray ionization (ESI) and atmospheric pressure chemical
ionization (APCI), which do not cause fragmentation of the
molecular ions and thus allow for the determination of elemental
compositions. In addition, LC-MS/MS can be used to identify
metabolites [10,13].

The third separation technique, CE, is suited for the separation of
polar and charged compounds, as compounds are separated on the
basis of their electrophoretic mobility. However, the repeatability of
migration time in CE is very poor compared to that of the retention
time in GC and LC. This factor is especially critical in metabolomics
because a high accuracy of metabolite peak alignment must be
achieved prior to downstream data analyses. Large variations in
migration time make alignment very challenging [14].

MS-based metabolomics experiments using these separation
techniques can be conducted using three approaches: 1) non-targeted
metabolic profiling where the identity and relative quantity of as many
metabolites as possible are obtained; 2) targeted profiling where the
absolute quantity of a pre-selected smaller set of metabolites, typically
related by chemical or biological similarity, are obtained using internal
standards and reference compounds, and 3) metabolic fingerprinting
where a global snapshot of the metabolism is acquired and compared
without performing quantification and chemical identification.
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Figure 1. Comparison of constructed mass spectra and subsequent metabolite identification results with and without accurate deconvolution of shared peaks
from two co-eluting compounds, uridine (Left) and n-Eicosanoic acid (Right). (A) Raw EICs of selected masses. Mass 43, 73, and 117 marked with red circles are
shared by both compounds. Mass 217 is unique to uridine while mass 132 is unique to n-Eicosanoic acid. (B1-2) Constructed mass spectra of uridine (B1) and n-
Eicosanoic acid (B2) after deconvolution using ADAP 1.0. The shared masses 43, 73, and 117 are only included either in the spectrum for n-Eicosanoic acid or in
uridine. Their matching scores are 810 and 881, respectively. (C1-2) Constructed mass spectra after deconvolution that decomposes shared peaks. Each of the
shared masses, 43, 73, and 117, is included in the spectra for both n-Eicosanoic acid and uridine. Their matching scores are 909 and 948, respectively. (D1-2)
Reference spectra from an in-house library. This Figure is Figure 1 in the original article [33]. Reprinted with permission from the American Chemical Society.

Biologically interesting components can then be subjected to targeted
profiling for identification and quantification.

These aforementioned analytical platforms (LC-, GC, and CE-
MS) and metabolomic approaches (profiling and fingerprinting) have
been applied widely in metabolomics research. A number of excellent
review articles have been published summarizing this work [3,15-24].
Carrying out a metabolomics study generally involves a sequence of
steps: experimental design, sample collection and preparation, analysis
of samples on analytical platforms, and data handling. Among these
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steps, the last step relies heavily on bioinformatics. Because mass
spectrometry-based metabolomics studies generally produce large and
complex datasets, the bioinformatics involved is nontrivial and
requires specialized computational algorithms and software tools.

For metabolic profiling where identification and quantitation
(semi-quantitation for non-targeted and absolute quantitation for
targeted profiling) are performed, bioinformatics includes three
sequential steps: (1) data processing converts mass spectral data into
tables of known or unknown metabolites with their identity and
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quantity, (2) data analysis identifies interesting metabolites or
metabolic patterns through statistical analyses, clustering, and
classification, and (3) data interpretation places the metabolomics
data in the
metabolomics

context of metabolic pathways and integrates
data with data from other omics platforms.
Combination of the three steps is essential for knowledge discovery
from the metabolomics experiments.

Among the three data handling steps, processing of raw mass
spectral data is critical because any inaccuracy in this stage will
propagate to the subsequent two steps. For a GC-MS based
metabolomics study, data processing is even more critical due to co-
elution of two or more compounds and the in-source fragmentation
of molecular ions caused by the hard EI ionization. Co-elution and
in-source fragmentation cause the resulting raw mass spectra to
consist of mass peaks from all of the co-eluting metabolites. In order
to identify and extract the quantitative information of the
corresponding metabolites, the spectrum for each single metabolite
has to be constructed based on the composite spectra. This spectrum
construction step is called deconvolution in GC-MS data processing.

Considering the importance of GC-MS for analyzing compounds
commonly observed in fruits, Vegetables, nutritional and medicinal
plants, and human biofluids after food digestion, we would focus on
the deconvolution aspect of GC-MS data processing in this review.
We will review the progress that has been made so far, and provide
our thoughts on future developments that will enable further progress
in metabolomics research. For the other aspects of data processing
and the subsequent data analysis and interpretation, we refer readers
to the research article by Stein el al. [25], review articles by Wishart
[26,27] and by Halket et. al. [10].

Deconvolution

For GC-MS data,

computationally separating co-eluting components and creating a pure

deconvolution is the process of
spectrum for each component. Specifically, for each observed EIC
that results from two or more components, deconvolution calculates
the contribution of each component to the EIC. Figure I depicts the
necessity of deconvolution.

Deconvolution had evolved based on the work of a number of
researchers [28,29] and was popularized with the publication of the
AMDIS (Automated Mass
Identification System) algorithm [30] and subsequent development of
the software tool [31]. The principle behind AMDIS also formed the
basis for subsequent developments of other deconvolution algorithms
including MetaboliteDetector [32] and ADAP-GC [33]. These three
software tools are freely available. Commercial software tools have
also been developed that include ChromaTOF [34] and AnalyerPro
[35]. As far as we know, the technical details of the latter two
software tools have not been released. Next we will examine the

AMDIS,

Spectrometry  Deconvolution  and

deconvolution algorithms implemented in

MetaboliteDetector, and ADAP-GC.

Spectrum deconvolution by AMDIS

The overall deconvolution process in AMDIS consists of four
sequential steps: 1)) noise analysis, 2) component perception, 3) model
shape determination (The original paper included this step as part of
step 2 [30]. For convenience of comparison with other algorithms in
this review, we describe this step separately), and 4) spectrum
deconvolution. The first step extracts the noise characteristics for a
GC-MS data file by calculating the noise factor to be used for
representing signal magnitude in noise units. Noise factor is
conceptually defined as
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N, =average random deviation//signal Y]

Briefly, each EIC and the total ion chromatogram (TIC) are
divided into segments of a certain number of scans (13 scans were
used in the original publication [30]). For each segment that has no
zero abundance values, a mean abundance is computed and the
number of times that this mean value is crossed is counted. If the
number of crossings is greater than one-half of the number of scans
(fe, 7 scans when the segment is 13 scans wide), this segment is
accepted and the median deviation from the mean abundance for that
segment is found (Figure 2). This deviation is the average random
deviation within this segment. It is then divided by the square root of
the mean abundance for that segment to obtain a segment—speciﬁc
N rvalue as defined in Eq. L. The median of all of the segment-
specific V rvalues is taken as the characteristic V ¢ value for the entire
GC-MS data file. The square root of a signal multiplied by N f is the

magnitude of this signal in ‘noise units’.
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Figure 2. lllustration of the determination of the noise factor (V J from 13-
scan ion chromatogram segments. The upper chromatogram is rejected
because it has fewer than seven “crossings” of the mean. The lower ion
chromatogram crosses the mean eight times, so provides a sample noise
factor. The median distance from the mean (seventh closest to the mean)
is used to generate a sample noise factor N £ The final N rfor the analysis
is taken as the median of all sample values. This Figure is Figure 1 in the
original article [30]. Reprinted with permission from Elsevier.

The second step, component perception, perceives individual
chromatographic components. The rationale behind component
perception is that a component exists when a sufficient magnitude of
ions maximize together. It is achieved through a process as illustrated
in Figure 3 where the deconvolution window is established first.
When determining a deconvolution window, AMDIS “sequentially
examines scans starting at the scan of maximization and proceeds in
the forward and reverse directions up to a pre-set maximum number
of scans (12 is the default). If a signal abundance is encountered that
s more than five noise units greater than the smallest abundance
between that scan and the starting scan (with noise units measured for
the smallest abundance), then it is presumed that another component
has been found and the window length is set to the preceding scan.
Also, if the intensity falls below 5% of the maximum intensity, the
window Is fixed at that scan.”

The third step determines the model peaks to be used in the next
step for deconvolution. The model shape for each perceived
component is taken as the sum of the individual ion chromatograms
that maximize together and whose sharpness values are within 75% of
the maximum value for this component. The sharpness value between
the maximum abundance, Amax, and an abundance value located 71

scans from the maximum, A, is defined as:
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(A ~A)/ (%N, VA, ) )

The maximum sharpness values on each side of the maximum
scan are averaged as the sharpness value of this ion chromatogram.

maximum rate

< 3) Least square line
through lowest 1/2 of

4) height points relative to line 2)
TT—

v
2) line through /
lowest point on
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Figure 3. Four steps for determining whether an ion chromatogram peak
is large enough to be used for peak perception. (1) A scan window is set
using minima on each side of the peak; (2) a tentative baseline is drawn
between the lowest points on each side (readjusted if a point between
these end points falls below the line); (3) a least-squares line is drawn
using the lowest one-half of points as measured from the baseline in step
2; (4) signal height between the maximum and least squares line is
computed. Peaks must have heights larger than four noise units (N r VA)
for use in peak perception (A is the absolute abundance at the peak
maximum). This Figure is Figure 2 in the original article [30]. Reprinted
with permission from Elsevier.

The last step, deconvolution, extracts ‘purified’ spectra from
individual ion chromatograms for each component using the model
shapes and the least-squares method. Briefly, each ion chromatogram
is fit to the model profiles allowing a linear baseline:

A(nN)=a+b*n+cxM(n)+d=*Y(n)+exZ(n)+K (3)

This four-step process of deconvolution that AMDIS uses forms
the basis of deconvolution in MetaboliteDetector [32] and ADAP-
GC 2.0 [33]. Even though the deconvolution principle underlying
these three algorithms are similar, the algorithms differ in details that
we describe next.

Spectrum deconvolution by MetaboliteDetector

Deconvolution in MetaboliteDetector differs from AMDIS in
component perception and model peak determination. For
component perception, it detects the beginning and ending of
chromatographic peaks by calculating the first derivative of the

smoothed intensity values (Figure 4):

F1(x) = —2X_, =X, + X, +2X,, “4)
10
A resulting peak is counted as valid if three criteria are met: the peak
must consist of more than three values, the height above the baseline
in signal-to-noise units of the maximum peak value must exceed a
predefined threshold, and the quality of the peak shape must be in a
certain range. The quality of a peak shape, named discrepancy index,
is defined based on the assumption that all values of the first
derivative of an ideal single peak must be positive from the peak
beginning to the peak maximum and negative from the peak
maximum to the peak ending. The absolute values of the first
derivatives that agree with this assumption are summed as ideal slopes
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and the absolute values of the first derivatives that disagree with this
assumption are summed as nonideal slopes. The discrepancy index gp
of a peak shape is formally defined as the ratio of the nonideal to
ideal slopes:

_ sum of nqnldeal slopes «100% (5)
P sum of ideal slopes

Reasonable values of @ are in the range between 0% and 10%.

To determine the model peak shape for each perceived
component, MetaboliteDetector sorts all single ion peaks of a
compound having @ values below 10% by their sharpness values.
The top 25% of the peaks in terms of the sharpness value are
summed to form the model peak for this compound.

Figure 4. Single ion chromatographic peak detection. The peak borders are
determined based on the first derivative of the intensity values. The red
line represents the intensity values vs. retention time. The blue line
depicts the first derivative of the intensity values. If the values of the first
derivative cross the peak threshold, a peak begin or end is set (dotted
lines). This Figure is Figure 2 in the original article [32]. Reprinted with
permission from American Chemical Society.

Spectrum deconvolution by ADAP-GC 2.0

Deconvolution in ADAP-GC 2.0 differs from AMDIS and
MetaboliteDetector in terms of component perception, noise analysis,
and model peak determination (Figure §). Specifically, ADAP defined
the concept of chromatographic peak features (CPFs).

A CPF is the elution profile of a minimum number of
components that makes the elution profile complete, with ‘complete’
meaning that the elution profile lasts from the beginning to the end of
the elution of the component(s). A CPF that results from a single
component is defined as a simple CPF, and a CPF that results from
two or more components is defined as a composite CPF. A simple
CPF has only one local maximum, and a composite CPF could have
one, two, or more local maxima. ADAP-GC 2.0 detects a CPF by
determining the beginning, ending, and apex time of each local peak
based on local maximum (for peak apex) and minimum (for
beginning and ending). To determine if a peak is a simple CPF or
part of a composite CPF, the algorithm calculates the ratio of
intensity values at the boundaries to the intensity value at the peak
apex. If one of the ratios is higher than a configurable threshold, this
peak is considered part of a composite CPF. All of the neighboring

incomplete peaks are then merged to form a composite CPE.
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Figure 5. Illustration of the data analysis workflow of ADAP-GC 2.0 using two co-eluting compounds. (A) Detection of CPFs from TIC and determination of
deconvolution windows (indicated by blue vertical lines). Two representative CPFs are displayed: one simple CPF marked by a blue solid circle at the apex and
one composite CPF marked by red and green solid circles at the apexes. (B-F) Deconvolution of the EIC CPFs that have given rise to this composite TIC CPF. (B)
Raw EICs of 46 good candidates. (C) The constructed mirror images of the 46 good candidates. (D) Determination of the number of components and
corresponding model CPFs for each component using hierarchical clustering. The red dashed line indicates the empirical cutoff for determining the number of
clusters. (E) The composite CPFs of masses 73, 147, 245, and 273 (solid line) were decomposed into simple CPFs (dashed line). (F) Two mass spectra were
constructed and identified. This Figure is Figure 3 in the original article [33]. Reprinted with permission from the American Chemical Society.

Subsequently, ADAP-GC 2.0 determines the deconvolution
windows based on both the TIC and EIC. Basically, the beginning
and ending of a TIC CPF delimit a window and any EIC CPF whose
peak apex falls in the window will participate in the window-specific
deconvolution. For each deconvolution window, ADAP determines
the number of components and the model peak shape for each

Volume No: 4, Issue: 5, January 2013, €201301013

component.  Unlike the model peak in AMDIS and
MetaboliteDetector, ADAP-GC 2.0 defines a model CPF as the
elution profile of a compound when it elutes from a chromatography
system alone and its concentration is within the linear dynamic range
of the mass spectrometer. As such, a model peak can result from the
elution of a single component only. To determine the model CPF,
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ADAP first calculates five quality metrics of each CPE. These five
metrics are sharpness, signal-to-noise ratio (SNR), peak intensity,
Gaussian similarity, and the mass. The sharpness value of a CPF is
calculated as

_1. N-1 .
sharpness :Zli ISR il I (6)

P
i=2 Ii—l =p I

i+l

Where N is the total number of time points for a CPF, p is the time
index of the apex, and /j is the abundance value at time index 7. The
SNR is estimated based on the high- and low-frequency signal
components of the CPF, which is calculated using the continuous
wavelet transform. For details about other metrics, please refer to the
original article.

Following the calculation of the five metrics, ADAP selects those
CPFs with high values of sharpness, SNR, and Gaussian similarity.
Each of the filter-passing CPFs is assigned a total quality score
calculated as

total score = (c, mass ) + (c, (Gaussian similarity) + (c, (apex intensity )
+(c, XSNR)
7)

Those CPFs whose total score pass the following threshold are
considered good candidates of model CPFs:

total score,,, ..., = Min(total scores)+ 0.25 range(total scores)] ~ (8)

Finally, all of the good candidates for model CPFs participate in a
hierarchical clustering process for ADAP to determine the most likely
number of components in the current deconvolution window and the
corresponding model peak for each component.

Conceptual comparison of deconvolution algorithms in
AMDIS, MetaboliteDetector, and ADAP-GC

Each of the aforementioned computational steps plays an
important role in determining whether or not metabolic changes can
be detected in metabolomics studies.

1. Noise analysis: Mass spectra and chromatograms that are
obtained from the spectra are inherently noisy. All of the three
algorithms we described above incorporated noise analysis.
AMDIS and MetaboliteDetector calculate the noise factor of
a GC-MS data file and then convert the signal magnitude in
noise units in some of the subsequent calculations. ADAP-GC
2.0 wuses a completely different approach by directly
computing the signal-to-noise ratio of each CPF and uses it as
a filter to prevent noisy CPFs from being selected as model
CPFs. Without direct comparison between these two
approaches, it is challenging to state which one leads to better
performance.

2. Determination of deconvolution windows: AMDIS's
approach often causes deconvolution windows to be narrower
than optimal for quantitation, as pointed out in the original
article [30]. This happens in two scenarios where a
deconvolution window contains only part of the entire
chromatographic peaks. One is when a chromatographic peak
is very intense, the deconvolution window is fixed at 5% of
the maximum intensity, and the remaining part of the peaks

Volume No: 4, Issue: 5, January 2013, €201301013

Bininformatics for Mass Spectrometry-Based Metabolomics

that is below 5% of the maximum intensity is outside of the
deconvolution window. If neighboring co-eluting components
are in very low concentrations, their abundance will be much
lower than that of the dominating peak and most of their
chromatograms will be outside of the deconvolution window.
We have observed many examples of this case in our own
work. The other scenario is when the algorithm determines
that a co-eluting component is encountered because the
abundance value is more than five noise units greater than the
smallest abundance between that scan and the maximization
scan. Since the window is set to the preceding scan, part of the
peak will be left out of the deconvolution window as well.

In order to resolve this issue, ADAP-GC 2.0 tries to detect
composite CPFs and ensure that their deconvolution windows
contain the entire CPF. Conceptually, this should increase the
accuracy of the quantitative information that ADAP extracts
about metabolites from the data.

In MeteboliteDetector, how deconvolution windows are
determined was not explicitly described. Regardless of the
specific approach, it must utilize the information about the
beginning and  ending of  chromatographic  peaks.
MetaboliteDetector determines the beginnings and endings
using first derivatives as in Eq. 4. For details, please refer to
the original article. This approach tends to be very sensitive to
noise because the derivative operation amplifies noise [36].
Even though chromatograms are smoothed prior to this step,
fluctuations can still exist along a chromatographic peak and
cause the algorithm to decide that a beginning or ending of
the  chromatographic ~ peak  has  been  encountered.
Consequently, part of the peak will be left out of the
deconvolution window and the quantitative information
extracted from the data about the corresponding component

will be reduced.

. Determination of model peaks: The central goal of

deconvolution is to decompose a composite CPF into the
weighted summation of the model peaks and then form the
spectrum of a single component based on the weights in Eqn.
3. Specifically, the resulting ¢ * M (;nmmax) in Eqn. 3, where
mmax denotes the scan with the maximum model peak
abundance, will be wused as the abundance for the
corresponding m/z in the extracted spectrum. Conceptually, it
should be preferred that each model peak corresponds to one
single component only. However, since both AMDIS and
MetaboliteDetector use a summation of peaks as the model
peak and one or more of the constituent peaks could consist
of signals from multiple co-eluting components, the
likelihood that the final model peak also consists of signals
from multiple co-eluting components is very high.
Consequently, the magnitude of the mass peaks in the
extracted spectrum will be inaccurate, which could ultimately
cause both false positive and false negative metabolite
identifications. Moreover, the quantitative information for
corresponding components will be inaccurate as well since it is
calculated based on the extracted spectrum.

ADAP, however, selects only the purest peak for model peaks
by using five peak quality metrics. On the other hand, ADAP
has a weakness too in determining model peaks. It favors
model peaks that are symmetric and resemble a Gaussian
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curve. In reality, fronting and tailing do occur and cause
asymmetric peak shapes even when a compound elutes alone
from the chromatography system. This issue can conceptually
be alleviated or eliminated by decreasing the weighting factor

c, that is assigned to the Gaussian similarity in Eq. 7. Of

course, testing is needed to check if the overall performance of
the algorithm is affected as a result of this change.

Based on the above description, we can see that it will be
worthwhile to carry out a detailed comparison about the performance
of the critical computational steps and come up with the best overall
deconvolution strategy. Even though the aforementioned three
algorithms have not been directly compared, a comparison between
AMDIS and two commercial software packages, ChromaTOF [37]
and AnalyzerPro [35], has been performed by Lu et. al [12]. The
article concluded that none of these approaches provided a
comprehensive solution meeting the specific needs of metabolomics
[12]. Specifically, I)) AnalyzerPro tends to produce a great number of
false negatives, 2) ChromaTOF and AMDIS tend to produce
multiple peak assignments that clearly correspond to a single
chromatographic peak and chemical entity, and 3) all of them are still
fairly slow for the flood of data from high-throughput metabolomics
studies. Since details about the deconvolution algorithms in
ChromaTOF and AnalyzerPro are unknown, we are unaware of the
possible factors that could have caused their respective issues.

For AMDIS, it was originally developed for automated
identification of chemical weapons and related compounds [30].
Therefore, there is a strong emphasis in AMDIS on low false negative
rates for metabolite identification. Since identification is achieved by
matching the ‘purified’ spectra for single components that are
obtained from deconvolution against libraries of reference mass
spectra, each step of the deconvolution process needs to ensure that as
few components as possible are missed. As a result, AMDIS is best
suited for analyzing simple mixtures consisting of a small number of
compounds. When analyzing complex mixtures, time-consuming
manual checking of the results is necessary in order to reject false
positive identifications [32].

Appropriate configuration of processing parameters can help
alleviate the challenge to find an acceptable balance between false
positive and false negative identifications. However, without prior
knowledge about the sample composition in un-targeted metabolic
profiling experiments, researchers usually do not know what
parameter setting is appropriate for their datasets. This issue exists in
other algorithms as well.

Summary and Outlook

The past decade has witnessed tremendous progress on
metabolomics bioinformatics research. However, the progress has not
been as fast as that on the instrumentation side as mass spectrometry
coupled to chromatography is becoming increasingly sensitive and
their operations are becoming increasingly high-throughput. Next, we
provide our thoughts on new bioinformatics capabilities for GC-MS
data processing that are needed for metabolomics to progress further.

1. More efficient and reliable deconvolution algorithms need to
be developed for identification and quantification of metabolites due
to the aforementioned limitations of existing deconvolution
algorithms. Newly developed algorithms need to be implemented into
user-friendly and high-throughput software tools. These software
tools should be equipped with visualization capabilities that will allow
metabolomics researchers to visually examine intermediate and final
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results for verifying the correctness of significant metabolites detected
in the data analysis and data interpretation stages. Development of
these algorithms and software tools will benefit greatly from an
interdisciplinary team of researchers and software engineers with
engineering, chemistry, math, and computer science background.

2. Computational algorithms and software tools are also needed
for identifying unknown metabolites. This is because, with
unprecedented sensitivity, dynamic range, and throughput, both GC-
MS and LC-MS analytical platforms can now detect many
metabolites in a short time frame that could not be observed before.
However, the power of the detection methods has outstripped our
ability to process the data. Often, the number of unidentified
metabolites in a sample is 2-3-fold more than the number of
identified metabolites even after extensive data processing. This is
because even the largest and most comprehensive of currently available
libraries contain only a small portion of the endogenous metabolites
found in biological samples [38-41].

Identifying these unknown metabolites is currently a major
bottleneck in metabolomics [42,43]. This issue is even more acute in
studies investigating plant products because diverse plant species are
estimated to produce more than 200,000 metabolites of enormous
biochemical diversity of which only 10,000 chemical structures are
known [4,11]. Even the eXtensively studied model piant Arabz'a’opszs
thaliana has a large number of enzymes whose substrates and products
remain unknown [44]. Meanwhile, commercially available standard
reagents, especially those of secondary metabolites produced by
plants, are very limited in number. Given the fundamental importance
of biochemicals to agriculture, nutrition, and health, the potential
benefit of identifying even half of these unknown metabolites is
astronomical.

Therefore, a pressing need in the metabolomics community is the
development of effective methods for prioritizing, studying, and
ultimately identifying uncharacterized metabolites [40]. To address
this need, novel bioinformatics capabilities to process raw mass
spectral data and to create libraries of unidentified spectra must be
developed [10,11,26,38,45,46].

For GC-MS-based metabolomics, some progress has been made in
the effort to use and catalogue unidentified GC-MS spectra in
metabolomics studies [4,37,38,46-64]. Among these efforts, most
rely on nonsystematic, low-throughput, manually assisted curation of
unidentified peaks [38], and only a few use more advanced
approaches with minimal manual annotation. These latter efforts
include the work on developing the volatile compound mass spectral
database named vocBinBase [63], developing a spectral library of
unknown compounds for urine [46], and identifying conserved
metabolites [38]. These three projects used spectra extracted from the
raw mass spectral data by AMDIS or ChromaTOF (LECO Corp.,
Michigan, USA). In constructing the vocBinBase database, unknown
spectra are filtered and only the filter-passing spectra are imported
into the database. Unfortunately, since each spectrum in the database
is obtained from only a single sample, it is very likely that it is not the
best representation of the corresponding compound. Missing,
inaccurate, or false peaks in these spectra will cause future false
positive and false negative identifications, especially as the database
grows and different compounds with similar spectra are incorporated
into the library. A better approach is to construct a consensus
spectrtum from many measurements of the same compound.
Consensus spectra are indeed used in some of these developments
[38]. However, inaccuracies in these spectra still need to be corrected
based on analyses of extracted spectra from multiple samples. This
step is very important because inaccuracies are very likely to occur due
to factors such as co-elution, low signal-to-noise ratios in some
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regions of the chromatograms, and inappropriate parameter settings in
the process of chromatographic peak picking and deconvolution [12].
This spectra correction step will significantly increase our confidence
in the consensus spectra. In addition, it will improve the accuracy of
the quantitative information about the corresponding unknown
metabolites, which is critical to comparative metabolomics

In addition to the above approaches, the widely used GOLM GC-
MS mass spectral database incorporated mass spectra of unidentified
metabolites. However, similar to the vocBinBase database, no
derivation of consensus spectra or determination of the best
representative spectra was implemented [65]. For LC-MS-based
metabolomics, the creation of multiple databases of LC-MS/MS
mass spectra has made significant contributions to the field, including
METLIN [13] and MassBank [66]. However, there has been no
report of systematically creating spectral libraries of unknown
compounds.

This lack of capabilities to handle unidentified GC-MS and LC-
MS spectra reveals that metabolomics bioinformatics is lagging
behind technological advances in analytical instrumentation, and this
is hindering investigators from taking advantage of data that the
instruments already capture.
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