
The miR-125a and miR-320c are potential tumor suppressor 
microRNAs epigenetically silenced by the polycomb repressive 
complex 2 in multiple myeloma

Mohammad Alzrigat and Helena Jernberg-Wiklund
Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck 
Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden

Abstract

We have previously presented the histone methyltransferase enhancer of zeste homolog 2 (EZH2) 

of the polycomb repressive complex 2 (PRC2) as a potential therapeutic target in Multiple 

Myeloma (MM). In a recent article in Oncotarget by Alzrigat. et al. 2017, we have reported on the 

novel finding that EZH2 inhibition using the highly selective inhibitor of EZH2 enzymatic activity, 

UNC1999, reactivated the expression of microRNA genes previously reported to be 

underexpressed in MM. Among these, we have identified miR-125a-3p and miR-320c as potential 

tumor suppressor microRNAs as they were predicted to target MM-associated oncogenes; IRF-4, 

XBP-1 and BLIMP-1. We also found EZH2 inhibition to reactivate the expression of miR-494, a 

previously reported regulator of the c-MYC oncogene. In addition, we could report that EZH2 

inhibition downregulated the expression of a few well described oncogenic microRNAs in MM. 

The data from our recent article are here highlighted as it shed a new light onto the oncogenic 

function of the PRC2 in MM. These data further strengthen the notion that the PRC2 complex may 

be of potential therapeutic interest.
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Multiple myeloma (MM) is a malignancy of plasmablasts/plasma cells (PCs) characterized 

by the accumulation of monoclonal antibody producing PCs in the bone marrow (BM). 

Clinically, MM is a heterogeneous disease and MM patients’ show multiple clinical 

symptoms including lytic bone lesions, anemia, hypercalcemia, renal failure and 

immunodeficiency [1–3]. More importantly, MM is a biologically complex disorder 

characterized by a large clonal heterogeneity as reflected by a wide range of genetic 
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alterations and manifested in a patient-to-patient variation in overall survival and response to 

treatment [4–7]. This MM associated heterogeneity has certainly limited the clinical benefits 

of current as well as personalized treatment strategies. Therefore, MM remains a fatal 

disease making development of new targeted therapeutic approaches imperative.

Several reports from genetic sequencing and gene expression studies in MM have 

documented a cross-talk between genetic lesions and aberrant epigenetic profiles i.e. DNA 

methylation [8, 9], histone modifications [10, 11] and non-coding RNA [12–14] in the 

pathogenesis and prognosis of MM. An emerging notion is now that deregulation of 

epigenetic modifiers is an important factor contributing to the development of MM [15–18]. 

For example, the chromosomal translocation t(4;14) results in the overexpression of the 

multiple myeloma set domain (MMSET) histone methyltransferase leading to an increase in 

histone 3 lysine 36 di-methylation (H3K36me2) levels and a concomitant decrease in 

histone 3 lysine 27 tri-methylation (H3K27me3) levels [10, 11]. The enhancer of zeste 

homolog 2 (EZH2) is an epigenetic modifier that has been shown by us and others to be 

commonly overexpressed in MM [16, 19, 20]. EZH2 is the enzymatic subunit of the polycomb 

repressive complex 2 (PRC2), an important regulator of both normal development as well as 

disease [21–23]. Through EZH2, the PRC2 complex establishes the H3K27me3 mark, a 

transcriptional repressive histone mark involved in the regulation of transcriptional programs 

during normal development as well as cellular transformation [21–23]. EZH2 was found to be 

overexpressed in malignant PCs as compared to normal BM PCs, and to enhance MM cell 

growth [19]. Recently, we have shown that a common set of PRC2/H3K27me3 targeted genes 

are underexpressed in MM patients [20, 24]. Stressing the clinical relevance of gene silencing 

by PRC2, we found that the repression of PRC2 target genes (H3K27me3 targets) in MM 

correlates with gene silencing in advanced stages of MM and in patients presenting with 

poor survival [24]. The development of epigenetic inhibitors that specifically dampen the 

EZH2 enzymatic activity has recently made the evaluation of the therapeutic potential of 

EZH2 in MM possible. We and others have demonstrated the anti-MM effects mediated by 

EZH2 inhibition by using highly selective inhibitors of the EZH2 enzymatic activity [24–26]. 

All these studies reported on the anti-MM effects of EZH2 inhibitors via reactivation of a set 

of PRC2 target genes with anti-tumor functions such as genes involved in apoptosis, cell 

differentiation, cell adhesion and migration.

As here highlighted, we have recently reported for the first time that inhibition of EZH2 

using the small highly selective inhibitor of EZH2 enzymatic activity, the UNC1999 [27], has 

an impact on the global expression of microRNA genes in MM. In this study we presented 

PRC2 as a novel regulator of a set of microRNAs with tumor suppressor or oncogenic 

function in MM [28]. In the study, we found that EZH2 inhibition by UNC1999 resulted in 

the upregulation of 118 microRNAs, of which many have been identified as downregulated 

tumor suppressor microRNAs in MM [28]. We could show that 2 potential tumor suppressor 

microRNAs, miR-125a-3p and miR-320c, were reactivated upon EZH2 inhibition (Figure 

1). We selected these microRNAs based on their predicted binding and function as common 

regulators of MM important oncogenes i.e. IRF-4, XBP-1 and BLIMP-1 [28]. We also found 

that UNC1999 upregulated the expression of miR-494 with a previously reported function to 

negatively regulate the expression of the c-MYC oncogene [29]. Using chromatin 

immunoprecipitation followed by quantitative real time PCR (ChIP-qPCR), we found that 
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miR-125a and miR-320c were direct targets of PRC2 in MM cell lines and primary MM 

patient cells and that their reactivation, as predicted, correlated with the downregulation of 

expression of MM-associated oncogenes IRF-4, XBP-1, BLIMP-1 and c-MYC [28]. The 

significance of our finding relies on the fact that these oncogenes have been demonstrated to 

be essential for MM cell growth and survival [30–33] and MM pathogenesis in human and 

murine models [34–37].

We also showed that the inhibition of EZH2 downregulated the expression of microRNAs 

reported to be overexpressed and to possess oncogenic functions in MM [28]. Among these, 

the miR-17-92 and miR-106b-25 clusters in MM have been attributed oncogenic functions 

due to their regulation of MM associated tumor suppressor genes. For example, members of 

the miR-17-92 cluster have previously been shown to target the tumor suppressors SOCS1 

and BIM [38, 39]. Similarly miR-106b-25 in MM has been suggested to modulate the activity 

of the tumor suppressor P53 [38, 40]. Furthermore, members of the miR-17-92 cluster and 

Let-7 family were suggested to enhance MM angiogenesis [41], an important step in MM 

establishment and progression. Interestingly, the expression of miR-17-92 and miR-106b-25 

clusters is positively modulated by c-MYC in tumors other than MM [42, 43]. Therefore, we 

suggest that EZH2 inhibition in MM may indirectly affect the expression of onco-miRNAs 

via downregulation of MM-associated oncogenes such as c-MYC.

Recent analysis of microRNA expression in MM revealed that deregulation of microRNA 

expression correlates with molecular subtype, disease progression, patients’ survival and 

response to treatment [13, 14, 44–47]. Several reports have suggested genetic lesions such as 

chromosomal translocations and copy number variations [13, 14, 46, 47], but also epigenetic 

mechanisms e.g. DNA methylation [48, 49] as possible mechanisms leading to aberrant 

expression of microRNA genes in MM. For example, DNA methylation was shown to 

epigenetically silence the expression of tumor suppressor microRNAs such as miR-155, 

miR-198, miR-135a*, miR-200c, miR-663 and miR-483-5p [50]. Our recent findings expand 

the knowledge concerning the regulation of microRNA expression in MM and suggest also 

polycomb-mediated gene repression as a mechanism that may deregulate and silence tumor 

suppressor microRNAs. Overexpression of tumor suppressor microRNAs or their mimics 

have in some cases been proven to have anti-MM activity inhibiting MM cell growth, 

migration and colony formation in vitro [48, 50] and in vivo [51, 52]. The possibility of using 

microRNAs as a novel therapeutic strategy in MM should thus be the subject for further 

investigation.

In summary, our recent publication [28] demonstrated for the first time PRC2 as a regulator 

of microRNA expression in MM, thus emphasizing the oncogenic role of EZH2 in MM. Our 

present findings show that EZH2 inhibition leads to upregulation of a set of tumor 

suppressor microRNAs targeting important MM-associated oncogenes, and suggest EZH2 

inhibitors and the silenced tumor suppressor microRNAs as possible novel therapeutic 

strategies in MM.

Acknowledgments

We are very grateful to all co-authors of the research highlighted in this article. We specially want to thank 
Professor Jian Jin from Icahn School of Medicine at Mount Sinai, New York, NY, USA, for providing us with the 

Alzrigat and Jernberg-Wiklund Page 3

RNA Dis. Author manuscript; available in PMC 2017 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



EZH2 inhibitor UNC1999. The work highlighted in this article was supported by grants from the Swedish Cancer 
Society, the Hans von Kantzow Foundation, the Swedish Research Council and the NIH grant R01GM103893 from 
the U.S. National Institutes of Health.

Abbreviations

BM bone marrow

EZH2 enhancer of zeste homolog 2

H3K27me3 histone 3 lysine 27 tri-methylation

H3K36me2 histone 3 lysine 36 di-methylation

miR microRNA

MM multiple myeloma

MMSET multiple myeloma set domain

PCs plasma cells

PRC2 polycomb repressive complex 2
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Figure 1. PRC2 represses the expression of tumor suppressor microRNAs in multiple myeloma
(a) PRC2 via EZH2 enzymatic subunit installs H3K27me3 mark at the genes encoding 

miR-125a, miR-320c and miR-494 in MM cells leading to their silencing. This leads to 

sustained expression of MM-associated oncogenes predicted to be targets of the repressed 

microRNA resulting in enhanced MM cell growth and survival. (b) Pharmacological 

inhibition of EZH2 methyltransferase activity using highly selective inhibitors such as 

UNC1999 abolishes the installation of H3K27me3 at the microRNA genes, leading to their 

transcriptional activation. Expression of miR-125a, miR-320c and miR-494 leads to reduced 

expression of MM-associated oncogenes thus inducing MM cell death.
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