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Background: Family environment and life events have long been suggested to be

associated with adolescent depression. The hippocampus plays a crucial role in

the neural mechanism of major depressive disorder (MDD) through memory during

stressful events. However, few studies have explored the exact neural mechanisms

underlying these associations. Thus, the current study aimed to explore alterations in

hippocampal functional connectivity (FC) in adolescent MDD based on resting-state

functional magnetic resonance imaging and further investigate the relationship between

hippocampal FC, environmental factors, and clinical symptom severity.

Methods: Hippocampal FC was calculated using the seed-based approach with

the bilateral hippocampus as the seed for 111 adolescents with and without MDD;

comparisons were made between participants with MDD and controls. We applied the

Chinese version of the Family Environment Scale (FES-CV) and Adolescents Self-Rating

Life Events Checklist (ASLEC) to evaluate family environment and life stress. Their

relationship with hippocampal FC alterations was also investigated.

Results: We found that compared to controls, adolescents with MDD showed

decreased connectivity between the left hippocampus and bilateral orbital frontal cortex

(OFC) and right inferior temporal gyrus. In addition, the hippocampal-OFC connectivity

was negatively correlated with conflict scores of the FES-CV in the MDD group and

mediated the association between family conflict and depressive and anxiety symptoms.

Conclusion: Our findings are novel in the field and demonstrate how family conflict

contributes to MDD symptomatology through hippocampal-OFC connectivity; these

findings may provide potential targets for personalized treatment strategies.
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INTRODUCTION

Adolescence is a critical period of brain development and
neurological and cognitive maturation (1) and is regarded as a
time of “storm and stress” (2). The brain is more susceptible to
the effects of environmental stress at this particular stage (3, 4).
There is a notable incidence of major depressive disorder (MDD)
during adolescence, which may lead to chronicity throughout
life with high recurrence rates (5, 6). MDD leads to serious
social and educational impairments and is closely associated with
suicide (7). The developmental trajectory of depression appears
to start with some environmental risk factors, such as early-
life adversities, and occurs as a result of abnormalities in the
brain (8).

Family environment and life stress events are both risk
factors for adolescent MDD (9–12) and may also affect
brain development structurally and functionally (13–15),
particularly the hippocampus (16–18). For example, smaller
hippocampal volume partially mediated the effect of early-
life adversity on depressive episodes from a longitudinal
study (19). The hippocampal network can modulate the
feeling of stress (20) and play an important role in memory
(21, 22). And stress can influence memory performance
through hippocampal functional connectivity (FC) on a
systems level (23). In recent years, several studies explored
the resting-state FC (RSFC) alterations in adult MDD
with bilateral hippocampus and hippocampal subfields as
selected seeds, showing a significantly decreased RSFC between
the bilateral hippocampal and prefrontal regions, insula,
bilateral limbic system, subcortical areas, temporal lobe, and
cerebellum (24–31).

Although many studies have detected altered hippocampal
FC in adult MDD, only two studies with small sample sizes
have investigated hippocampal FC changes in adolescent MDD.
One study reported decreased intrinsic connectivity between
the right hippocampus and the right insula and right middle
frontal gyrus (32) in adolescents with depression comorbid
with obsessive-compulsive disorder and other anxiety disorders.
Another study showed significant hypoconnectivity between
the bilateral hippocampus and prefrontal cortex (PFC) regions
based on the region of interest (ROI)-to-ROI technique and
excluded the exploration of hippocampal connectivity in other
brain regions (33). However, no study has explored the
relationship between hippocampal FC and stress events and
depressive symptoms.

Thus, in the current study, we aimed to investigate
the alteration of hippocampal FC on the whole brain

base and further explore its relationship with family

environment and life events in adolescent MDD by

recruiting a relatively large sample of drug-naïve patients
with no comorbidities to exclude the confounding effects
of medication and comorbidities in the current study. We
hypothesized that there are abnormalities in the intrinsic
hippocampal function in emotional-related networks in
adolescents with depression, and these abnormalities
are related to the risk factors and symptom severity of
adolescent MDD.

METHODS

Participants
Sixty-eight first-episode and medication-naïve patients with
MDD were recruited from The Third People’s Hospital of
Mianyang, Sichuan, China. All patients were diagnosed by two
professional child and adolescent psychiatrists (Y. Li and G.
Huang). The inclusion criteria were as follows: (1) age between
12 and 18 years; (2) Hamilton Depression Scale (HAMD) score
≥8; (3) no history of drug therapy and psychotherapy; and (4)
no comorbid psychosis disorder (e.g., bipolar disorder, attention-
deficit/hyperactivity disorder, autism, and eating disorder) and
family history of psychosis disorders.

Forty-four healthy adolescent volunteers in the same age
range were also recruited through poster advertisements from
the same social demographic environment. Healthy subjects were
screened using the non-patient edition of SCID to exclude any
DSM-5 disorders. We also excluded healthy subjects if they had
any physical disease or neurological disease, psychosis disorder,
or family history of psychosis disorders. Additional exclusion for
all individuals included the following: had any substance abuse
and dependence and any contraindications for undergoing a
magnetic resonance imaging (MRI) scan.

This study was approved by the Ethics Committee of the Third
People’s Hospital of Mianyang. All subjects were informed of the
purpose and method of this experiment, and written informed
consent was obtained from all adolescents and their patients
or guardians.

Clinical Measures
The 24-item HAMD (HAMD-24) (34) and 14-item Hamilton
Anxiety Scale (35) (HAMA-14) were used to assess the severity
of symptoms of depression and anxiety in all subjects. The higher
the HAMD or HAMA scores, the more severe the symptoms.

The family environment was assessed using the Chinese
version of the Family Environment Scale (FES-CV) (36),
which includes 10 dimensions (cohesion, emotional expression,
conflict, independence, achievement orientation, intellectual–
cultural orientation, active–recreational orientation, moral–
religious emphasis, organization, and control) with nine items for
each dimension.

In addition, the frequency of stressful life events and stress
response intensity was measured using the Adolescents Self-
Rating Life Events Checklist (ASLEC) (37). This scale consists
of six dimensions, namely, interpersonal relationships, study
pressure, punishment, sense of loss, healthy adaptation, and other
factors. A higher score indicates greater stress.

MRI Data Acquisition
All subjects were scanned using a 3.0-T MRI system (Skyra,
Siemens) with a 20-channel phased-array head coil. During the
entire scanning procedure, subjects were instructed to relax with
their eyes closed without falling asleep and without directed
thoughts. T1-weighted anatomical images were scanned with
the following scanning parameters: 176 slices, slice thickness =
1mm, flip angle = 9◦, matrix size = 256 × 256, TR = 1,900ms,
TE= 2.25ms, voxel size= 1mm× 1mm× 1 mm.
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Whole-brain resting-state functional MRI (rs-fMRI) data
depicting blood oxygen level-dependent contrast were obtained
using a gradient-echo echo-planar imaging sequence with the
following parameters: 35 axial slices, slice thickness= 4mm, slice
gap = 0.2mm, repetition time (TR) = 2,000ms, echo time (TE)
= 30ms, flip angle= 90◦, matrix size= 64× 64, voxel size= 3.75
× 3.75× 4 mm3, field of view (FOV)= 240× 240 mm2. The rs-
fMRI lasted 8min in total, and 255 volumes were obtained for
each participant.

Data Preprocessing
The rs-fMRI data were preprocessed and analyzed using the Data
Processing and Analysis for Brain Imaging toolkit (http://www.
restfmri.net) (38) and the SPM12 (The Wellcome Department
of Cognitive Neurology, London, UK, http://www.fifil.ion.ucl.
ac.uk/spm/software/spm12, v6225) based on MATLAB R2018b.
Specifically, the first 10 functional volumes were discarded
for signal stabilization and adaptation of the subjects to the
scanning surroundings. The remaining images were corrected
for acquisition time intervals between slices. The images were
then realigned to the first volume for motion correction. After
corrections, these images were spatially normalized into the
standard Montreal Neurological Institute (MNI) space, and each
voxel was 3 × 3 × 3 mm3. We smoothed these images with an
8-mm full width at half maximumGaussian kernel. The effects of

drift or trends in fMRI were removed by a detrending analysis.
We also regressed out white matter signals and cerebrospinal
fluid (CSF) signals to reduce the effects of physiological noise (i.e.,
cardiac and respiratory fluctuations). Finally, band-pass filtering
(0.01–0.08Hz) was utilized.

To reduce the head motion effects of the functional data, we
used a higher-level Friston 24-parameter model, which includes
six head motion parameters, one previous time point of six
head motion parameters, and 12 corresponding squared items.
The mean framewise displacement (FD) was also calculated as
a measure of the microscale head motion of each subject. The
mean FD of each participant should be <0.2mm; according to
this criterion, one healthy control (HC) was excluded.

Seed-Based FC Analysis
The bilateral hippocampal regions defined from the automated
anatomical labeling atlas were selected as seeds. Seed-based RSFC
analysis was performed using the RESTPlus software (http://
restfmri.net/forum/index.php?q=rest). First, we extracted the
time series for each seed. Subsequently, voxel-wise correlation
analysis was conducted between each seed and all other
voxels of the brain to acquire FC maps. Third, Pearson’s
correlation coefficients between each seed and all other voxels
were converted to z-value images using the Fisher r-to-
z transformation.

TABLE 1 | Demographic and clinical variables in patients with MDD and HC subjects.

Clinical data MDD (n = 68) HC (n = 43) Statistics P-value

Age (years) 14.634 ± 1.52 14.67 ± 1.86 −0.130 0.897

Gender (F/M) 50/18 25/18 2.847 0.092

Handedness (R/L) 67/1 41/2 1.013 0.314

Education (years) 8.51 ± 1.50 8.81 ± 1.88 −0.881 0.381

HAMD-24 total score 23.41 ± 7.02 2.07 ± 1.81 23.852 < 0.001

HAMA-14 total score 18.99 ± 6.02 1.30 ± 1.57 23.034 < 0.001

ASLEC

Interpersonal relationship 15.72 ± 4.14 7.09 ± 4.09 10.740 < 0.001

Study pressure 13.90 ± 3.88 7.93 ± 4.74 7.238 < 0.001

Punishment 15.79 ± 6.28 5.00 ± 4.27 10.776 < 0.001

Sense of loss 5.85 ± 2.98 2.70 ± 2.80 5.528 < 0.001

Health adaptation 8.35 ± 2.70 2.58 ± 2.75 10.900 < 0.001

FES-CV

Cohesion 5.32 ± 3.23 5.14 ± 2.37 0.345 0.730

Emotional expression 4.25 ± 2.15 4.30 ± 1.81 −0.132 0.895

Conflict 5.07 ± 2.30 3.33 ± 1.88 4.172 < 0.001

Independence 4.24 ± 1.76 4.26 ± 1.66 −0.061 0.951

Achievement orientation 6.19 ± 2.62 4.98 ± 1.64 3.002 0.003

Intellectual–cultural orientation 4.01 ± 2.51 4.72 ± 1.72 −1.758 0.082

Active–recreational orientation 4.31 ± 2.30 4.95 ± 1.91 −1.529 0.129

Moral–religious emphasis 5.09 ± 2.14 4.95 ± 1.83 0.341 0.734

Organization 5.35 ± 2.69 4.65 ± 1.63 1.710 0.090

Control 4.15 ± 2.31 3.95 ± 1.66 0.512 0.610

MDD, major depressive disorder; HC, healthy controls; HAMD, Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Rating Scale.
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FIGURE 1 | Abnormal resting-state FC between hippocampus and regions. The OFC and ITG regions showed decreased FC in the adolescent depression group.

The results were obtained using a seed-based analysis method with the left hippocampus as the seed (OFC, orbital frontal cortex; ITG, inferior temporal gyrus; HC,

healthy control; MDD, major depressive disorder).

Statistical Analysis
Group Comparison
The demographic and clinical differences between patients with
MDD and HCs were calculated using two independent-sample
t-tests and chi-square tests based on SPSS software, with a
threshold at the p < 0.05 level.

Group comparison of the FC maps between MDD and HC
was performed using the two-sample t-test in SPM12, with age,
gender, and head motion as covariates [p < 0.005 at the voxel
level and false discovery rate (FDR)-corrected p < 0.05 at the
cluster level].

Correlation Analysis
We conducted partial correlation analysis to explore the
association between hippocampal FC and scores of clinical
symptom severity scales, including total scores of the HAMD and
HAMA and environmental factors including scores of ASLEC
and FES-CV with age and gender as covariates.

Exploratory Mediation Analysis
We further investigated the association of environmental risk
factors with clinical symptoms in the whole group, considering
the potential mediation effect of hippocampal connectivity
identified above.

In addition, an exploratory mediation analysis was performed
to investigate whether the hippocampal FC detected between
groups would mediate the relationship between potential risk
factors and depressive symptom severity using the simple
mediation model (i.e., Model 4) of the PROCESS v3.3 macro in
SPSS (39). In the mediation model, hippocampal FC was defined
as the mediator variable, environmental factors as the dependent
variable, and theHAMDorHAMA total score as the independent
variable with age and gender being treated as nuisance variables.
A bootstrapping approach with 5,000 iterations was performed
to test the significance of the mediating effect. Effects with a

bootstrapped 95% confidence interval (CI) that did not include
zero were regarded as significant.

RESULTS

Demographics and Clinical Characteristics
The demographic and clinical characteristics of all subjects are
presented in Table 1. Compared to the HC group, the MDD
group showed significantly higher HAMD and HAMA scores,
conflict scores, and achievement orientation scores (p < 0.05).
The ASLEC scores were also significantly higher in the MDD
group than in the HC group (p < 0.05).

Hippocampal RSFC Pattern
Compared to HCs, adolescent MDD patients showed decreased
FC between the left hippocampus and the bilateral OFC as well
as between the left hippocampus and the right inferior temporal
gyrus (ITG) (Figure 1 and Table 2). No significant increase in
hippocampal FC was observed in the MDD group compared
to the HC group. There were no significant group differences
between the MDD and HC groups in the right hippocampal FC.

Correlation Analysis
There was a negative correlation between hippocampal-OFC
connectivity and family conflict scores of FES-CV in the MDD
group (p = 0.021) after controlling for the effects of sex
and age (Figure 2). No significant association between cerebral
connectivity and other factors of FES-CV and ASLEC scores and
clinical severity (i.e., HAMA and HAMD) were detected.

Exploratory Mediation Analysis
The correlations between the family conflict score and
HAMD/HAMA total scores were significant in all subjects.
The mediation analysis revealed that the hippocampal-OFC FC
significantly mediated the association between family conflict
and symptoms of depression (indirect effect = 0.0846, 95% CI
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TABLE 2 | Region of abnormal resting-state FC between the hippocampus and regions.

Seed Regions Peak (MNI) Voxels T-value P-value (FDR-corrected)

x y z

HC > MDD

Left OFC −9 27 −24 406 4.68 0.009

Hippocampus Right ITG 48 0 −42 548 4.00 0.002

MDD, major depressive disorder; HC, healthy controls; MNI, Montreal Neurological Institute; FDR, false discovery rate; ITG, inferior temporal gyrus; OFC, orbital frontal cortex.

FIGURE 2 | The scatter plots of the correlations between mean

hippocampal-OFC functional connectivity and family conflict scores. The

RSFC between the left hippocampus and bilateral OFC was negatively

associated with the conflict scores of FES-CV in the MDD group (OFC, orbital

frontal cortex; FES-CV, Chinese version of the Family Environment Scale; Hip,

Hippocampal; HC, healthy control; MDD, major depressive disorder).

= [0.020, 0.171], p < 0.05) and anxiety (indirect effect = 0.0912,
95% CI= [0.027, 0.179], p < 0.05) (Figure 3).

DISCUSSION

To the best of our knowledge, this is the first study to explore
the relationship between hippocampal FC and environmental
risk factors in adolescents with depression. Compared to
HCs, adolescent MDD demonstrated significantly decreased
hippocampal FC with bilateral OFC and right ITG. In addition,
we found that depressed adolescents were associated with higher
levels of stressful events and family conflict. However, only family
conflict scores were negatively correlated with the hippocampal-
OFC connectivity. More importantly, hippocampal-OFC
connectivity mediated the association between family conflict
and both depressive and anxiety symptoms. Our results suggest
that family conflict may contribute to depressive symptoms in
adolescents through changes in hippocampal-OFC connectivity.

Family conflict refers to active opposition between family
members and can take a wide variety of forms, including
verbal, physical, sexual, financial, and psychological. Conflicts
may involve different combinations of family members: conflict
within the couple or between parents and children or, again,
between siblings (40). It can cause maladjustment by an
adolescents’ increasing emotional insecurity about the family
system (41, 42) and affect children’s levels of resilience,
such as low self-esteem, mental fatigue, anxiety, poor school

FIGURE 3 | The mediation model depicts the relationship between family

conflict, adolescent depressive (A) and anxiety (B) symptoms, and

hippocampal-OFC FC with age and gender as covariates (OFC, orbital frontal

cortex; FC, functional connectivity).

performance, introvertism, depression, and self-criticism (43).
The higher family conflict scores of FES-CV in adolescent MDD
suggest that family members express their anger, aggression, and
contradiction toward each other more openly (44).

Many studies have shown that children and adolescents
with depression express higher levels of family conflict than
do HCs (45–48). Children with a family history of depression
are at an increased risk of developing depressive symptoms in
response to family conflicts (49). More importantly, it can be a
stressful event for adolescents and increase the risk of depression
(50–52). We speculate that irritability, a core symptom of
adolescent depression, may be related to a high-family-conflict
environment. A developmental model of depression based on
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vulnerability diathesis and stressful life showed that early adverse
events foster negative attitudes and biases about the self, which
can be activated by later adverse events impinging on the specific
cognitive vulnerability and lead to depression (53).

Many researchers have demonstrated that the hippocampus
and OFC work together to mediate responses to stressful
experiences (54, 55) and are associated with impaired cognition
in depression (56, 57). Hippocampus and OFC both have
been proposed to encode parallel but interactive “cognitive
maps” that capture complicated relationships between various
kinds of information from the environment (58). Cognitive
maps provide useful scaffolds for planning complex behaviors
and thus can promote model-based learning and behavior
(59). A previous task-based fMRI study (60) suggested that
increased hippocampal-OFC connectivity could facilitate model-
based interference. Therefore, the decreased hippocampal-OFC
observed in this study might be linked to abnormalities in
processing of information from the external environment and
inferring future outcomes, thus leading to cognitive impairments
in adolescents with MDD.

In addition, family conflict can also serve as childhood
early-life stress, which may independently predict adulthood
MDD diagnosis and be associated with smaller volumes of
the OFC and left hippocampus (52). Previous research has
shown diminished connectivity between the hippocampus and
OFC during conflict resolution, a way of presenting family
conflict, based on theta band coherence (61). Our finding of
the mediation effect of hippocampal-OFC connectivity provides
solid evidence for the involvement of these two structures in
depression neuropathology. It delineated how environmental
risk factors, such as family conflict, lead to depressive symptoms.

We also found that hippocampal-OFC connectivity could
mediate the association between family conflict and anxiety
symptoms. Stressful family environments play an important
role in developing anxiety symptoms (62, 63). Hippocampal
connectivity can predict the subjective feeling of stress (20). OFC
dysfunction is related to failure of inappropriate fear and anxiety
response inhibition (64). Taken together, our findings suggest
that the interaction between the hippocampus and OFC plays a
critical role in affective symptom development.

In addition, we found decreased connectivity between the
left hippocampus and the right ITG in adolescent MDD.
Previous studies focused on Sjogren’s syndrome (65) and
subcortical vascular mild cognitive impairment with depression
symptoms (66) have revealed decreased connectivity between
the hippocampus and ITG, which is related to cognitive
impairment (such as visual memory) and depression symptoms.
The interaction between the hippocampus and ITG contributes
to visual memory and associative memory (67–69). Therefore,
the decreased FC of the left hippocampus and right ITG in
adolescent MDD may be related to impaired visual memory in
this population. However, this hypothesis has yet to be elucidated
in further research.

Despite this being a large, well-characterized sample, this
study also has some limitations. Although our study found a

close association between family conflict, hippocampal-OFC
connectivity, and depressive symptoms, the result could not
survive FDR correction for multiple comparisons and was
limited by the cross-sectional design. Future studies should
verify this result from a longitudinal perspective to identify
the developmental effects of family conflict exposure on the
hippocampus and OFC and further uncover the mechanisms
underlying the development of depression. In addition,
other environmental stress factors (e.g., child maltreatment,
homelessness, and poverty) that were not included in this
study were also reported to be associated with depression (8).
The relationship between these environmental factors and
biological markers in adolescent depression should be further
investigated to facilitate the detection of individuals at risk of
developing depression.

In summary, we are the first to report that family conflict
may contribute to depressive symptoms in adolescents through
abnormal hippocampal-OFC FC. These results provide a
pathogenesis mechanism for depressive disorder in adolescents
and environmental factors that may be targets for future
preventive strategies.
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