
Resolution of the Stochastic Strategy Spatial Prisoner’s
Dilemma by Means of Particle Swarm Optimization
Jianlei Zhang1, Chunyan Zhang1, Tianguang Chu1,2*, Matjaž Perc3
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Abstract

We study the evolution of cooperation among selfish individuals in the stochastic strategy spatial prisoner’s dilemma game.
We equip players with the particle swarm optimization technique, and find that it may lead to highly cooperative states
even if the temptations to defect are strong. The concept of particle swarm optimization was originally introduced within a
simple model of social dynamics that can describe the formation of a swarm, i.e., analogous to a swarm of bees searching
for a food source. Essentially, particle swarm optimization foresees changes in the velocity profile of each player, such that
the best locations are targeted and eventually occupied. In our case, each player keeps track of the highest payoff attained
within a local topological neighborhood and its individual highest payoff. Thus, players make use of their own memory that
keeps score of the most profitable strategy in previous actions, as well as use of the knowledge gained by the swarm as a
whole, to find the best available strategy for themselves and the society. Following extensive simulations of this setup, we
find a significant increase in the level of cooperation for a wide range of parameters, and also a full resolution of the
prisoner’s dilemma. We also demonstrate extreme efficiency of the optimization algorithm when dealing with environments
that strongly favor the proliferation of defection, which in turn suggests that swarming could be an important phenomenon
by means of which cooperation can be sustained even under highly unfavorable conditions. We thus present an alternative
way of understanding the evolution of cooperative behavior and its ubiquitous presence in nature, and we hope that this
study will be inspirational for future efforts aimed in this direction.
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Introduction

Cooperation is the basis for complex organizational structures in

biological as well as social systems. Nevertheless, understanding

the emergence and stability of cooperative behavior in the context

of Darwinian selection remains a challenge to date. The dilemmas

of cooperation are usually tackled within the framework of

evolutionary game theory [1–3]. Although several mechanism

allowing for the evolution of cooperation have already been

identified [4], the resolution of social dilemmas and the closely

related avoidance of the ‘‘tragedy of the commons’’ [5] is still

considered an open problem. The prisoner’s dilemma game [6], in

particular, has attracted considerable attention in the past three

decades [7–10], and to date it is widely consider as a paradigmatic

example for the tensions between social welfare and individual

interests [11–33]. Cooperation and defection are the two strategies

that are at the heart of the prisoner’s dilemma game. In general,

while cooperators sacrifice some of their personal fitness for the

benefit of the society, defectors succumb to the temptations and

take full advantage of them. The prisoner’s dilemma captures this

situation by means of the following payoffs: mutual cooperation

yields the reward R, mutual defection leads to punishment P, and

the mixed choice gives the cooperator the sucker’s payoff S and

the defector the temptation T . The payoff ranking thus satisfies

TwRwPwS. In the iterated prisoner’s dilemma game the

assumption that the mutual cooperation yields the highest

collective income imposes another constraint, namely

2RwTzS. This makes it clear that the rational (selfish) action

is to defect, and according to the fundamental principles of

Darwinian selection, cooperation extinction is inevitable. Full

defection is indeed the only stable Nash equilibrium for the

prisoner’s dilemma game in well-mixed populations.

Since the seminal paper by Nowak and May [34], however, we

know that this may not be the case for spatial interactions.

Although not universally applicable [35], spatial reciprocity is

recognized as a potent promoter of cooperative behavior, even

more so on complex networks [36–40] (for a comprehensive

review see [8]). Other prominent mechanism promoting cooper-

ation are kin selection [41], direct and indirect reciprocity [42–44],

as well as group selection [45–47], to name but a few.

Inspired by previous works on this subject, we here introduce

particle swarm optimization [48–50] to the players engaging in

the prisoner’s dilemma game on a square lattice [51], with the

aim of investigating its impact on the evolution of cooperation.

However, we abandon the commonly considered assumption that

the players can choose only between the two pure strategies,

namely to either cooperate or to defect. Real-life situations are

often more complex than that, and indeed there is a lot of gray
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between the black and white extremes. Motivated by this fact, we

here consider stochastic strategies, such that the cooperativeness

of each players is determined by W[½0,1�. W~1 returns full

cooperation, while W~0 returns full defection. These are the

two extremes recovered from our present setup. Between

0vWv1, however, there exists a continuous set of strategies

that can be considered either as predominantly cooperative (if

Ww0:5) or predominantly defective (if Wv0:5). Moreover,

while the evolution of strategies is traditionally performed by

means of different strategy adoption (or updating) rules (see [8]

for a comprehensive review), we here take a much less explored

avenue, namely by considering the aforementioned particle

swarm optimization as the driving force behind strategy

evolution. The particle swarm optimization algorithm is based

on a simplified social model that is tightly tied to the theory of

swarming [48–50]. A traditional analogy is a swarm of bees

searching for a food source. In this analogy, each bee (considered

here as a particle) makes use of its own memory as well as the

knowledge obtained by the swarm as a whole, to find the best

available food source. Particle swarm optimization can also be

considered as being representative for multidimensional search

(for example to find an optimum of a utility function). Typically,

a number of simple entities (the ‘‘particles’’) is randomly

positioned in the search space, and to each a velocity vector is

assigned, which is subsequently used to update the current

position of each particle in the swarm. Each particle then

proceeds by evaluating the objective function at its current

location, and finally to determining its movement through the

search space by combining some aspects of the history of its own

current as well as other potentially optimal locations with those of

one or more members of the swarm. Thus, the process makes use

of the memory of each particle, as well as the knowledge gained

by the swarm as a whole. The next iteration takes place after all

the particles have moved once. Eventually the swarm, like a flock

of birds collectively foraging for food, is likely to move closer to

an optimum of the utility function. Accordingly, the particles

(bees, birds, players) therefore should have a tendency to fly

towards better and better areas over the course of the search

process.

Here we focus specifically on introducing the particle swarm

optimization algorithm to the strategy updating process in the

stochastic strategy prisoner’s dilemma game on the square lattice.

In agreement with the above described general concept, each

individual is assigned a variable from the unit interval determining

its level of cooperativeness (or willingness to cooperate). Likewise, a

velocity vector is assigned to every player. Following this

initialization, each player makes use of its own memory (i.e.,

keeping score of the most profitable individual strategy in the past),

as well as use of the knowledge gained by the swarm (i.e., the

nearest neighbors) as a whole, to find the best available strategy for

itself and the society. In particular, the particle swarm optimiza-

tion algorithm makes use of the velocity vector to update the

current strategy of each player in the swarm. In this sense our

study can be considered related to previous works investigating the

effects of mobility on the evolution of cooperation [52–57],

although it relies on an essentially different algorithm. The outline

of the latter is as follows: 1) Start with a set of strategies (i.e.,

cooperation probabilities W ) that are initially uniformly distrib-

uted in the ½0,1� interval. 2) Calculate a velocity vector for each

strategy in the swarm. 3) Update the strategy of each agent, using

its previous value and the updated velocity vector. 4) Go to step 2
and repeat until convergence. All the details of this setup are

described in the Methods section, while here we proceed with

presenting the main results.

Results

We start by presenting the average level of cooperation, defined

as N{1
P

i W (i) where N is the system size and i runs over all the

players in the population, in dependence on the temptation to

defect b for different values of v (for the definition see the Methods

section) in Fig. 1. Expectedly, the average level of cooperation

decreases as b increases for all v. However, while for v?0 the

cooperative behavior dies out completely at high values of b, for

v?1 the average level of cooperation hovers comfortably over

1=3, even when the maximal b~2 limit is reached. For

intermediate and low values of b, however, small values of v
may yield overall higher average levels of cooperation. It is thus

intriguing to find that the introduced particle swarm optimization

in the strategy updating, fine-tuned by means of the parameter v,

can be responsible for the emergence of cooperative behavior

across the whole span of defection temptation values, as well as for

its dominance at low values of b. More precisely, two regimes can

be differentiated. For bv1:5 intermediate and high values of v
are actually detrimental for the evolution of cooperation, while for

bw1:5 the higher the v the higher the stationary level of

cooperative behavior. These results make it clear that low v (e.g.,

v~0:01) strongly support the cooperation level for small b, up to

b^1:2, whereas high v are much better suited for cooperation to

evolve under this dynamics in strongly defection-prone environ-

ments. At this point we argue that for v?1, when players imitate

their best past actions rather than the best players in the swarm

(see Methods for details), the proposed strategy updating rule

warrants the most significant benefits to cooperative behavior if

looking at the entire range of b values, thus in turn resolving the

prisoner’s dilemma.

In order to obtain an understanding of these results, we first

systematically analyze the impact of v on the final distribution of

strategies in the whole population for various values of b, as

depicted in Fig. 2. Note that for v~0:01 the distribution of

strategies is very monotonous, while for v~0:99 much more

diversity is inferable. Both observations are virtually independent

Figure 1. Average level of cooperation in dependence on b for
different values of v. It can be observed that while imitating the best
performing player in the swarm (v?0) might be beneficial at low
temptations to defect, imitating personal success (v?1) is definitively
better for the evolution of cooperation in strongly defection-prone
environments. Each data point is an average of the final outcome
(stationary state) of the game over 100 independent realizations. Lines
connecting the symbols are just to guide the eye.
doi:10.1371/journal.pone.0021787.g001

Prisoner’s Dilemma and Particle Swarm Optimization
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of b. Since the parameter v[½0,1� determines the tendency of

every player to either adopt the most profitable strategy in its past

actions (v?1) or the strategy of the most successful player in its

neighborhood (v?0), these results can be understood very well. In

particular, for v~0:01 individuals are strongly inclined to imitate

the best-performing strategies in the swarm, irrespective of their

personal experience in the past. This narrow-sightedness inevitably

results in strongly polarized distributions, as only either pure

cooperators or pure defectors are the ones most likely to have the

overall highest payoffs. Note that this is because the payoffs are

directly scaled by W (see Methods). Conversely, for v~0:99 the

situation is very different since players will focus on their own past

actions and learn from them in order to arrive at the best possible

strategy. This has the advantage that, unlike for v~0:01, here

only the immediate neighborhood is explicitly taken into account.

For high values of b local considerations are obviously much more

important than for low values of b. In the latter case, the nearest

neighbors can much easily be neglected since the environment on

its own is not strongly favorable for defectors, and hence

cooperators can prevail even if overlooking the detailed distribu-

tion of strategies in their immediate neighborhood. An additional

advantage of small v, however, is that by focusing only (or

predominantly) on the best-performing players in the swarm, the

average level of cooperativeness can be maximized more efficiently

(as evidenced by results presented in Fig. 1). But if the temptation

to defect is strong the strictly local considerations are much more

important, as proper adaptation is then crucial for cooperators to

survive. Accordingly, for high values of b higher v yield better

results (higher average level of cooperation) by exploiting

effectively the whole array of available strategies to respond

properly (locally properly) to invading defectors. At low values of b,

however, these locally optimal adaptations (warranted by v?1)

might be less effective than the more globally inspired actions

(warranted by v?0).

These conclusions can be corroborated further by examining

characteristic snapshots of strategy and velocity distributions for

key combinations of b and v, as presented in Figs. 3 and 4.

Focusing first on the distribution of strategies in Fig. 3, it can be

inferred that for v~0:01, where only the most successful strategies

within the whole swarm can spread rapidly due to the workings of

the particle swarm optimization algorithm, the strategy distribu-

tion becomes very monotonous, leading to the isolation of

homogeneous groups of players characterized either by W~0
or W~1, respectively. This holds irrespective of b, only that for

strong temptations to defect the clusters of strongly cooperative

players become rarer. Note that in this parameter region the here

studied stochastic strategy prisoner’s dilemma game actually

becomes strikingly similar to the classical two-strategy spatial

prisoner’s dilemma game [34,51], where the clustering of

cooperators is the main driving force prohibiting the full

dominance of defectors. Conversely, for v~0:99, where the

particle swarm optimization algorithm is driven by the past

experience of every individual player (rather than the swarm as a

whole), highly heterogeneous kaleidoscopes appear, and it is

indeed this diversity that warrants a high level of cooperativeness

even by strong temptations to defect. In particular, snapshots in

Figure 2. Distribution of strategies in the whole population, as obtained for different combinations of b and v. It can be observed that
for v~0:01 the nature of the stochastic strategy prisoner’s dilemma game is essentially completely overridden by the selfish drive of players to reach
the highest current payoffs in the swarm, in turn virtually completely transforming the game to its two-strategy [only W~0 (full defection) or W~1
(full cooperation) strategies are present in the population] version. Conversely, for v~0:99 the full spectrum of available strategies is exploited to
arrive at the final stationary state. Note that the horizontal axis displays the willingness to cooperate W (defining the strategy of every player), while
the vertical axis depicts the probability that this strategy is present in the population. Depicted results are averages of the final outcome (stationary
state) over 100 independent realizations.
doi:10.1371/journal.pone.0021787.g002
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the bottom panel of Fig. 3 indicate that many clusters consist of a

small amount of players with a high cooperation level (i.e., W
close to 1), surrounded by players with comparatively lower W
values. This in turn implies that not the clustering itself is crucial

for the sustenance of cooperation, but actually the aggregation of

such clusters itself, which enables the players with higher

cooperation level to survive the evolutionary process. Note that

the high cooperation level within clusters provides surrounding

individuals with a safe source of benefits that are sufficient to resist

the invasion of predominantly defective (i.e., W close to 0) players.

The particle swarm optimization algorithm thus spontaneously

generates the diversity needed for cooperation to survive at high b,

much by means of the same mechanism that was reported

previously for manually introduced heterogeneous states [58]. Of

course, players located in the interior of such clusters enjoy the

benefits of mutual cooperation and are therefore able to survive

despite the constant exploitation by defectors, yet this positive

effect is additionally amplified by the diversity and the hierarchical

local structures that give additional strength to the cooperative

strategy, while at the same time provide no benefits for defectors.

Moreover, by examining the characteristic distributions of

velocities presented in Fig. 4, we can obtain further insight with

regards to the evolution of the strategies and their adaptation.

Note that by means of Eqs. (1) and (2) (see the Methods section),

the two quantities are strongly interdependent. For v~0:01, even

though the snapshots are taken in the stationary state (where the

average level of cooperation is stable), the majority of players will

have the velocity very different from 0 (although on average over

time and space it is virtually zero, thus assuring the stationary state

being reached). This indicates that players will constantly try to

reach the currently maximal payoff in the swarm, despite the fact

that for the majority this will be unattainable. The locally high

velocity values also indicate that the evolutionary process at low

values of v is quite violent and fast, with the population therefore

unable to cope with high temptations to defect. Conversely, for

v~0:99 the situation is very different. Here the majority of

players will adapt their strategy very slowly to the changing local

influences, which yields the velocity profile for every player being

very close to zero. These conclusions are valid practically

irrespective of b for the two considered values of v, but the

average level of cooperation is in fact very much different. While

individually optimal past strategies in the particle swarm

optimization algorithm yield a slow but stable and very effective

response even to severe defector attacks, population-wide (or

swarm-wide) pursuit for extraordinary benefits proves insufficiently

effective to sustain cooperative behavior at high b values. The

latter approach, however, may be superior at low temptations to

defect, where local considerations are not so vital, and where the

pursuit of individual benefits can be successful even if driven by

globally-inspired fast and bold actions.

Figure 3. Characteristic spatial distributions of strategies, as obtained for different combinations of b and v. As concluded from results
depicted in Fig. 2, for low values of v only the two ‘‘extreme’’ strategies (with rare exceptions) are adopted, while for high values of v the whole array
of available strategies comes into play. Moreover, it is interesting to observe that values of v?0 yield the well-known clustering of cooperators [34]
on the square lattice, while the snapshots for v~0:99 seem to have these feature somewhat less pronounced, although still clearly inferable (note
that the distinction of clusters is somewhat difficult due to the continuous array of possible strategies). This suggests that, besides the clustering of
cooperators, additional mechanisms may underlie the survival of cooperators at high temptations to defect and v?1 within the present setup. The
color encoding, as depicted right, indicates the values of W for each individual player.
doi:10.1371/journal.pone.0021787.g003
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Discussion

In sum, we have studied the impact of particle swarm

optimization on the evolution of cooperation in the stochastic

strategy spatial prisoner’s dilemma game. The strategy updating was

guided by the particle swarm optimization algorithm, using as input

the individual memory of every player (i.e., keeping score of the

most profitable individual strategy in the past) as well as the

knowledge gained by the swarm (i.e., the nearest neighbors) as a

whole. By means of extensive simulations, we found that

cooperative behavior can prevail in large regions of the parameter

space defining the stochastic strategy prisoner’s dilemma game, thus

effectively leading to the resolution of the dilemma in favor of pro-

social behavior. In particular, we have demonstrated that imitating

the most profitable strategy in the swarm may lead to full

dominance of cooperation at moderate temptations to defect, while

imitating the best individual actions in the past may lead to the

survival of cooperative behavior even if the environment is strongly

prone to defection. We have also investigated the actual strategy

configurations in the population as well as pertaining spatial

distributions of strategies and velocities, for which we have found to

be closely tied to the setup of the particle swarm optimization

algorithm, and in fact instrumental for the understanding of the

observed promotion of the evolution of cooperation. We hope that

our work will offer new ways of ensuring cooperation in situations

constituting a social dilemma, and that it will be an inspiration for

future research when considering the very interesting combination

of intelligent algorithms and evolutionary games.

Methods

We consider an evolutionary stochastic strategy prisoner’s

dilemma game on a square lattice, consisting of 100|100 players

with nearest-neighbor interactions and periodic boundary condi-

tions. Initially the strategies of all players are drawn randomly

from uniformly distributed values of W in the ½0,1� interval,

whereby W determines the cooperativeness of each individual (or

the willingness to cooperate). While W~1 returns full cooperation

and W~0 returns full defection, between 0vWv1 there exists a

continuous set of strategies that can be considered either as being

predominantly cooperative (if Ww0:5) or predominantly defective

(if Wv0:5), hence constituting a stochastic strategy version of the

prisoner’s dilemma game.

Players interact pairwise with all their nearest neighbors,

thereby receiving payoffs that can be summarized succinctly by

the rescaled payoff matrix

Figure 4. Characteristic spatial distributions of velocities, as obtained for different combinations of b and v. Top row depicts results for
v~0:01, while bottom row features results for v~0:99. Irrespective of b, it can be observed that for v~0:99 the whole population essentially
becomes a swarm in that the velocities of all players are much the same and close to zero. The fact that the prevailing velocity is close to zero simply
reflects that the stationary state has been reached by means of adaptive, locally-inspired and slow strategy changes (which are, however, very
effective even if the temptations to defect are strong). For v~0:01, however, only isolated clusters can be considered to act as swarms, while the
majority of players cannot be associated with any kind of group dynamics and is simply caught in the futile pursuit for the highest, yet for the
majority unattainable, payoffs. These results indicate that swarming is an important agonist that promotes cooperation at high temptations to defect
(see results presented in Fig. 1). The color encoding, as depicted right, indicates the values of Vi,n for each individual player, where n was chosen
sufficiently large such that the stationary state of the game has been reached. Importantly, we note that for v~0:01 the stationary state has in fact
been reached, although at a given instance in time the average velocity in the population might be different from zero.
doi:10.1371/journal.pone.0021787.g004
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W (i) �W (j) 0

b �W (j) � (1{W (i)) 0

 !

where W (i) and W (j) define the level of cooperativeness of players

i and j, respectively. This setup entails b as the only free parameter

determining the temptation to defect, but it is well-known that the

essence of the prisoner’s dilemma game is thereby left intact [34].

The stochastic strategy prisoner’s dilemma game is iterated

forward in time using a synchronous Monte Carlo updating

scheme. First, each player accumulates its payoff by playing the

game with all four of its nearest neighbors. Subsequently, players

have to decide what strategy they will adopt in the next round (i.e.,

what will their new W (i) be), which we here determine by means

of the particle swarm optimization algorithm. Its implementation

is simple and intuitive, as follows. Initially, at time step n~0, all

players are assigned the same velocity Vi,n~0. For each following

n, the velocity vector Vi,n of every player i is updated according to

Vi,nz1~Vi,nzv½W (i,h){W (i,n)�z(1{v)½W ( ? ,n){W (i,n)�, ð1Þ

and the strategy follows directly as

W (i,nz1)~W (i,n)zVi,nz1, ð2Þ

where in Eq. (1) W (i,h) is the most profitable strategy of player i in

all its past actions, whereas W ( ? ,n) is the best performing strategy

in the swarm (here considered to be composed of the four nearest

neighbors). The parameter v[½0,1� determines the tendency of

every player to either adopt the most profitable strategy in its past

actions or the current strategy of the most successful player within

the swarm. In particular, v~1 implies that the player will

definitely imitate its past best action, i.e., the strategy that in the

past yielded the highest payoff. On the other hand, v~0 implies

that the player will copy the strategy of the currently best

performing player in its neighborhood. Intermediate values of v
interpolate linearly between these two extremes. Besides the

temptation to defect b, v is here considered as the second crucial

system parameter.
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23. Szabó G, Szolnoki A, Vukov J (2009) Selection of dynamical rules in spatial
prisoner’s dilemma games. EPL 87: 18007.
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