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Abstract

Background: Anaplasma phagocytophilum is a causative agent of granulocytic anaplasmosis in mammals, which
has a broad geographical distribution and a high degree of clinical diversity. Currently, numerous PCR assays have
been developed and used for the detection of A. phagocytophilum in various specimens. However, their performance
varies. The aim of this study was to evaluate the performance of five nested PCR assays by detection of 363 ruminant
and tick samples, and to select the most appropriate methods for the sensitive detection of A. phagocytophilum
in environmental or clinical samples.

Results: Positive PCR results for A. phagocytophilum were obtained in 75 (20.7 %), 42 (11.6 %) and 19 (5.2 %)
specimens with primer sets EC (EC9/EC12a and SSAP2f/SSAP2r), EE (EE1/EE2 and EE3/EE4) and ge (ge3a/ge10r,
ge9f/ge2), respectively. The amplification of template DNA with the primer set MSP (MAP4AP5/MSP4AP3, msp4f/msp4r)
could not be obtained in both ruminants and ticks, and a low specificity of the EL primers [EL(569)F/EL(1193)R, EL(569)F/
EL(1142)R] in tick samples was observed. Our results revealed that the nested PCR with primer set EC complementary to
the 16S rRNA gene was the most sensitive assay for detection of A. phagocytophilum in ruminant and tick specimens.
A. phagocytophilum was detected in 47 (35.1 %) sheep, 12 (10.4 %) cattle, and 17 (14.9 %) ticks. Two A. phagocytophilum
genotypes were identified, that varied between sheep and cattle in sample collection sites.

Conclusions: This report provides more valuable information for the diagnosis and management of granulocytic
anaplasmosis in China.
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Background
HGA (Human granulocytic anaplasmosis) is an emerging
tick-borne zoonosis caused by the obligate intracellular
bacterium Anaplasma phagocytophilum (formerly known
as Ehrlichia phagocytophila, Ehrlichia equi or the HGE
agent) [1, 2]. The organism is commonly maintained in
nature through an enzootic cycle involving ticks and
vertebrate hosts [3, 4]. Several Ixodes ticks are known or
suspected vectors of A. phagocytophilum, including Ixodes
scapularis and Ixodes pacificus in North America, Ixodes

ricinus in Europe, and Ixodes persulcatus in Russia and
Asian [3, 5–8]. A. phagocytophilum infects a variety of
hosts and causes granulocytic anaplasmosis in humans
but also in wild and domestic animals [9, 10]. Since the
first suspected human case was reported in Anhui
province in 2006, more than 90 cases of HGA have
been recorded in Beijing, Tianjin, Shandong, Henan,
Hubei and Inner Mongolia in China [11, 12]. The actual
number of human cases may be much higher due to
the poor diagnostic tools, non-specificity of the re-
ported symptoms and lack of awareness of public
health professionals [13].
Rapid and sensitive detection of A. phagocytophilum is

an essential step for the control and prevention of HGA
in endemic areas. A. phagocytophilum was initially
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identified as a human agent using molecular methods ra-
ther than culture or serological tests [1, 14]. Since then,
PCR assays have played an important role in the labora-
tory diagnosis of HGA in clinical and environmental
specimens for their rapidity and relative ease of per-
formance. However, their performance varies signifi-
cantly [15, 16]. Most studies have always focused on
the analytical sensitivity or specificity of those PCR as-
says, and the ability to detect small amounts of nucleic
acid and specific nucleic acid fragments, to enable dis-
tinction of closely related strains [15, 16]. However,
considerable variation within A. phagocytophilum strains
has been described, and isolates from various hosts or geo-
graphic locations have displayed genetic diversity and
divergence within frequently used PCR-target genes, such
as groESL, ankA and msp4 [17–19]. Some assays could not
detect all the variants or ecotypes of A. phagocitophilum.
Thus, it is critical to evaluate the performance of pro-
spective assays in certain species and in a given geo-
graphic area in order to obtain more reliable results.
The objective of this study was to evaluate five nested
PCRs for detection of A. phagocytophilum in ruminants
and tick specimens from northwest China.

Methods
EDTA–K2+ anticoagulated blood samples were taken
from the jugular vein of 249 asymptomatic domestic

ruminants (134 sheep and 115 cattle) and collected in a
sterile tube in May 2015 from Ili Kazakh Autonomous
Prefecture, in northern Xinjiang, China. One hundred
and fourteen ticks were collected from sheep, cattle and
other livestock within same herds. Five species of ticks
were identified in accordance with the standard taxo-
nomic keys [20]. Seventy-two ticks collected from cattle
were identified as Dermacentor marginatus; 35 ticks col-
lected from sheep were identified as Haemaphysalis
punctata (n = 28), Haemaphysalis concinna (n = 3) and
Hyalomma asiaticum (n = 4); and seven ticks collected
from horses were identified as Hyalomma detritum. The
samples collection in the present study was consented
by animals owners. All animal treatments and handling
complied with Ethical Guidelines and were approved by
the Animal Ethics Committee of Lanzhou Veterinary
Research Institute, Chinese Academy of Agricultural
Sciences.
DNA was extracted from blood and tick samples using

a Gentra Puregene DNA Purification kit (Qiagen) as de-
scribed previously [9]. All DNA samples were examined
for the presence of A. phagocytophilum by nested PCRs.
The PCR primers are listed in Table 1. The reaction was
performed in an automatic thermocycler (Bio-Rad,
Hercules, CA, USA) in a total volume of 25 μL con-
taining 2.5 μL of 10× PCR buffer (Mg2+ Plus), 2.0 μL of
each dNTP at 2.5 mM, 1.25 U of Taq DNA polymerase

Table 1 Oligonucleotide primers used for detection of A. phagocutophilum

Target gene Primer name Primer Sequence (5’-3’) Annealing temp (°C) Amplicon size (bp) Reference

16S rRNA ge3a CACATGCAAGTCGAACGGATTATTC 55 932 [25]

ge10r TTCCGTTAAGAAGGATCTAATCTCC

ge9f AACGGATTATTCTTTATAGCTTGCT 55 546

ge2 GGCAGTATTAAAAGCAGCTCCAGG

Msp4 MAP4AP5 ATGAATTACAGAGAATTGCTTGTAGG 54 849 [24, 27]

MSP4AP3 TTAATTGAAAGCAAATCTTGCTCCTATG

msp4f CTATTGGYGGNGCYAGAGT 55 381

msp4r GTTCATCGAAAATTCCGTGGTA

16S rRNA EE-1 TCCTGGCTCAGAACGAACGCTGGCGGC 50 1433 [23]

EE-2 AGTCACTGACCCAACCTTAAATGGCTG

EE-3 GTCGAACGGATTATTCTTTATAGCTTGC 50 926

EE-4 CCCTTCCGTTAAGAAGGATCTAATCTCC

groEL EL(569)F ATGGTATGCAGTTTGATCGC 62 624 [26, 34]

EL(1193)R TCTACTCTGTCTTTGCGTTC

EL(569)F ATGGTATGCAGTTTGATCGC 56 573

EL(1142)R TTGAGTACAGCAACACCACCGGAA

16S rRNA EC9 TACCTTGTTACGACTT 55 1462 [35]

EC12a TGATCCTGGCTCAGAACGAACG

SSAP2f GCTGAATGTGGGGATAATTTAT 55 641

SSAP2r ATGGCTGCTTCCTTTCGGTTA
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(TaKaRa, Dalian, China), 2.0 μL of template DNA, 1.0 μL
of each primer (20 pmol) and 16.25 μL of distilled water.
DNA from sheep infected with A. phagocytophilum vali-
dated by sequencing (Gene accession no. JN558811) was
used as a positive control, and sterile water was used as
the blank control for each run. The cycling conditions for
the first and second round amplification involved 4 min of
denaturation at 94 °C, 35 cycles at 94 °C for 30 s, an-
nealing for 30 s at a temperature dependent on the
primers applied (annealing temperatures shown in
Table 1), and 72 °C for 1 to 1.5 min (dependent on the
length of target fragments), with a final extension step
at 72 °C for 10 min. The PCR products were visualized
by UV transillumination in a 1.5 % agarose gel following
electrophoresis and staining with ethidium bromide.
A. phagocytophilum positive samples were selected

randomly and verified by sequencing. The PCR products
were cloned into the pGEM-T Easy vector (Promega,
Shanghai, China) and subjected to bidirectional sequen-
cing (Sangon Biotech, Shanghai, China). The sequences
obtained were compared with reference sequences from
GenBank (see Additional file 1). A phylogenetic tree was
then constructed using the neighbor-joining (NJ) algorithm
with the Kimura two-parameter model of the Mega 4.0
Software [21]. The GenBank accession numbers for the
partial 16S rRNA gene sequences obtained in this study
were as follows: KT944028-KT944029 and KT951192.
The results were analyzed using a Chi-square test in

Predictive for Analytics Software (PASW) Statistics
version 18. A difference was considered statistically
significant at P < 0.05.

Results
Of the total 363 ruminant and tick specimens that were in-
cluded in our evaluation of the five nested PCR assays,
positive PCR results for A. phagocytophilum were obtained
in 75 (20.7 %), 42 (11.6 %) and 19 (5.2 %) specimens with
primer sets EC (EC9/EC12a and SSAP2f/SSAP2r), EE
(EE1/EE2 and EE3/EE4) and ge (ge3a/ge10r, ge9f/ge2),
respectively (Table 2). DNA of A. phagocytophilum was

found in only two cattle specimens using primer set EL
[EL(569)F/EL(1193)R, EL(569)F/EL(1142)R]. However, un-
specific products were obtained in tick specimens with EL
primers as a result of two bands between 250 and 500 bp
(data not shown). Under the PCR conditions outlined,
amplification of the template DNA with the primer set
MSP (MAP4AP5/MSP4AP3, msp4f/msp4r) could not be
obtained (Table 2). Apart from the primer sets EL and
MSP, the assays showed that the positive rates of A. phago-
cytophilum infection in ruminant and tick specimens
ranged from 5.6 to 20.7 %. The highest positive rate
(20.7 %, 75/363) was observed using the EC primer set
(Table 2). The PCR with EC primer set was more sensitive
than the ones with EE and ge primer sets (Chi2 = 39.944,
df = 2, P < 0.001); and the PCR with EE primer set was
more sensitive than that with ge primer set (Chi2 = 9.468,
df = 1, P < 0.01). Moreover, an additional tick sample
(2–21) was negative with EC primers but positive with
EE, which gave an overall positivity rate of 20.9 % in
our sample population. As shown in Table 2, the infec-
tion rates of A. phagocytophilum were 35.1 %, 10.4 %
and 14.9 % in sheep, cattle and ticks, respectively. Of
those tick samples, A. phagocytophilum was detected in
D. marginatus collected from cattle and H. punctata
collected from sheep.
The specificity of the assay was controlled by sequen-

cing. Considering the highest sensitivity of the assay with
EC primers in this study, 20 samples (four from cattle,
seven from sheep, five from D. marginatus and four
from H. punctata) positive for EC primers and the tick
sample (D. marginatus, sample ID: 2–21, negative for EC
but positive for EE) were selected for sequencing. Sequence
analyzed by a BLASTn search in GenBank confirmed the
presence of A. phagocytophilum in those samples. Four se-
quences (GenBank accession no. KT944028) identified in
cattle showed 99.7 % identity to the isolate KS20 (GenBank
accession no. KJ782390) from cattle in Kashgar, Xinjiang
province. The remaining 16 sequences (GenBank accession
no. KT944029) identified in sheep and ticks were identical
to each other and showed 99.2 % identity to strain YC38

Table 2 A. phagocytophilum in ruminants and ticks detected by nested PCRs

Host
(No. tested)

No. (%) positive with:

EC9/EC12a
SSAP2f/SSAP2r

EE1/EE2
EE3/EE4

ge3a/ge10r
ge9f/ge2

EL(569)F/EL(1193)R
EL(569)F/EL(1142)R

MAP4AP5/MSP4AP3
msp4f/msp4r

At least
one primer

Sheep
(n = 134)

47 (35.1) 31 (23.1) 9 (6.7) 0 (0) 0 (0) 47 (35.1)

Cattle
(n = 115)

12 (10.4) 6 (5.2) 3 (2.6) 2 (1.7) 0 (0) 12 (10.4)

Tick
(n = 114)

16 (14) 5 (4.4) 7 (6.1) NAa 0 (0) 17 (14.9)

Total
(n = 363)

75 (20.7) 42 (11.6) 19 (5.2) NAa 0 (0) 76 (20.9)

a: not applied
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(GenBank accession no. KJ782381) from sheep in Yecheng,
Xinjiang province. Moreover, one sequence (GenBank
accession no. KT951192) identified in D. marginatus tick
(2–21) had 98.9 % identity to the BL102-7 strain (GenBank
accession no. KJ410249) derived from Hyalomma asiati-
cum in Xinjiang. Phylogenetic analyses revealed that the A.
phagocytophilum isolates identified in this study are placed
on two separate clades (Fig. 1).

Discussion
A. phagocytophilum is an emerging tick-borne zoonotic
agents of public health significance [1]. The disease pre-
sents as a clinical syndrome, ranging from asymptomatic
to fatal disease [22]. Nonspecific symptoms and signs
are manifested in the disease state, and most commonly
manifested by fever, chills, headache, and myalgias,
which are difficult to differentiate from those of other
febrile illness [15, 22]. PCR-based methods are powerful
tools and play an important role in the confirmation of
A. phagocytophilum infection in clinical and environ-
mental specimens. Since the first identification of the
HGA agent in 1994, numerous PCR amplification assays
and primer sets have been described for detection of A.
phagocytophilum [1, 23–27]. However, their performance
varies [16, 28]. Thus, a choice of PCR methods with
appropriate primers that target different DNA segments
of A. phagocytophilum is crucial for obtaining the best
possible results, and this affects the sensitivity and speci-
ficity of the diagnostic assays significantly.
A. phagocytophilum infection has been reported in

humans, wild and domestic animals in China, and the
infection rates were variable in different hosts or geo-
graphic locations [9, 12, 29, 30]. In this study, the

positive rate was significantly higher in sheep than in
cattle (Chi2 = 20.781, df = 1, P < 0.001), similar result has
been described in previous report [29]. Of those tick
samples, A. phagocytophilum infection was found in D.
marginatus and H. punctata ticks. However, we could
not conclude that the role of D. marginatus and H.
punctata as reservoirs or vectors of A. phagocytophilum
because of the agent detected in this study could be
from the hosts, which warrants further investigation.
In the present study, five primer sets, designed to

amplify 16S rRNA, the heat shock gene operon groESL
and major surface protein gene msp4, were used to
evaluate the applicability of nested PCR for detection of
A. phagocytophilum DNA in ruminant and tick speci-
mens. Considerable differences were observed in the
performance of these five assays. The results indicated
that the nested PCR with EC primer set targeting the
16S rRNA gene is the most sensitive method (Chi2 =
39.944, df = 2, P < 0.001). The assay with MSP primer set
appeared less useful for detection of A. phagocytophilum
in ruminants and ticks, and the EL primer set was less
effective for detection of tick specimens. The primer
sets EE was more sensitive than ge, MSP and EL, but
significantly less useful than EC (Chi2 = 11.096, df = 1,
P < 0.01). However, a previous evaluation of several dif-
ferent published methods for PCR amplification of spe-
cific DNA in A. phagocytophilum-infected HL-60 cells
showed that the ge primer set provided the highest
analytical sensitive and specificity, which could detect
the equivalent of 0.25 infected cells [16]. Beyond the
optimization of the nucleic acid amplification condi-
tions, the PCR amplification efficiency could be influ-
enced by the concentration of DNA templates in this

Fig. 1 Phylogenetic analysis of A. phagocytophilum (A. phago) based on 16S rRNA gene partial sequences (599 bp). Rickettsia rickettsii is used as
an outgroup
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comparative analysis study. Although one tick sample
(2–21) was negative for EC but positive for EE, the
assay with the EC primer set showed high sensitivity in
ruminants and ticks. Sequence analysis of EC–positive
samples verified the specificity of the assay. Based on
the comparative analysis of those five assays, the nested
PCR with EC primer set would provide more reliable
results for A. phagocytophilum detection in ruminant
and tick specimens.
Phylogenetic analysis of the obtained A. phagocytophilum

16S rRNA gene sequences in this study showed that they
were variable from the sequence from the positive control
(Gene accession no. JN558811), excluded possible con-
tamination and indicated the complexity of the geno-
type of the A. phagocytophilum in the field (Fig. 1). The
A. phagocytophilum strain one (GenBank accession no.
KT944028) identified in cattle was most closely related
to the isolate detected in cattle from Kashgar (GenBank
accession no. KJ782390) (Fig. 1). The strain two (GenBank
accession no. KT944029) identified in sheep and ticks
were most closely related to the isolate detected in sheep
from Yecheng (GenBank accession no. KJ782381) (Fig. 1).
These results suggested that A. phagocytophilum geno-
types are vary between sheep and cattle in sample col-
lection sites.
The results of the present study support the use of

nested PCR with primer set EC (EC9/EC12a and SSAP2f/
SSAP2r) targeting the 16S rRNA gene, which was the most
sensitive assay for the detection of A. phagocytophilum
DNA in ruminants and ticks in the region investigated in
China. Although this assay was more sensitive than others,
it could also miss positive samples for unknown reasons.
Given that no test is actually 100 % sensitive or specific, an
important consideration is that two or more assays should
always be used in parallel to achieve maximum sensitivity
for the molecular detection of A. phagocytophilim.
There are numerous factors involved in the optimization

of PCR assays, and the potential discrepancies make it
difficult to ensure the performance of a given assay in dif-
ferent laboratories. A. phagocytophilum displayed a high
degree of genetic diversity, host tropisms and variation in
pathogenicity [31]. Considerable strain variation of A.
phagocytophilum has been reported in different hosts or
geographic locations, and the organism can be genetically
divided into several subclusters using groESL, ankA and
msp4 [17–19]. Recently, four distinct ecological clusters
correlate with host species have been established based on
ankA gene [32], four geographically dispersed ecotypes
were identified based on groESL gene and showed signifi-
cantly different host ranges in Europe [33]. Thus, each la-
boratory should determine the efficacy of those assays
under local conditions, and the choice of appropriate as-
says could yield accurate results for the detection of A.
phagocytophilum in ticks and animals.

Conclusions
The performance of five nested PCR assays was accessed
by parallel detection of field-collected samples. The nested
PCR with primer set EC (EC9/EC12a and SSAP2f/SSAP2r)
targeting the 16S rRNA gene was the most sensitive assay
for the detection of A. phagocytophilum DNA in ruminants
and ticks. A. phagocytophilum was detected in 47 (35.1 %)
sheep, 12 (10.4 %) cattle, and 17 (14.9 %) ticks collected
from Ili Kazakh Autonomous Prefecture in northern
Xinjiang, and two A. phagocytophilum genotypes were
identified. These findings not only provide valuable
information for the control of A. phagocytophilum in-
fection, but also indicate potential implications for
public health.
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