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Abstract

The establishment of precise neuronal connectivity during development is critical for sens-

ing the external environment and informing appropriate behavioral responses. In the visual

system, many connections are organized topographically, which preserves the spatial order

of the visual scene. The superior colliculus (SC) is a midbrain nucleus that integrates visual

inputs from the retina and primary visual cortex (V1) to regulate goal-directed eye move-

ments. In the SC, topographically organized inputs from the retina and V1 must be aligned

to facilitate integration. Previously, we showed that retinal input instructs the alignment of V1

inputs in the SC in a manner dependent on spontaneous neuronal activity; however, the

mechanism of activity-dependent instruction remains unclear. To begin to address this gap,

we developed two novel computational models of visual map alignment in the SC that incor-

porate distinct activity-dependent components. First, a Correlational Model assumes that

V1 inputs achieve alignment with established retinal inputs through simple correlative firing

mechanisms. A second Integrational Model assumes that V1 inputs contribute to the firing

of SC neurons during alignment. Both models accurately replicate in vivo findings in wild

type, transgenic and combination mutant mouse models, suggesting either activity-depen-

dent mechanism is plausible. In silico experiments reveal distinct behaviors in response to

weakening retinal drive, providing insight into the nature of the system governing map align-

ment depending on the activity-dependent strategy utilized. Overall, we describe novel

computational frameworks of visual map alignment that accurately model many aspects of

the in vivo process and propose experiments to test them.

Author Summary

In order to process sensory stimuli, precise connections must be established between sen-

sory neurons during development. In the visual system, many connections are organized

topographically, such that neighboring neurons monitor adjacent regions of space. In the

superior colliculus (SC), converging topographic inputs must be aligned with one another

to facilitate integration and preserve the spatial order of the visual scene. In this paper, we
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propose two novel computational models to describe the alignment of visual inputs in the

SC. We demonstrate that both models are able to replicate experimental data obtained

from wild type and mutant animals. Interestingly, each model performed differently in

response to hypothetical experiments, suggesting they could be differentiated empirically.

Thus, we put forth testable models of visual map alignment in the SC and propose experi-

ments to determine which may be used during development.

Introduction

Processing sensory information is a critical task of the central nervous system, requiring the

establishment of precisely ordered synaptic connectivity during development. In the visual sys-

tem, image-forming regions are organized into topographics maps, such that neighboring neu-

rons monitor adjacent regions of visual space [1, 2]. The development of topographic

connections in the visual system has been the focus of intense study, both experimentally and

theoretically, elucidating general principles underlying neural circuit wiring [3, 4]. However,

these studies have focused primarily on the mechanisms by which topographic connectivity is

established for a single projection. In regions that integrate visual information, multiple con-

verging inputs must establish topography and be aligned with one another to facilitate integra-

tion [5]. Yet, little is known about the mechanisms by which topographic maps of space are

aligned in these regions, in part due to a lack of computational frameworks that model this

process.

The superior colliculus (SC) is a critical multisensory integration center that receives visual,

somatosensory, and auditory inputs that inform goal-directed head and eye movements [6–8].

The SC receives visual inputs from retinal ganglion cells (RGCs) and Layer 5 pyramidal neu-

rons in the primary visual cortex (V1) [9]. Each of these inputs projects to distinct, but overlap-

ping, sublaminae of the superficial SC, where they are organized topographically and in

alignment with one another [10]. The mapping of retinocollicular projections occurs during

the first postnatal week in mice, and a combination of molecular cues [11–17], correlated neu-

ronal activity [18–20] and competition [21, 22] have been demonstrated to regulate the estab-

lishment of precise retinocollicular topography.

The mechanisms by which V1 inputs establish topography and alignment with retinal

inputs are less clear. Mapping of V1 corticocollicular inputs occurs during the second postna-

tal week in mice, after retinocollicular topography has been established. Previously, we demon-

strated that retinal input instructs the alignment of V1 axons in a manner dependent on the

normal pattern of spontaneous activity [23]. Subsequent studies confirmed that correlated

spontaneous activity originating in the retina propagates throughout V1 and the SC in vivo
[24], supporting its possible role as the instructive cue for alignment. Further, the timing of

spiking acitivty in V1 and the SC is consistent with activity-dependent visual map alignment

[25]. However, the underlying mechanisms of activity-dependent alignment remain unclear.

Theoretical modeling of neural circuit development is a powerful tool to both better

describe complicated processes and generate novel hypotheses regarding circuit wiring [26].

Indeed, several mathematical models have been developed to describe topographic mapping of

retinocollicular projections [27–32]. However, each of the current models has weaknesses and

cannot replicate the full complement of empirical data obtained from in vivo studies of mutant

mice [4]. Further, no theoretical models of visual map alignment have been developed, hinder-

ing our ability to probe potential mechanisms of this critical developmental event.

Models of Visual Topographic Map Alignment in the SC
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Here, we describe two novel models of visual map alignment in the SC, each of which uti-

lizes a different activity-dependent mechanism for visual map alignment, providing an in silico
platform to investigate strategies used in vivo. First, a Correlational Model assumes that SC

neuron firing is driven only by RGC inputs. In this case, alignment of V1 inputs is guided by

simple correlation between V1 axon activity and RGC-driven SC activity. Second, an Integra-

tional Model assumes that V1 inputs can drive firing of SC neurons in addition to RGCs.

Under these conditions, alignment is driven by weighted integrated activity of both RGCs and

V1 inputs. Importantly, both models replicated with high fidelity visual map alignment as

observed in wild type (WT) conditions, as well as that observed in transgenic and knockout

mouse models. Interestingly, the models could be differentiated in silico, as they predicted dif-

ferent behaviors when the retinal drive component was weakened under transgenic model

conditions. Based on these findings, we conclude that either correlational or integrational

mechanisms may be utilized to achieve visual map alignment, suggest in vivo experiments that

may be able to distinguish between the two, and speculate on the potential biological advan-

tages of each.

Results

Models of visual map alignment in the SC

In the present study we develop two novel models of visual map alignment in the SC, specifi-

cally focusing on the projection from V1 to the SC, which develops during the second postna-

tal week in mice [23]. We assume that retinocollicular and retino-geniculo-cortical

connections have been established during the first postnatal week [33–35], i.e. topography has

been established by RGCs in the SC, and V1 neurons are projecting axons from a topographi-

cally ordered region (Fig 1). Without a loss of generality, we utilize a common coordinate sys-

tem based on retinal space to describe the topographic organization in the SC and V1, which

allows us to avoid ambiguity when map alignment is not one-to-one, for example in cases of

mutant mice. That is, any location in the SC or V1 is a vector~r in two-dimensional O-space,

normalized to unit size, associated with the corresponding retinal location (see Fig 1). More

specifically, two two-dimensional maps F : ~rR ! ~rSC and C : ~rR ! ~rV1, are representations

of retinal inputs from location~rR into the SC (~rSC) and into V1 (~rV1), correspondingly. In

order to make direct comparisons to in vivo anatomical data, retinal space is projected onto

the appropriate axes in both the SC and V1. Specifically, the nasal-temporal (N-T) axis of the

SC projects along the posterior-anterior (P-A) axis of the SC and is represented along the

medial-lateral (M-L) axis of V1, whereas the dorsal-ventral (D-V) axis of the retina projects

along the L-M axis of the SC and is represented along the A-P axis of V1. It is important to

note that O-space is designed for WT mice, and all projection distortions caused by genetic

manipulation are part of the models. In simulations, we study O-space in a regular grid where

the retina, SC and V1 are represented as two-dimensional layers of 100x100 neurons.

The models present new corticocollicular inputs in SC as a number of connections/synap-

ses (n) between axons originating from a given cortical location~rl 2 O; C
� 1

: ~rV1 ! ~r l and

dendrites of SC neurons located in~rs 2 O; F� 1 : ~rSC ! ~rs. This number is a vector function

nð~rs; ~rlÞ, which is simulated as a four-dimensional array.

To model the development of corticocollicular connections, we extended a stochastical

model [22] that was developed to model the establishment of retinocollicular topography and

showed best qualitative assessment against experimental data [4]. As in the original approach,

the model minimizes total energy E in the V1-SC system, which is a function of connectivity.

For both models we consider total energy as a sum of chemoaffinity energy (Ea), axonal

Models of Visual Topographic Map Alignment in the SC
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competition energy (Ec) and activity-dependent energy (Eu):

E ¼ Ea þ Ec þ Eu ð1Þ

The minimum of total energy E represents the most stable configuration of corticocollicular

connections. We used a modified simulated annealing algorithm, described in [22], to find the

minimum of total energy (see Methods section).

Both models share the same representations for the chemoaffinity and competition ener-

gies, as described in [22, 36] with minor modifications, but differ in the representation of activ-

ity-dependent energy. However, it is important to note that in both cases, the activity-

dependent energy function in our model is different from those used for modeling retinocolli-

cular development. Two descriptions for activity-dependent energy reflect different assump-

tions in model definitions. The first model is based on the assumption that new synapses of V1

axons onto SC neurons are significantly weaker than established synapses with RGCs; there-

fore this model considers only correlation between activity of SC neurons driven by retinal

inputs and V1 neurons. We refer to this model as the “Correlational” model. In the second

model, we assume that SC neurons integrate activity of both RGC and V1 inputs and that the

effect of V1 inputs is not negligible, which we refer to as the “Integrational” model. All com-

ponents for each model are described below.

Chemoaffinity energy. We adopted the description of chemoaffinity energy from a

model of the development of retinocollicular projections [36]. The relative expression patterns

of EphA|EphB and ephrin − A|ephrin − B molecules in orthogonal gradients is similar in V1 as

Fig 1. General schematic of topographic maps and coordinate system. Topographic order is established

by retinal inputs to the superior colliculus (SC) and the lateral geniculate nucleus (LGN), as well as by LGN

projections to visual cortex (V1), at the beggining of the second postnatal week (thick solid arrows). The nasal-

temporal (N-T) axis of the retina is mapped along the posterior-anterior (P-A) axis of the SC and medial-lateral

(M-L) axis of V1. And, the dorsal-ventral (D-V) axis of the retina is mapped along the lateral-medial (L-M) axis

of the SC and anterior-posterior (A-P) axis of V1. New corticocollicular projections (dashed thin arrow) are

established during the second postnatal week. These inputs are modeled as a number of connections

(nð~r s; ~r lÞ) between axons originating from neurons located at~r l coordinate in V1 and dendrites of neurons at~r s
coordinate in SC. Any location in the SC and V1 are described as vectors (~r s and~r l, correspondingly) in the

same two-dimensional retinalΩ-space.Ω-space is constructed upon mapping in wild type mice and is

normalized to unit size along both the N-T and D-V axes of the retina.

doi:10.1371/journal.pcbi.1005315.g001

Models of Visual Topographic Map Alignment in the SC
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in the retina [9]; therefore the same motivation for formulation of chemoaffinity energy as in

[36] can be applied.

Ea ¼
X

~r s2O

X

~r l2O

nð~rs;~r lÞ aae
rxs� 1e� rxl � bae

rys� 1eryl � 1ð Þ ð2Þ

where rxs and rys are N-T and D-V components of vector~rs; similarly rxl and ryl are compo-

nents of~rl; αa and βa are model parameters. The examples for the distribution of chemoaffinity

energy in SC for neurons located in 9 different positions in V1 are shown in S1 Fig.

Competition energy. We assume that cortical axons have the same mechanism to com-

pete for space in the target as the axons from RGCs; therefore, the same motivation for compe-

tition energy as in [22] can be applied. Here we use the same formal description as in [22]:

Ec ¼
X

~r l2O

bcn
2

Að~r lÞ � ac

ffiffiffiffiffiffiffiffiffiffiffiffi
nAð~rlÞ

ph i
þ
X

~r s2O

gcn
2

Dð~rsÞ ð3Þ

where αc, βc and γc, are model parameters; nAð~rlÞ is number of axonal connection which origi-

nate from V1 neurons located at~rl, and nDð~rsÞ is number of dendritic connections which a SC

neuron receives at location~rs (see Fig 1).

Activity-dependent energy for correlational model. In the Correlational model, we

assume that activity-dependent energy follows from standard Hebbian rules [37]; therefore,

energy Eu decreases with increasing numbers of connections between neurons with correlated

activity. This model assumes that SC neurons are solely driven by strong retinal inputs, ignor-

ing an role of V1 input on SC neuron firing. For simulations in WT animals, we assume that

retinal waves propagate through both established pathways and therefore correlation in activ-

ity between V1 axons and SC neurons can be estimated as an exponential function from dis-

tance in O-space:

Eu ¼ � gu

X

~r s2O

X

~r l2O

nð~rs;~rlÞe
�
j~r s � ~r l j

bu ð4Þ

where j~rs � ~r lj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrxs � rxlÞ
2
þ ðrys � rylÞ

2
q

is standard Euclidean distance, γu and βu are

model parameters. Parameter βu describes a decrease in correlation of neural activity between

neurons with an increase in the distance between neurons. This parameter was fitted to experi-

mental data [18], as previously described [36].

In cases of simulations in mutant mice, adjustments were made to the Activity-Dependent

Energy function to mimic in vivo alterations in activity. Specifically, we did simulations in

the previously described Islet2-EphA3 knock-in mice (Isl2EphA3/EphA3) [21] and combination

mutiants with mice lacking the β2 subunit of the nicotinic acetylcholine receptor

Isl2EpA3/EphA3 / β2−/− In Isl2EphA3/EphA3 mice, exogenous expression of EphA3 receptor tyro-

sine kinase in Isl2+ RGCs results in a duplication of the retina’s projection along the A-P axis

of the SC [21]. Alterations in the Activity-Dependent Energy function were needed to

account for the reported inequality of signal amplitude between the two functional maps in

the SC of Isl2EphA3/EphA3 mice, as assessed by intrinsic signal optical imaging [23]. In β2−/−

mice, the normal pattern of spontaneous waves of retinal activity are disrupted [18, 38, 39].

As a result, development of topography is altered in V1 and the SC, with asymmetric effects

along the azimuth axis [20, 40]. Thus, alterations in the Activity-Dependent Energy function

Models of Visual Topographic Map Alignment in the SC
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were needed to account for these differences:

Eu ¼ � gu

X

~r s2O

X

~r l2O

nð~rs;~r lÞ aue
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxs � rxl=2

kubu

� �2

þ
rys � ryl

bu

� �2

r

þ e
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxs � rxl=2� 1=2

kubu

� �2

þ
rys � ryl

bu

� �2

r2

6
4

3

7
5 ð5Þ

where parameter αu is used to account for inequality in A-P axis, and ku allows us to model

asymmetric effects in β2−/− type mice. Examples of the distributions of activity-dependent

energy in the SC for neurons located in 9 different positions in V1 of Isl2EphA3/EphA3 and

Isl2EphA3/EphA3/β2−/− mice are shown in S2 Fig.

Activity-dependent energy for integrational model. The Integrational model assumes

that both retinal and cortical inputs can drive SC neuron firing. Although strong input from

the retina dominates in this model, V1 axons also can drive SC neuron firing. Therefore the

Activity-Dependent Energy Eu includes two terms as follows:

Eu ¼ � gu

X

~r s2O

X

~r l2O

nð~rs;~r lÞ
P

~ql2O;~ql 6¼~r l
Dð~rs;~qlÞnð~rs;~qlÞe

�
j~r l � ~ql j

bu

P
~ql2O;~ql 6¼~r l

Dð~rs;~qlÞnð~rs;~qlÞ
þ xue

�
j~r s � ~r l j

bu

2

4

3

5 ð6Þ

where Dð~r;~qÞ ¼ e
�

~r � ~qffiffi
2
p

n

� �2

defines the synaptic weight of a contact between an axon from a

neuron located at~ql in V1 and a dendrite of an SC neuron located at~rs (see [36] for details).

The first term in square brackets (Eq 6) defines the total correlation between each V1 axon

originated from neurons in~r l locations and all other axons originated from other locations in

V1 (~ql) normalized by weighted number of connections. The second term in Eq (6) describes

the correlation between axons from V1 and axons from the retina in a manner similar to that

of the Correlational Model (Eq 4). Parameter ξu defines the strength of inputs from the retina

as compared to maximal synaptic weight for inputs from V1.

In cases of Isl2EphA3/EphA3 and Isl2EphA3/EphA3/β2−/− mice Activity-Dependent Energy for the

Integrational model were modified as follows:

Eu ¼ � gu

X

~r s2O

X

~r l2O
nð~rs;~rlÞ

X

~ql2O;~ql 6¼~r l
Dð~rs;~qlÞnð~rs;~qlÞe

�
j~r l � ~ql j

bu

X

~ql2O;~ql 6¼~r l
Dð~rs;~qlÞnð~rs;~qlÞ

2

6
4

þxu aue
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rxs � rxl=2

kubu

� �2

þ

rys � ryl
bu

� �2

s

þ e
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rxs � rxl=2 � 1=2

kubu

� �2

þ

rys � ryl
bu

� �2

s0

B
B
B
@

1

C
C
C
A

3

7
7
7
5

ð7Þ

Note that we simplify Eu by excluding asymmetry terms from the correlation between V1

axons (first term in square brackets), because it slightly affected model performance.

Parameter estimation. We estimated parameters for both models to mimic data pub-

lished previously (see Table 1). Parameters for chemoaffinity (αa and βa) and competition (αc,
βc and γc) energies were chosen to keep 18–25 connections per SC neuron. These parameters

are slightly adjusted from those previously published for the stochastical model of retinal map

development [22, 36].

Parameter βu for both models was estimated from a best-fit curve to the correlation index

in retinal waves for WT mice [18, 36, 38]. Parameters νu, ξu and γu were chosen for robust map

convergence in both WT and Isl2EphA3/EphA3 mice. Parameter αu and κu were obtained from

Models of Visual Topographic Map Alignment in the SC
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experimental data [23] (supplementary Fig 1B) and [40] (Fig 3I), correspondingly. Parameters

βu and γu were scaled for β2−/− mice to fit experimental data [20, 38, 40] (see also S3 Fig).

Both models are robust in the range of 20% parameter variation.

Both models are able to replicate visual map alignment under wild type,

Isl2EphA3/EphA3 and Isl2EphA3/EphA3/β2−/− conditions

Visual map alignment under wild type conditions. First, we asked if our models could

replicate V1 map alignment with the retinal map in the SC under WT conditions. We per-

formed stochastic minimization of global energy function (Eq 1) using a modified simulated

annealing algorithm [22, 32, 41] as described in the Methods section. Critically, both models

are able replicate visual map alignment under WT conditions (Fig 2). To begin, the connectiv-

ity pattern is examined by plotting termination zones in the SC for projections from 9 local

neighborhoods in V1 with radius 0.04 (schematically indicated on Fig 2A1 inset). Both models

show topographically appropriate patterns of termination zones (Fig 2A1 and 2B1). We then

estimated the density of connections and examined normalized density distributions along

both axes of the SC (Fig 2A2, 2A4, 2B2 and 2B4). Finally, we sampled 5 connection density dis-

tributions and estimated the width of termination zones at 20% of maximum density distribu-

tion. The width of a given termination zone is approximately 5% of SC area, which is in

agreement with experimental observations [23]. Importantly, both models show a similar

speed of convergence to a stable connectivity pattern (S4 Fig), suggesting that the rate of

refinement is not dramatically different between activity-dependent mechanisms.

Visual map alignment under Isl2EphA3/EphA3 conditions. Next, we asked if our models

could replicate map alignment under conditions in which the retinocollicular projeciton is

Table 1. Parameters of Correlational and Integrational Models for WT, Isl2EphA3/EphA3 and Isl2EphA3/EphA3/β2−/− mice.

Parameter Correlational Model Integrational Model

Type independent Parameters

αa 60 60

βa 90 90

αc 450 450

βc 1 1

γc 1 1

νu – 0.15

ξu – 3

WT

βu 0.11 0.11

γu 20 20

Isl2EphA3/EphA3

αu 0.625 0.625

βu 0.11 0.11

γu 20 20

κu 1 1

Isl2EphA3/EphA3/β2−/−

αu 0.625 0.625

βu 0.231 0.231

γu 8.7 8.7

κu 4 4

doi:10.1371/journal.pcbi.1005315.t001

Models of Visual Topographic Map Alignment in the SC
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altered, as in Isl2EphA3/EphA3 mice. In these mice, the retina’s projection to the SC is duplicated

along the A-P axis of the SC, but singular along the L-M axis [21]. And, the V1 projection

bifurcates along the A-P axis to maintain alignment with the duplicated retinal map [23]. Strik-

ingly, both models were able qualitatively replicate this experimental observation: axons from

the same local neighborhoods in V1 as in Fig 2 project to two locations along the A-P axis of

the SC (Fig 3A1 & 3B1). Indeed, examining only projections along the azimuth axis reveals a

clear duplication of projections along this axis (Fig 3A2 & 3B2). Importantly, the pattern of

distribution along the L-M axis appeared unchanged, consistent with predictions based on

intrinsic signal optical imaging [23].

For both Correlational and Integrational models, the width of distrubution along the A-P

axis appears similar for V1 axons projecting to the anterior and posterior maps (Fig 3A3 &

3B3). This prediction is in contrast to previous findings demonstrating that terminations

zones of V1 axons are signifcantly larger in the posterior domain of Isl2EphA3/EphA3 mice [23].

One possible explanation for this mismatch may be alterations in the distance of spatial corre-

lation of activity during development. In Isl2EphA3/EphA3 mice, a full representation of azimuth

is compressed into approximately half the anatomical territory of the SC. Thus, the distance of

relevant correlations may be reduced by half, which in the models would be reflected by chang-

ing κu to 0.5 for simulations under Isl2EphA3/EphA3 conditions. However we did not find any

Fig 2. Correlational and Integrational models are able to replicate topographic map alignment under

wild type (WT) conditions. (A1) and (B1) Representative examples of termination zones in the SC from 9

different seed locations of r = 0.04 size in V1 (indicated in A1 inset) for Correlational (A1) and Integrational

models (B1). (A2) & (A4) and (B2) & (A4) One dimensional map of normalized distribution of connection

densities along the cardinal axes of V1 and the SC, anterior-posterior (A-P) V1 to medial-lateral (M-L) SC (A2

and B2), L-M V1 to A-P SC (A4 and B4). (A3) & (A5) and (B3) & (A5) Samples of connection distribution for

five different location along A-P (A3 and B3) or L-M (A5 and B5) V1 axis, indicated by colored triangles above

the connection density map (A2).

doi:10.1371/journal.pcbi.1005315.g002

Models of Visual Topographic Map Alignment in the SC
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justification for κu adjustment in the literature and used parameters as they are stated in

Table 1. Regardless, even with our canonical parameters both models are in good qualitative

agreement with profiles of anatomical tracing experiments in Isl2EphA3/EphA3 mice [23].

Visual map alignment in Isl2EphA3/EphA3/β2−/− mice. Previously, we showed that the

normal pattern of spontaneous activity is required for the alignment of visual maps in the SC

[23]. Specifically, mice in which the pattern of spontaneous waves are disrupted (β2−/−) were

crossed into the Isl2EphA3/EphA3 line. In these combination mutants, the retina’s projection to

the SC is still duplicated along the A-P axis of the SC, though each termination zone is

broader. However, in contrast to Isl2EphA3/EphA3 / β2+/− control mice, in which the V1 projec-

tion to the SC is duplicated to align with the retinal map, tracings of V1 projections in

Isl2EphA3/EphA3/β2−/− mice result in only a single broad termination zone.

Fig 3. Modeling of visual map alignment under Isl2EphA3/EphA3 mutant conditions. (A1) and (B1)

Representative examples of termination zones in the SC from 9 different seed locations in V1 (indicated in A1

inset) for Correlational (A1) and Integrational models (B1) under Isl2EphA3/EphA3 conditions. (A2) and (B2) One

dimensional map of normalized distribution of connection densities along the azimuth axes of the medial-

lateral (M-L) V1 and the anterior-posterior (A-P) SC. (A3) and (B3) Samples of connection distribution for five

different location along L-M V1 axis.

doi:10.1371/journal.pcbi.1005315.g003
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We next asked if our models were able to replicate this key finding under Isl2EphA3/EphA3/β2−/−

conditions. To do this the parameters of the Isl2EphA3/EphA3 model were adjusted to reflect experi-

mental observations regarding the distance between neurons with correlated activity patterns in

β2−/− mice [20, 38, 40] (see Table 1). Strikingly, we found that in both models, V1 projects to a

single map along both the A-P and L-M axes of the SC under Isl2EphA3/EphA3/β2−/− conditions

(Fig 4). Further, both models show an increase in termination zone size, though the increase was

dramatically larger for simulations of the Correlational model (Fig 4A) compared to the Integra-

tional model (Fig 4B). This difference reflects the ability of V1 neurons to drive SC neuron firing

in the Integrational model, as such locally correlated activity of V1 axons guided by chemoaffi-

nity forces leads to better refinement, though still not as good as under WT conditions. Interest-

ingly, we found no qualitative difference in the speed of convergence between both models, nor

better convergence with increased numbers of iterations (S4 Fig), suggesting that differences in

Fig 4. Modeling of visual map alignment under Isl2EphA3/EphA3/β2−/− mutant conditions. (A1) and (B1)

Representative examples of termination zones in the SC from 9 different seed locations in V1 (indicated in A1

inset) for Correlational (A1) and Integrational models (B1) under Isl2EphA3/EphA3/β2−/− conditions.(A2) and (B2)

One dimensional map of normalized distribution of connection densities along the azimuth axes of the medial-

lateral (M-L) V1 and the anterior-posterior (A-P) SC. (A3) and (B3) Samples of connection distribution for five

different location along L-M V1 axis.

doi:10.1371/journal.pcbi.1005315.g004
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refinement were not due to different temporal dynamics. Importantly, the connection densities

along the A-P axis for both models (Fig 3C2, 3C3, 3D2 and 3D3) are in qualitative agreement

with anatomical tracing experiments performed in Isl2EphA3/EphA3/β2−/− mice (see [23] Fig. 6H).

Taken together with results of our simulations under WT and Isl2EphA3/EphA3 conditions,

these findings suggest that both Correlational and Integrational models serve as valid frame-

works to investigate visual map alignment in the SC. Unfortunately, the ability of both models

to replicate in vivo findings under all conditions published precludes our ability to conclude

which type of activity-dependent mechanisms of alignment might be utilized during visual

map alignment. As such, we next attempted to differentiate between the models in some way,

which may inform future in vivo experiments aimed at determining the nature of activity-

dependent visual map alignment.

Weakening of retinal inputs to SC reveals distinct behaviors of

Correlational and Integrational models

The major distinction between our Correlational and Integrational models is the ability of V1

inputs to drive SC neurons during the process of visual map alignment. In both models, retinal

inputs have strong drive, which instructs V1 inputs to align with the retinal map. However, we

noted that during some simulations of the Integrational model under any condition, transient

clusters of V1 terminals could be observed in the SC. This anecdotal observation suggested

that the Correlational and Integrational models might behave differently under conditions in

which retinal drive were reduced during visual map alignment. To test this, we performed an

in silico experiment in which we simulated visual map alignment under Isl2EphA3/EphA3 condi-

tions, but with weakened ability of retinal input to drive SC neuron firing.

In the Correlational model, weakening retinal drive is equal to a gradual decreasing of

Eu, which we model by scaling down the γu parameter. For this analysis, we simulated the ter-

mination patterns of V1 axons projecting from the center of the L-M axis (rxl = 0.5) under

Isl2EphA3/EphA3 conditions. As expected, simulations in which retinal drive is similar to previous

simulations (e.g. γu = 10), projections from V1 are bifurcated into two termination zones

along the A-P axis (Fig 5A). And, not surprisingly, when retinal drive is dramatically reduced

(e.g. γu = 0.1), V1 axons terminate broadly along the A-P axis and only in a single termination

zone (Fig 5). Interestingly, the transition was gradual between a single broad termination zone

when retinal drive is weak to duplicated termination zones when retinal drive is high. This pat-

tern of change is reminiscent of supercritical pitchfork bifurcation observed in dynamical sys-

tems [42], and implies that two termination zones of cortical axons may be a result of bi-

stability for individual axons.

In simulations with the Integrational model, we modeled the weakening retinal drive by

decreasing the factor ξu. Similar to observations from the Correlational model, simulations

with high retinal drive (e.g. ξu = 4) resulted in a bifurcation of V1 projections, while in those

with weak retinal drive (e.g. ξu = 0.04) a single termination zone was observed. Interestingly,

the width of connection densities were not as wide under the latter conditions compared with

simulations in the Correlational model, due to the ability of local V1 inputs to drive correlated

activity in the Integrational model. Further, we observed that the transition from projections

to a single termination zone when retinal drive is weak to duplicated termination zones when

retinal drive is strong was much sharper for the Integrational model compared to the Correla-

tional model.

Taken together, these in silico experiments suggest that the models can be differentiated.

Importantly, the diagrams generated by these experiments are not strictly classical bifurcation

diagrams for dynamical systems [42]. Despite this, they reveal characteristic features of the
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total energy function, which affects the dynamics of connectivity patterns during development.

Previously, it was noted that energy functions for competition [22] and for activity-dependence

[36] have stable fix points which is an attribute of dynamical systems. Although our simula-

tions should be considered only as optimization procedures, the minimum of energy function

and corresponding peaks of connection density, are stable fix points of a dynamical system.

Discussion

The establishment of precise, topographically-ordered connectivity in the visual system is

critical for efficient relay of spatial information. In associative centers of the brain, topo-

graphic inputs from multiple areas (and often multiple modalities) must be aligned with one

another to facilitate integration. Here, we describe two computational models that simulate

the activity-dependent alignment of converging topographic inputs from the retina and V1

in the SC, a critical integrative midbrain nucleus. The first model is based on a strictly correl-

ative mechanism, whereby incoming V1 terminals are stabilized onto neurons in the SC

whose activity is driven by RGC inputs that monitor the same region of space. The second

model incorporates the ability of V1 inputs to drive SC neuron activity during alignment in

Fig 5. Distinct behaviors of Correlational and Integrational models when retinal drive is weakened.

(A1) and (B1) Connection density plots for V1 axons originating from a central region of the medial-lateral axis

of V1 onto the anterior-posterior (A-P) axis of the SC as a function of altering the parameter for retinal drive in

Correlational (γu, A1) and Integrational (ξu, B1) models. (A2) and (B2) Samples of connection density along

the A-P axis for selected values of γu (A2) or ξu (B2).

doi:10.1371/journal.pcbi.1005315.g005
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addition to RGC drive. Both models qualitatively reflect data derived from empirical experi-

ments in WT, Isl2EphA3/EphA3 transgenic, and combination Isl2EphA3/EphA3/β2−/− mutant mice.

These findings suggest that either strategy may be utilized in the developing SC and set the

stage for future experiments to distinguish between these mechanisms.

Distinction of visual map alignment models from retinocollicular mapping

models

The development of visual inputs in the SC occurs as a two step process: first, retinocollicular

inputs establish topographic order in a manner dependent on molecular cues, correlated

neuronal activity and competition during the first postnatal week; second, V1 inputs are

instructed by RGCs to terminate in alignment with the retinocollicular map in a manner

dependent on spontaneous activity. Thus, both of our computational models of visual map

alignment focus on the establishment of topography by V1 neurons and are based on previ-

ous stochastic models that describe the development of retioncollicular topography [22, 43].

Based on our previous work demonstrating the importance of correlated spontaneous activ-

ity during visual map alignment [23], the most critical component of each model is the

activity-dependent energy. For the Correlational model, activity-dependent alignment is

achieved via Hebbian “fire together, wire together” rules [37], wherein simple correlations

between firing patterns of V1 axons and SC neurons are used. In contrast, the Integrational

model considers the possibility that V1 inputs can drive SC neuron firing during visual map

alignment.

Although both of the models presented here are based on the stochastic models previously

decribed to model retinocollicular development, it is critical to note that the process, and thus

the performance, of the models is fundamentally different. When modeling retinocollicular

development, the landscape of activity-dependent energy in any given region of the SC is

essentially flat prior to simulation, due to the random connectivity. As such, during modeling,

newly established connections form the energy profile, progressively developing energy wells

in each region as dictated by the local density of RGC inputs, until a stable configuration is

achieved. In contrast, when modeling the alignment of V1 inputs in the SC, the landscape of

activity-dependent energy is in a pre-defined state by RGC inputs (Eqs 4–7, Supplementary S2

Fig). Indeed, these differences revealed themselves in the behavior of our models during in sil-
ico experiments performed in which we weakened retinal drive. Under these conditions, the

Integrational model performs similar to modeling retinocollicular development, in that activ-

ity-dependent energy progressively decreases. Alternativley, in simulations with the Correla-

tional model, which most closely resembles the retinocollicular mapping models on which our

alignment models are based, activity-dependent energy can only decrease when retinal drive is

sufficient. Understanding the nature of interactions between retinal and V1 inputs during

visual map alignment is critical for developing a more robust model of this process.

Correlational and Integrational models of visual map alignment each

replicate experimental data

Importantly, both models replicate in vivo findings from WT and mutant animals, though

with subtle differing degrees of fidelity. For example, while both models predict that V1 projec-

tions will bifurcate to align with a duplicated retinal map under Isl2EphA3/EphA3 conditions, nei-

ther predicts that the termination zone area of posterior-projecting V1 axons will be larger

than anterior-projecting V1 axons, as we previously found [23]. This limitation may derive

from innacurate estimation of the distance over which activity is properly correlated in the SC

of Isl2EphA3/EphA3 mice. On one hand, since an entire azimuth representation is compressed
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into approximately half the SC, the relevant correlation distance may need to be halved as well.

On the other hand, correlations between V1 and SC activities may actually be correlated over

larger distances in Isl2EphA3/EphA3 mice, since two locations separated by a significant distance

will fire with similar timing. Further, it remains unclear why only one of the two termination

zones of V1 axons in Isl2EphA3/EphA3 does not refine as well as those observed in WT animals. It

may be related to the differences in subtypes of RGCs that project to each domain [44], given

that distinct subtypes may participate differently during spontaneous retinal waves [45]. Eluci-

dation and incorporation of these parameters of spontaneous activity into future models is

necessary to overcome the limitations of our current models.

Another limitation of these models is the underlying assumption that the representation

of visual space in each region is symmetrical, which does not accurately reflect anatomical

and functional data. Indeed, in several species, portions of the visual field are over-repre-

sented in the retina, V1 and the SC. In the mouse visual system, which these computational

frameworks are meant to model, RGC density is highest centrally with a slight ventral bias

(i.e. upper visual field) and decreases with eccentricity [46]. Similarly in both V1 and the SC,

the central visual field is over-represented [20, 47]. However, in other species, the asymmet-

ric representation of visual space can differ between regions. For instance, in the macaque,

lower visual field is over-represented in V1 [48], while upper visual field is over-represented

in the SC.

How might alignment be achieved in such a situation and could our models account for

this? While we did not model this directly, possible distortions of symmetry, such as expan-

sions and contractions, are included in the F and C functions and, thus, are implicit to the

model. However, the pliability of such distortions are limited by the competition energy com-

ponent of our models, and, therefore, these models may not be ideal for investigating more

drastic “sign reversals.” Application of our models in these contexts may have to incorporate

changes in competition energy. Another caveat is that our models deal strictly with develop-

ment, where we model the pattern of spontaneous activity driving alignment to influence all

regions of the retinotopic map uniformly. However, if non-uniform, experience-dependent

changes drive differences in asymmetry between regions, then distinct mechanisms, and thus

models, may be needed to describe this process.

It is also critical to note that these models focus solely on the alignment of excitatory inputs

from the retina and V1 onto excitatory principal cells of the superficial SC, ignoring putative

connections with inhibitory populations. Indeed, the SC is densely packed with inhibitory

neurons that modulate both the response to visual stimuli and the sensorimotor transforma-

tion to saccadic eye movements [49, 50]. However, while GABAergic synapses are present in

the SC during the period of retinocollicular map formation and visual map alignment [51],

they are weak and their role in either process is not clear. Regardless, inclusion of the develop-

ment of connections between V1 neurons and inhibitory inputs in the SC, as well as lateral

connections within the SC, would make for a more robust model.

Distinction betweeen Correlational and Integrational models in in silico

tests

In order to distinguish the Correlational and Integrational models from one another, we lever-

aged the duplicated map of azimuth in Isl2EphA3/EphA3 to perform a modified bifurcation analy-

sis. To do so, we performed simulations with both models in which we varied the parameter

relating to the strength of retinal drive (γu for Correlational and ξu for Integrational). For the

Correlational model, we found that increasing retinal drive led to a gradual transition from a

single, broad map to a sharply tuned duplicated map. The shape of this curve was strikingly
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similar to that of the supercritical pitchfork bifurcation associated with dynamical systems,

albeit a static version rooted in a spatial domain.

The behavior of the Integrational model to increasing retinal drive under Isl2EphA3/EphA3

conditions was strikingly different. Here, the transition from single to duplicated map was

sharp, and suggestive of multistability within the system. Interestingly, we previously found

that the retinocollicular map in heterozygous Isl2EphA3/+ mice can be organized in one of three

possible ways [43], reminiscent of the either/or prediction of the Integrational model observed

here. Together, these findings suggest the possibility that the development of topography in

general may observe the rules of multistable systems.

In general the Integrational model is more robust to variation of retinal input strength. It

shows smaller variance in alignment accuracy to a broader range of retinal input strengths

(Fig 5B), which may be considered as potential biological advantage. In contrast weakening

retinal inputs below some threshold gradually distorts topographic map alignment in the Cor-

relational model (Fig 5A). Therefore, the in silico tests performed here on simplified computa-

tional models of a complex biological process are severely limited in their predicitive powers.

Further, our data do not favor conclusively either the Correlational or Integrational model and

more data are needed to determine if either is a valid representation of in vivo processes.

Differentiation of Correlational and Integrational models in vivo

Given that both models are able to replicate the limited in vivo data from mutant animals, the

question of which is utilized remains unresolved. An exploration of the biological advantages

of each may point towards which mechanism might be utilized. On one hand, the Correla-

tional model might be energetically favorable compared to the Integrational model, since

developing V1 inputs do not need to invest in expressing the full complement of pre-synaptic

machinery at each transient early contact. Additionally, one might imagine that use of a corre-

lational mechanism might lead to faster refinement, again making it more energetically favor-

able. However, our in silico modeling does not indicate that the Correlational model resolves

to a steady state faster than the Integrational model (S4 Fig), though this is not necessarily rep-

resentative of the speed of refinement in vivo. On the other hand, the energy investment

required to execute the Integrational model may confer other advantages to the development

of visual circuitry in the SC. For instance, multiple subtypes of visual neurons are found in the

SC [52], and the ability of V1 inputs to contribute to SC neuron firing during development

may help to ensure that they integrate into the appropriate sub-circuit. In support of this possi-

bility, recent evidence suggests that fine-grain topography in the SC may be sacrificed to allow

for the establishment of microdomains of neurons tuned to the same aspect of the visual scene

[53]. However, critical aspects of the nature of the developing circuitry in the SC remain

unknown, preventing us from favoring one model over the other.

One key piece of evidence that might distinguish these models relates to the distinction

between the two formulations: namely, whether V1 inputs can drive SC neuron firing during

development. Electron microscopy studies indicate that V1 inputs form synaptic contacts onto

SC cells during development, which mature over time [54]. However, to our knowledge no

study has explored the physiological characteristics of corticocollicular inputs throughout

development, perhaps due to the circuitous route from V1 to the SC preventing the isolation

of the preserved tract in a slice. A potential alternative may be to leverage the power of optoge-

netics to expresses light-excitable channels in V1 during development. Slices could then be

made of the SC and the termials of corticocollicular afferents stimulated while recoding from

SC neurons. Understanding the potency of V1 inputs over the course of visual map alignment
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would provide substantial insight to the mechanisms underlying this critical event, as well as

inform the development of more accurate models of visual map alignment.

Conclusion

Here we have described two novel computational models of the development of alignment

between retinal inputs and those from V1 in the SC. The major difference between the models

relates to the mechanism of activity-dependent refinement. The models behave differently in

in silico experiments in which retinal drive the SC is weakened during simulations, suggesting

differences in the nature of map alignment depending on the mechanism of activity-depen-

dent refinement. Overall, the Correlational and Integrational frameworks presented here accu-

rately model known aspects of visual map alignment, but further experimentation is needed to

determine which of the activity-dependent mechanisms is utilized in vivo.

Methods

Optimization process for find minimum of the energy function

A modified simulated annealing algorithm [22] was used to find the minimum of energy func-

tion (Eq 1). For each neuron in the 100x100 grid, the algorithm produces 15,000 steps,

150,000,000 steps in total. At each step, the algorithm adds one connection and removes

another one randomly. The probability to accept or reject addition or removal of a connection

is modeled by the sigmoid function from changing in in total energy (ΔE) as followed:

P ¼
1

1þ e4DE
ð8Þ

Initially connections are randomly distributed such that each neuron receives 50 connec-

tions on average. We also tested our models under two extreme initial conditions: totally dis-

connected and all-to-all connected networks. No variation in results were found under either

condition.

We confirmed that 150,000,000 steps are enough by performing a simulation when number

of steps was doubled. Neither model, under any parameter set, achieved better convergence

with double the number of steps (S4 Fig). Therefore, we conclude that 150,000,000 steps allow

our algorithms to reach steady-state energy minimums.

Model realization and source code

The modified simulated annealing algorithm was implemented in Cython computer language

with Python wrapper. We used the Python numerical library (numpy) and GNU scientific

library (gsl) for random number generation, matrix manipulations and operation vectoriza-

tion. One optimization procedure for the Correlational model requires on average 10 hours of

single processor time, while the Integrational model needs approximately 16 hours of single

processor time. Source code on the model and required scripts will be made public available

via ModelDB website after publication (https://senselab.med.yale.edu/ModelDB/showModel.

cshtml?model=195658).

Parameters space study

We studied the robustness of parameters to variation, as well as general model behavior, in a

wide range of parameter space, which was estimated to require around 1.3 years of simulation

time on four cores of a desktop computer. In this study, we exploited embarrassingly parallel
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computing on 1344 cores of a high performance Cray XE6/XK7 cluster to speed up computa-

tions to one week.

Post-modeling analysis

A connectivity four-dimensional array (n) was sampled to verify one dimension mapping. To

obtain connectivity density, standard Silverman method [55] implemented in the Python sci-

entific library (scipy) was used.

Supporting Information

S1 Fig. Examples of the distributions of chemoaffinity energies in SC. 2D heat-maps of the

chemoaffinity energy Eq (2) for axons of neurons located at 9 different places in V1. Each plot

shows the distributions of chemoaffinity energies for neurons in one location in V1. Location

from left to right and top to down are: (0.25, 0.25) (0.25, 0.5) (0.25, 0.75), (0.5, 0.25) (0.5, 0.5)

(0.5, 0.75), (0.75, 0.25) (0.75, 0.5) (0.75, 0.75).

(JPG)

S2 Fig. Examples of the distributions of activity-dependent energies in SC for Isl2EphA3/EphA3

and Isl2EphA3/EphA3 / β2−/− mice. 2D heat-maps of the activity-dependent energy, Eq (5), under

Isl2EphA3/EphA3 conditions (Top) and Isl2EphA3/EphA3 / β2−/− conditions (Bottom). In both sets,

each of 9 plots shows distribution of activity-dependent energy for neurons in one location in

V1. Locations are the same as in S1 Fig.

(JPG)

S3 Fig. Fitting parameters of spatial correlation in retinal waves for WT and β2−/− mice.

Black and Gray are experimental data of activity correlation index in retinal waves with dis-

tance in WT and β2−/− mice from [38]. Red and Blue dashed lines are exponential functions

aþ be� xk fitted to experimental data. The ratios bWT/bβ2K0 and kWT/kβ2K0 were used to scale γu
and βu parameters, correspondingly, in β2−/− mice model (see Table 1).

(JPG)

S4 Fig. Convergence of the models. Example of convergence for each model in Wild Type

(WT, A) and two transgenic mice (Isl2EphA3/EphA3,B and Isl2EphA3/EphA3/β2−/−,C) are shown.

Each graph in rows 1 and 2 is the distribution of connection density along the A-P axis of the

SC for 5 locations along the L-M axis in V1. Color coding is the same as in Figs 2A5 and 2B5,

3A3 and 3B3, 4A3 and 4B3. Graphs in each row correspond to initial conditions (left-most

graph) and after the indicated number of iterations. A3,B3,C3: Plot of the Euclidean distance

in multi-dimensional space between distributions shown in A1, A2, B1, B2, C1, and C2 as a

function of iteration number (sampling every 500,000 steps). The number of steps is plotted

logarithmically on the x-axis, and the number of steps utilized for analysis of map organization

(150,000,000 steps) is indicated by a black triangle.

(JPG)
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46. Dräger U, Olsen JF. Ganglion cell distribution in the retina of the mouse. Investigative ophthalmology &

visual science. 1981; 20(3):285–293. PMID: 6162818

47. Garrett ME, Nauhaus I, Marshel JH, Callaway EM. Topography and areal organization of mouse visual

cortex. The Journal of Neuroscience. 2014; 34(37):12587–12600. doi: 10.1523/JNEUROSCI.1124-14.

2014 PMID: 25209296

48. Van Essen DC, Newsome WT, Maunsell JH. The visual field representation in striate cortex of the

macaque monkey: asymmetries, anisotropies, and individual variability. Vision research. 1984; 24

(5):429–448. doi: 10.1016/0042-6989(84)90041-5 PMID: 6740964

49. Phongphanphanee P, Mizuno F, Lee PH, Yanagawa Y, Isa T, Hall WC. A Circuit Model for Saccadic

Suppression in the Superior Colliculus. Journal of Neuroscience. 2011; 31(6):1949–1954. doi: 10.1523/

JNEUROSCI.2305-10.2011 PMID: 21307233

50. Phongphanphanee P, Marino RA, Kaneda K, Yanagawa Y, Munoz DP, Isa T. Distinct local circuit prop-

erties of the superficial and intermediate layers of the rodent superior colliculus. European Journal of

Neuroscience. 2014; 40(2):2329–2343. doi: 10.1111/ejn.12579 PMID: 24708086

51. Shi J, Aamodt SM, Constantine-Paton M. Temporal correlations between functional and molecular

changes in NMDA receptors and GABA neurotransmission in the superior colliculus. The Journal of

neuroscience. 1997; 17(16):6264–6276. PMID: 9236237

52. Wang L, Sarnaik R, Rangarajan K, Liu X, Cang J. Visual receptive field properties of neurons in the

superficial superior colliculus of the mouse. The Journal of Neuroscience. 2010; 30(49):16573–16584.

doi: 10.1523/JNEUROSCI.3305-10.2010 PMID: 21147997

53. Feinberg EH, Meister M. Orientation columns in the mouse superior colliculus. Nature. 2015; 519

(7542):229–232. doi: 10.1038/nature14103 PMID: 25517100

54. Plummer KL, Behan M. Development of corticotectal synaptic terminals in the cat: a quantitative elec-

tron microscopic analysis. Journal of Comparative Neurology. 1993; 338(3):458–474. doi: 10.1002/cne.

903380309 PMID: 8113449

55. Silverman BW. Density estimation for statistics and data analysis. vol. 26. CRC press; 1986.

Models of Visual Topographic Map Alignment in the SC

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005315 December 27, 2016 20 / 20

http://dx.doi.org/10.1016/j.neuron.2009.09.021
http://dx.doi.org/10.1016/j.neuron.2009.09.021
http://www.ncbi.nlm.nih.gov/pubmed/19874788
http://dx.doi.org/10.1016/j.neuron.2014.10.051
http://dx.doi.org/10.1016/j.neuron.2014.10.051
http://www.ncbi.nlm.nih.gov/pubmed/25466916
http://dx.doi.org/10.1016/j.neuron.2005.09.015
http://www.ncbi.nlm.nih.gov/pubmed/16337917
http://dx.doi.org/10.1186/1471-2202-11-155
http://www.ncbi.nlm.nih.gov/pubmed/21190559
http://dx.doi.org/10.1016/j.neuron.2015.08.030
http://dx.doi.org/10.1016/j.neuron.2015.08.030
http://www.ncbi.nlm.nih.gov/pubmed/26402608
http://dx.doi.org/10.1186/1749-8104-9-2
http://www.ncbi.nlm.nih.gov/pubmed/24495295
http://dx.doi.org/10.1016/j.neuron.2008.04.025
http://dx.doi.org/10.1016/j.neuron.2008.04.025
http://www.ncbi.nlm.nih.gov/pubmed/18579076
http://www.ncbi.nlm.nih.gov/pubmed/6162818
http://dx.doi.org/10.1523/JNEUROSCI.1124-14.2014
http://dx.doi.org/10.1523/JNEUROSCI.1124-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25209296
http://dx.doi.org/10.1016/0042-6989(84)90041-5
http://www.ncbi.nlm.nih.gov/pubmed/6740964
http://dx.doi.org/10.1523/JNEUROSCI.2305-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.2305-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21307233
http://dx.doi.org/10.1111/ejn.12579
http://www.ncbi.nlm.nih.gov/pubmed/24708086
http://www.ncbi.nlm.nih.gov/pubmed/9236237
http://dx.doi.org/10.1523/JNEUROSCI.3305-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/21147997
http://dx.doi.org/10.1038/nature14103
http://www.ncbi.nlm.nih.gov/pubmed/25517100
http://dx.doi.org/10.1002/cne.903380309
http://dx.doi.org/10.1002/cne.903380309
http://www.ncbi.nlm.nih.gov/pubmed/8113449

