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Diffusion-weighted magnetic resonance imaging (dMRI) allows non-invasive investigation of whole-
brain connectivity, which can reveal the brain’s global network architecture and also abnormalities
involved in neurological and mental disorders. However, the reliability of connection inferences

from dMRI-based fiber tracking is still debated, due to low sensitivity, dominance of false positives,
and inaccurate and incomplete reconstruction of long-range connections. Furthermore, parameters
of tracking algorithms are typically tuned in a heuristic way, which leaves room for manipulation

of an intended result. Here we propose a general data-driven framework to optimize and validate
parameters of dMRI-based fiber tracking algorithms using neural tracer data as a reference. Japan'’s
Brain/MINDS Project provides invaluable datasets containing both dMRI and neural tracer data from
the same primates. A fundamental difference when comparing dMRI-based tractography and neural
tracer data is that the former cannot specify the direction of connectivity; therefore, evaluating

the fitting of dMRI-based tractography becomes challenging. The framework implements multi-
objective optimization based on the non-dominated sorting genetic algorithm Il. Its performance

is examined in two experiments using data from ten subjects for optimization and six for testing
generalization. The first uses a seed-based tracking algorithm, iFOD2, and objectives for sensitivity
and specificity of region-level connectivity. The second uses a global tracking algorithm and a more
refined set of objectives: distance-weighted coverage, true/false positive ratio, projection coincidence,
and commissural passage. In both experiments, with optimized parameters compared to default
parameters, fiber tracking performance was significantly improved in coverage and fiber length.
Improvements were more prominent using global tracking with refined objectives, achieving an
average fiber length from 10 to 17 mm, voxel-wise coverage of axonal tracts from 0.9 to 15%, and the
correlation of target areas from 40 to 68%, while minimizing false positives and impossible cross-
hemisphere connections. Optimized parameters showed good generalization capability for test brain
samples in both experiments, demonstrating the flexible applicability of our framework to different
tracking algorithms and objectives. These results indicate the importance of data-driven adjustment
of fiber tracking algorithms and support the validity of dMRI-based tractography, if appropriate
adjustments are employed.
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Diffusion-weighted magnetic resonance imaging (dAMRI) generates images based on anisotropic diffusion of
water molecules. Diffusion in the brain is constrained in a direction-dependent manner by obstacles such as
nerve fibers and membranes. This leads to anisotropic diffusion patterns in dMRI images that can be used to
estimate structural brain connectivity in a non-invasive way'~>. dMRI-based tractography can trace whole-brain
connectivity to more fully reveal network organization®™®, its relationship with functions’!!, mental and neuro-
logical disorders'?~'*, and computational modeling'®.

However, there are fundamental limitations, namely, the lack of directionality of connections and the difficulty
of estimating crossing fiber orientations in voxels of low spatial resolution'”'®. These and other practical issues
cause failures in tracking fibers (low sensitivity or low true positive rate)!*-?!, especially in tracking long-distance
connections*, and tracking wrong fibers (low specificity or high false positive rate)?**>?¢. Unfortunately, all
of these potentially contribute to erroneous reconstruction of connectomes.

Various efforts have been made to improve the accuracy of reconstructions. Global tractography*’~* pro-
vides whole-brain connectivity that consistently explains dMRI data by optimizing a global objective function.
Compared to conventional seed-based fiber tracking, it achieved better qualitative results on phantom data?.
However, both seed-based and global fiber tracking algorithms have a number of parameters that are difficult to
determine because of unknown biophysical variables.

Japan’s Brain/MINDS project (Brain Mapping by Integrated Neurotechnologies for Disease Studies)*® intends
to build a multi-scale marmoset brain map and mental disease models. The project has assembled a high-
resolution marmoset brain atlas®’, and is conducting systematic anterograde tracer injections to analyse brain
connectivity, while obtaining functional, structural, and diffusion MRI for most individuals. All data are mapped
to a common brain space. This gives us a unique opportunity to verify the accuracy of dMRI-based fiber tracking
using neuronal tracer data, reconstructed with the marmonet pipeline® as a reference.

Here we propose a general framework for optimization and validation of dMRI-based fiber tracking algo-
rithms in reference to neuronal tracer data from multiple injection sites. Because fiber tracking should satisfy
multiple performance criteria, we use multi-objective optimization (MOO) in the first stage and then use multiple
criteria decision analysis (MCDA) to select a set of standard parameters. We test the effectiveness of our frame-
work in two experiments. In the first experiment, we use a probabilistic streamline-based algorithm iFOD2*
and consider the region-level true positive rate (TPR) and false positive rate (FPR) as criteria. In the second
experiment, we take a global tracking algorithm?” and incorporate more elaborate criteria: (1) distance-weighted
coverage, (2) the true/false positive ratio, (3) projection coincidence, and (4) commissural passage.

We optimize the parameters using 10 brain samples and then test their capacity for generalization using
6 brain samples that were not used for optimization. Our implementation code for processing multiple brain
samples in parallel is compatible with HPC (high-performance computing) clusters as well as desktop PCs, and
publicly available.

27-29

Results

Brain/MINDS marmoset connectome data. We use neural tracer data from 20 marmosets collected
in the Brain/MINDS project for this study (see Fluorescent neural tracer data at “Methods” section). An antero-
grade tracer was injected in the left prefrontal cortex, at different points for each animal, and neuron projection
pathways as well as their target regions were quantified based on tracer voxel density in fine 500 or coarse 104
parcellation in the Brain/MINDS atlas®. We consider an injection region connected to a target region when at
least one injection tracer image has signal in both regions. This is the first version of a neural tracer-based con-
nectome computed by the marmonet pipeline* in the project.

For optimization and validation, we took data from 16 animals that had both tracer and dMRI data. Experi-
ments evaluate dMRI-based fiber tracking against multiple objectives, by comparisons with tracer at different
levels of resolution: brain region-level and voxel-level. Objectives can be unrelated to tracer. An example of an
anatomical constraint is defined as objective in the 2nd experiment.

Seed-based tracking with region-level criteria. In the first experiment, we take the probabilistic
streamline-based algorithm iFOD2* (second-order integration over Fiber Orientation Distributions), which
is the default tractography algorithm of MRtrix3**. Three important parameters are optimized: (a) angle: the
maximum angle between successive steps of the algorithm; (b) cutoff: the FOD amplitude for terminating fibers;
(c) minlength: the minimum length, in mm, of any fiber.

The number of seeds (1000 x number of output fibers) and all other parameters are kept at their default
values. Streamline seeds are placed randomly all over the dMRI. The number of output fibers is fixed at 300,000.

Criteria for evaluation. An important issue in comparing dMRI-based fiber tracking and anterograde neural
tracer data is that the former does not reflect the projection direction. Comparisons assume that regions are con-
nected independently of tracer directionality. dAMRI-based fibers connected to a tracer injection site can include
both incoming and outgoing axons to the site. Thus, if we take anterograde tracing as a reference, it is natural to
have additional “false positive” fibers.

Four objective functions measuring brain-region connectome similarities consider fitting to both individual
tracer data and group tracer data in terms of TP and FP (Fig. 1a). dMRI-based matrices are built for each fiber
tracking result in a standard brain space, by assigning each streamline to all regions it intersects. Before com-
parison, dMRI- and tracer-based matrices are log-transformed and normalized. Matrix binarization, preserving
connections from 10 to 100%, is included as a preceding step to TPR and FPR calculation.
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Figure 1. Criteria for evaluation. (a, b) show evaluation criteria for the 1st (iFOD2) and 2nd (global tracking)
experiments. dMRI-based fiber tracking results are mapped to the standard brain space and intersected spatially
with the injection site, allowing extraction of a subset of fibers. The full tractogram is used to compute group
TPRg and FPRg (iFOD2), projection coincidence with the target hemisphere f3 and the commissural passage

fa (global tracking). The subset of fibers is used for individual TPR; and FPR; (iFOD?2), the distance-weighted
coverage fi and true/false positive ratio f, objectives (global tracking). Global tracking includes more elaborated
criteria, with positive voxels weighted by two factors extracted from neural tracer data, the distance to the
injection site center d; and the voxel intensity w;. Figure created using The MRtrix viewer 3.0.1 (https://www.
mrtrix.org/) and Inkscape 1.0beta2 (https://inkscape.org/). Image datasets are part of the Brain/MINDS project
(see Data availability section).

Individual objectives (i) TPRr and (ii) FPR;. Obtained by comparing individual injection site-region pairs
connected by streamlines for each brain. Thus, fibers intersecting the injection region and the tracer of the
same animal were arranged as matrices of 1 injection site x 500 targets parcellation for matching.

Group objectives (iii) TPR¢ and (iv) FPRg. Obtained by mapping fiber tracking output to the group of 20
injection sites x 500 targets parcellation for each brain, and comparing against the Brain/MINDS marmoset
connectome data.

Multi-objective optimization. In order to account for trade-offs between multiple objectives, instead of opti-
mizing a scalar criterion using the weighted sum of objectives, we took the multi-objective optimization (MOO)
approach to find the Pareto-optimal set, or Pareto front, where no objective values can be improved without
degrading some other objective values. For our experiment, the non-dominated sorting genetic algorithm II
(NSGA-II)*® was arranged for parallel optimization of 10 brains (training set). An optimization process runs per
brain while, cooperatively, it sends winner parameters to other processes in each generation (see Optimization
and Code implementation at “Methods” section).

Optimization identified multi-dimensional Pareto fronts, one per brain, which evolved similarly and con-
verged to a common region. They are visualized in Fig. 2 as pairwise comparisons of objectives. The competition
of TPRg versus FPRg and TPRy versus FPRy pushed results toward the upper-left region (ideal region), clearly
seen in TPRg versus FPRg, where the latest evolutionary results peek out from the early made ROC curve (dotted
circle). TPRg versus FPRg performance suggests that individual brain variability is weakened by connectome-
based group objectives. Spatial coverage improved, as seen in Fig. 3a and Supplementary Fig. Sla, where fiber
tracking by iFOD2 (in red) covers larger areas of the neural traces (in green) by the optimized parameters. Fiber
length increased as well, from a default value of 8.13 mm to an optimized value of around 12.2 mm, on average.

Multiple criteria decision analysis for standard parameters.  To assess trade-offs between objectives and to deter-
mine which combination performs best for each brain (Fig. 2, red x markers) and for the training set, we used
Multiple Criteria Decision Analysis (MCDA).
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Figure 2. Objective function optimization for iFOD2. Pair-wise visualization of the optimization of four
objective functions: TPRg and FPR¢ from the comparison between connectomes of 20 x 500, and TPR; and
FPR; from the comparison between individual connectomes of 1 x 500. Our framework drives objectives
toward the Pareto-front in the upper-left direction for the competing TP versus FP objectives. FPR¢ versus TPRg
exposes a peak of optimal solutions (dotted circle). FPR; versus FPR evinces the capability of our framework
for controlling FP growth, maintaining values close to 0, at the bottom-left region. Best solutions, detected by
MCDA, are shown as red x markers.

Objectives, denoted as fs, are considered the multiple criteria. Given an optimized brain, each finterval
[min(f), max(f)] is divided into 10 equal sub-intervals and corresponding parameter settings are rated from 1
(worst) to 10 (best). Ratings are averaged across fs with equal weighting for each fand brain, and the parameter
set with the maximum score is selected as the individual winner(s) for the brain.

An evaluation-averaged result from 5 fiber tracking runs using default parameters for the training set, and
compared against the average of individual winners: TPRg improved from 0.3 = 0.11t0 0.5 &= 0.07 and TPR; from
0.2 £ 0.09 to 0.34 & 0.07. In the case of FP objectives, the optimization kept values down, with no substantial
changes: FPRg from 0.023 =+ 0.037 to 0.04 £ 0.03 and FPR; from 0.005 =+ 0.006 to 0.01 % 0.006. The restrictive
effect of FP related objectives is seen in FPR; versus FPR (Fig. 2), where the best solutions are located in the
desired bottom-left area.

Standard parameters were calculated as the mean and standard deviation of the best solution parameters for
the 10 brains: angle: 32.2 £ 6.3, cutoff: 0.05 £ 0.012, and minlength: 4.8 & 2.5.
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Figure 3. Examples of tracked fibers by optimized and default parameters. Unoccluded visualization of spatial
relationships between fluorescent tracer signals (green) and tractography (red) for 3 injection sites: (1, 2) from
the training set; (3) from unseen marmoset subjects. Their overlap (yellow) shows common voxels, while red
fibers correspond to “false positives” Improved results for both, (a) iFOD2 and (b) global tracking algorithms,
show enlarged overlap and longer fibers connecting sub-cortical and projection areas. Figure created using
FluoRender 2.24 (https://www.sci.utah.edu/software/fluorender.html) and Inkscape 1.0beta2 (https://inkscape.
org/). Image datasets are part of the Brain/MINDS project (see Data availability section).

Validation by test set data.  Standard settings are validated by performing 5 fiber tracking runs on the training
and test sets, averaging objective values for each set, and comparing with the corresponding default performance
(Fig. 4a). TPRG improved notably from 0.32 £ 0.13 to 0.472 = 0.14 (test set) and from 0.3 £ 0.11to 0.46 + 0.12
(training set). Both performances are similar to those of individual winners above, which suggests the robust-
ness of optimized parameters in enhancement of wide-brain, region-level connections. TPR; advanced to better
values; however, different performances are evident between test and training sets, possibly due to individual
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Figure 4. Performance on test data and comparison with training results for iFOD?2. (a) Comparison of
objective’s performance between training and test sets (average values from 5 runs for each brain) shows
improvement of TPRy and TPRg, and growth control of FPR; and FPRg for the optimized generic settings.

TPRg reveals similar results for test and training sets, suggesting good generalization capabilities of optimized
parameters for full-connectome estimation. (b) ROC space and Spearman’s rank correlation coefficient (color
coded) for dAMRI- versus neural tracer-based connectomes (TPR versus FPR). Best individual solutions

(from MCDA) are indicated by dark-blue x markers. Examples of differently weighted criteria during MCDA
selection process are presented as blue circles and squares. The former case implements higher weights on TPR’s
objectives, shifting solutions to better values of TPRg, while the latter shifts to better values of FPRg by assigning
higher weights to the FPR’s objectives.

variability of the brains. FPRy and FPRg growth was controlled efficiently, with values close to 0. FPRg moved
slightly from 0.03 = 0.05 to 0.07 = 0.082 (test set), and from 0.023 =£ 0.037 to 0.065 = 0.05 (training set). Low
values of FPR along with a fixed fiber density demonstrate the efficiency of the framework in constraining the
dominance of FP.

Best solutions were mapped onto the TPRg versus FPRg ROC curve (Fig. 4b, dark-blue x markers). The
objectives, by MCDA decision criteria, were equally weighted in the solution selection process. An example of
differently weighted criteria, in which TPR weights are defined slightly above other objectives, shifts winners to
better values of TPRg (blue circles). On the other hand, weights on FPR’s shift winners to better values of FPRg
(blue squares). Spearman’s rank correlation coefficients from 20 x 500 connectome comparisons are color coded.
Best solutions, on average, reached a correlation of 0.67 = 0.05.

Global fiber tracking with fiber-passage criteria. In the second experiment, we take the global fiber
tracking algorithm?, which tracks long-range connections better than seed-based methods (DMFC-fiberCup at
MICCAT’2009). We explore the major parameters: width o, length I, weight w, chemPot ¢ and connlike L? (see
Global tractography and parameter selection at “Methods” section).

Criteria for evaluation.  Fitting can be quantified for axon trajectories at the voxel level or for projection targets
at the brain-region level. An important issue in dMRI-based fiber tracking is the difficulty of tracking long con-
nections, such as cross-hemisphere or sub-cortical connections. Accordingly, we consider the following four
objective functions (Fig. 1b): (i) distance-weighted coverage, (ii) the true/false positive ratio, (iii) projection
coincidence, and (iv) commissural passage, as explained below.

Wi

ax(wy 1S @ positive voxel in

N
(i) Distance-weighted coverage f; = TPR) = %. Here, P; = ﬁi(d) X
the 3D tracer image reconstruction that is weighted by voxel fluorescence intensity w; and the distance
d; from the voxel to the center of the injection region. This objective is maximized and uses d; and w; to
promote long-range connections, with voxels strongly connected to the injection region. Nyp is the total
number of true positive voxels found in the comparison, and Np the total number of positive voxels in
the tracer data.

w
(ii) True/false positive ratio f, = PRy Here, FPR, is the false positive rate at the voxel-level, and € is

FPR,+¢
"

the tolerance term calculated empirically and given by € = 0.006 x M—f], with pun equal to the average

number of true negative TN voxels within individual whole-brain masks for the training data set, and
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1p, similarly, the mean number of true positive TP voxels. jy is a large number. € provides the minimum
acceptable value of FPR,, considering for example, that tractography results would be adequate, even if
up to 0.6% of the TP are missed and counted as FP. Our optimization used € = 0.0013. Maximization
of this objective drives TPR}’ growth and maintains FPR, below a reasonable level, helping to constrain
the dominance of FP?*. We observed cases in which small increments of FPR, resulted in maximization
of (ii); thus, we added (i) cost explicitly to adjust (ii) in the right direction.

(iii) Projection coincidence f3 = rourq> the Spearman’s rank correlation coefficient between neural tracer
and dMRI tractography-based connectome matrices for the contralateral-hemisphere of the brain. This
objective function promotes accuracy of long cross-hemisphere projections. Global tractography was
run twice with the same parameters, and results were averaged and mapped to the tracer-based con-
nectome matrix of 20 injection regions x 104 targets parcellation. Both matrices were log-transformed
and normalized.

(iv) Commissural passage fa= . While direction-insensitive dMRI fiber tracking should yield many

“false positives” in reference to anterograde neural tracers, some estimated paths are impossible, such
as those crossing hemispheres outside of commissural areas. This criterion uses a binary mask at the
midline, covering voxels outside anatomical commissures, such as the corpus callosum and the cerebel-
lum. P,y is the number of voxels for fibers crossing the mid-line outside commissures, and V,,; is the
total number of positive voxels of the mask. This objective is targeted for minimization, and supports

Paut

the non-dominance of FP. f; is additionally evaluated as f;* = , where P;, counts the voxels of

Piy
Pin+Pout
fibers passing through the anatomical commissures. f;* provides the proportion of true anatomical
reconstructions at the commissures and the optimization accuracy for the interconnection of the two

sides of the brain.

Multi-objective optimization. 'We took the same MOO approach using NSGA-II** as in the previous experiment
(see Optimization at “Methods” section). The process optimizes several brains in parallel; however, because of
computational demands for the global tracking algorithm, we added parallelization at the fitness function calcu-
lation and prepared the code for HPC clusters. In this way, we perform several global tracking runs simultane-
ously (see Code implementation at “Methods” section).

To verify the consistency and convergence of optimized parameters across subjects, we visualize the evolution
of the five parameters and four objectives for all ten training samples (Supplementary Fig. S2b). Optimization
started with parameters at their default values (dotted line) and widely explored values within the defined search
ranges. Over generations, parameters for all brains converged to similar loci while improving the objectives.
width, weight and chemPot converged to almost the same value (see late iterations), whereas due to brain het-
erogeneity, length and connlike followed different paths to achieve the best results. This serves as an indicator of
parameter robustness for generalization.

We chose standard parameters (the generic setting) by considering trade-offs between objectives (see choice of
standard parameters by MCDA below) and using the mean and standard deviation of the best-scoring parameters
(shown by red dots and bars in Supplementary Fig. S2b and Table 1).

To evaluate optimization of multiple objectives, we visualize the pair-wise evolution of objectives (Fig. 5).
Multiple Pareto frontiers were developed (1 per brain), which are most clearly seen in f; versus f, with dotted
lines passing through the Pareto’s extremes (maximum value of f). This may be caused by subject individuality;
however, systematic sharing of “champions” enabled the algorithm to achieve optimal parameters in a similar
locus among brains.

Competing goals fi, f2, and f3 were “pushed” by the optimization from the lower-left (default parameters) to
the upper-right region (optimized parameters) as seen in fj versus f,, fi versus f3and f, versus f. f;" maintained
the proportion of valid fibers connecting hemispheres, a critical condition when the number of fibers increased
and the tractography became denser. f versus f;", f> versus f;', and f3 versus f,* indicate that 99% of the crossing
fibers passed through valid commissural voxels.

Results of fiber tracking with and without parameter optimization are visualized by overlapping dMRI-based
fiber-density maps (red) with neural tracer data (green) (Fig. 3b and Supplementary Fig. S1b). Default settings
generate sparse coverage, characterized by a few short fibers connected to the injection region. In contrast,
tractography with optimized parameters presents expanded overlap with tracer signals, demonstrating higher
sensitivity. Longer fibers were connected not only to neighboring high-concentration neural tracer regions, but
extended to cross-hemisphere areas and distant areas within the same hemisphere. The true/false positive ratio
f> and the commissural passage fi allow control of the volatile growth of FP, while sensitivity and long-range
connections are supported by the distance-weighted coverage f; and the projection coincidence fs.

We monitored the number and mean length of fibers estimated by tractography in the course of optimization
(Supplementary Fig. S2a). Both metrics increased from their default values of approximately 50, 000 fibers and
10 mm to optimized values of about 200, 000 fibers and 17 mm (see fiber length performance for a brain example
at Supplementary Fig. $3). Higher fiber density helped to increase sensitivity in comparisons with tracer data,
while longer fibers promote distant connections between source-target pairs. However, fiber density must be
constrained to avoid unrealistic results, controlled in our framework by f, and fs.

Choice of standard parameters by MCDA. We used MCDA to select the best trade-off solutions and the stand-
ard set of parameters as in the previous experiment.

Rated parameters were arranged in a matrix of 40 x m, where 40 is the arrangement of the 4 objectives x
10 brains and m is the number of parameter settings over the optimization. After averaging rates across fs, the
maximum scored parameters were selected as the winner(s) for the brain (Supplementary Fig. S4). Finally, the
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Figure 5. Objective function optimization for global tracking. Pair-wise visualization of the optimization of
the four proposed objective functions: f;: distance-weighted coverage, f,: true/false positive rate, f3: projection
coincidence, and f;": commissural passage. Our framework drives objectives toward the Pareto front in the
upper-right direction. MCDA-based best objective trade-offs across brains are shown as red x markers. The
standard setting is computed as their mean and standard deviation.

width (o) 0.07 £ 0.005 0.1
length (1) 0.45 £ 0.043 0.3
weight (w) 0.054 £ 0.027 0.133
chemPot (c) 0.106 + 0.032 0.2
connlike (L) 0.86 + 0.23 0.5

Table 1. Standard parameters for global tracking obtained by multi-objective optimization and MCDA over
multiple marmoset brains.
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Figure 6. Performance on test data and region-level connectomes. (a) Objective function comparison (average
values for 5 runs) for 6 additional marmosets shows improvement of fi, f, and f3, and consistency of f;".

(b) Performance comparison between training and test data sets for the default and optimized settings. f3 is

the most improved objective; however, improvement of fj and f, contributed to better results, as well as f,*
consistency for denser tractograms. (c) Spearman’s rank correlation coefficient (color coded) mapped onto
TPR-FPR space, from comparisons of 20x500 neural tracer- and tractography-based matrices, for the entire
optimization process. Optimized tractography results (dark blue x’s) closer to the ideal ROC coordinate (green
circles) show high correlation.

standard set of parameters is obtained using the mean and standard deviation of the winning parameters for the
10 brains. The result is shown in Table 1 along with the default parameters.

Validation. To validate the effectiveness of optimized parameters above, we compared training and test data-
sets in terms of the proposed objectives, for default and optimized parameters. First, considering only the train-
ing set, we performed 5 global tractography runs for each default and optimized setting. In the latter case, each
value is drawn from a normal distribution, with its mean and standard deviation as described in Table 1. Trac-
tography results are averaged for each brain and shown along with the performance of MCDA selected winners,
for comparison (Supplementary Fig. S5).

For individual winners and common standard parameters, on average, f; obtained values of 0.067 £ 0.036 and
0.024 £ 0.012, f> values of 11.24 £ 1.98 and 7.38 & 1.88, f30.68 £ 0.016 and 0.62 % 0.06, and f;* 0.99 and 0.99,
respectively. The standard parameters generalize well for improving cross-hemisphere projections ( f3) and com-
missural passage (f;"). For fiand f,, although the standard parameters achieved lower scores than the winners,
they outperformed the default settings. Compared to the results with default parameters, on average, f1, f» and
fzadvanced from their low values (0.003 £ 0.002, 2.3 £ 1.4 and 0.4 = 0.05, respectively) to considerably better,
optimized values (as shown above), reaching a superior distance-weighted coverage f, while constraining false
positives through f, and f4. f;* showed similar results for the three sets of parameters.

For the default case, coverage is low, and few fibers were generated, which leads to a high value of f;". However,
when f; increased by optimization, many more fibers were estimated. A high value of f;" indicates a similar level
of accuracy at the commissural passage.

Generalization capability of optimized parameters is also evaluated on 6 unseen marmoset brains (test set,
Fig. 6a). We ran tractography 5 times using default parameters and standard optimized parameters. Results show
improvement for fi, f; and f;, for all brains. f; improved on average from 0.0001 = 0.0002 to 0.006 = 0.006, f>
from 0.08 & 0.18 to 3.2 & 2.7 and f3 from 0.28 & 0.1 to 0.573 & 0.06. As expected, f;" showed similar results of
about 0.99.

Figure 6b summarizes the averaged performance for training and test data sets, showing similar results. The
objective f3 exposes better generalization performance.

Optimized parameters improved results in terms of the desired objectives for both cases, validating the pro-
posed standard parameter settings. The improvements are clearly recognized in Supplementary Fig. S6 for a brain
sample, which visualizes in high-resolution the ground-truth neuronal tracer signal (green) 3D reconstruction,
and the global tracking fibers (red) in contact with the injection region, as density maps. Optimization improves
fiber-density map matching with the neuronal tracer. Standard parameters perform similarly with decreased
density results.

fireports small values as a result of thousands of neural tracer voxels averaging the coincidences with voxels

covered by fibers, and the mapping of fibers to a high-resolution space (standard brain). We evaluated the
N

TP ,,,.
strength-weighted coverage f;* = %Np Y of axonal tracts at the voxel-level for the training set (see Supplemen-

tary Fig. S7) over the generated parameter settings. The coverage improved on average from 0.9% (default) to
15% (MCDA selected winners).

Finally, we evaluated region-level connectome matrices estimated by dMRI-based tractography in refer-
ence to the Brain/MINDS marmoset connectome data over the course of the optimization. Tractography-based
matrices were mapped to the 20 x 500 structure, as with group objectives from the 1st experiment. We calculated
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Spearman’s correlation, TPR and FPR (Fig. 6¢). The best optimization results (blue x’s) substantially overlap set-
tings close to the ideal ROC point (0.0, 1.0) (green circles), and reported on average: FPR = 0.33, TPR = 0.78,
distance to the ideal point d = 0.163, and correlation coeflicient r = 0.724. Qualitatively, improvements are
recognized by matrix visualization, using coarse-grained parcellation for a brain sample (Supplementary Fig. S8).
Compared to the sparse connections using default parameters (bottom matrix), tractography using optimized
parameters (center matrix) revealed denser and longer connections, enhancing connectivity to projection areas
in the right-hemisphere (left half of the matrices) from their origins in the left hemisphere. Optimized dMRI-
based tractography can complement the sparse structural network obtained from tracer injections (top matrix).

Comparison of tracking algorithms and objectives. For both, iIFOD2 and global tracking algorithms,
optimization increased spatial coverage and fiber length (Fig. 3, Supplementary Fig. S1), with better perfor-
mance for the global tracking case. Fiber length improved on average 4 mm (8-12 mm) for iFOD2 and 7 mm
(10-17 mm) for global tracking. Comparison between neural tracer- and dMRI-based connectomes (Fig. 4b
versus Fig. 6¢) exposes lower values of TPR; = 0.5 and FPR; = 0.04 for iFOD2 against global tracking perfor-
mance of about TPRg = 0.78 and FPRg = 0.33.

The main causes of these results are: global tracking implemented “tolerance” for FP, while iFOD2 optimized
objectives to explicitly control FP. Tolerance is relevant because dMRI-based tractography finds both incoming
and outgoing fibers to and from an ROIL, compared to an anterograde tracer-based connectome of only outgoing
fibers. Some “false” positives are reasonable. In the global tracking experiment, a tolerance term € is specially
implemented by f2; however, constraints on FP at voxel-level in comparisons with neural-tracer 3D reconstruc-
tions ( f2) and at the commissural passage ( f4), provided additional FP tolerance for fibers estimated outside
the boundaries implicitly defined by the objectives, namely unconnected fibers from the injection region, fibers
outside the coverage of tracer references, and fibers not crossing commissures. On the other hand, the iFOD2
case minimized group and individual FP, at region-level connectomes built from tractograms with a fixed fiber
density.

Nevertheless, Spearman’s rank correlation coefficients (average of the best solutions) for both cases reveal
similarities: r = 0.67 (iIFOD2) and r = 0.724 (global tracking).

Consequently, connectivity is enhanced, not only from/to injected regions, but brain-wide (Figs. 3, 7), show-
ing richer connection estimates for optimized cases. This demonstrates that better connectomes can be achieved
by applying our framework, independently of changes in fiber density (see the fixed density case Fig. 7a). This
suggests that despite using fractional references from tracer injections at the left prefrontal cortex, whole-brain
connectivity can be improved.

Results of the two experiments demonstrate the general applicability of our framework to different fiber-
tracking algorithms and evaluation criteria, and confirm the importance of objective design for improving fiber
tracking (see “Discussion” section).

Discussion
We optimized and validated parameters of fiber tracking algorithms*** by exploiting fluorescent tracer and
dMRI data from the same marmoset brains in the Brain/MINDS project®.

To address competing goals of sensitivity and specificity for multiple brains, we took a parallel, multi-objective
optimization framework. Optimization was based on an NSGA-II evolutionary approach and implemented cham-
pion parameter sharing across brains to promote parameter generalization while maximizing objectives (Fig. 8).

For the iFOD2 algorithm, four objective functions (Fig. 1a) were used for region-level assessments: two
group objectives (TPRg and FPRg rates, for comparisons with Brain/MINDS tracer connectome data from 20
marmosets), and two individual objectives (TPR; and FPRy rates, for comparisons with individual tracer injection
data). Optimization constrained FP efficiently to values below 4% on average (Fig. 2), driving the correlation
with Brain/MINDS connectome areas to 67% (Fig. 4b), and resulted in important increases of TP (Fig. 4a). With
respect to default performance, TPRg improved from 30% to 50% (Fig. 2), and the average fiber length from 8 mm
to 12 mm (Fig. 3a, Supplementary Fig. Sla). Improvements were independent of growth/loss of fiber density.
Instead, they relied entirely on better parameters.

For the global tracking algorithm, we developed four objective functions (Fig. 1b); two voxel-level objectives

(f1: distance-weighted coverage, f»: true/false positive ratio), a region-level objective ( f3: projection coincidence),
and an anatomical constraint (f;: commissural passage). During optimization, while constraining impossible
fibers at the commissural passage and controlling the growth of false positives, our framework improved dMRI-
based fiber tracking performance with respect to default values: average fiber length from 10 to 17 mm (Fig. 3b,
Supplementary Fig. S1b, S2 and S3), voxel-wise coverage of axonal tracts from 0.9% to 15% (Supplementary
Fig. S7), and correlation of target areas from 40% to 68% (Supplementary Fig. S5).
S0 diy
Td,v) )
where the second term is the normalized sum of distances from TP voxels to the center of mass of the injection
region, similar to fj, but using only d; as a weighting factor. However, results for the combined single-objective
function by the co-variance matrix-adaptation evolution strategy (CMA-ES)***” were unsatisfactory, with a huge
density of fibers, dominance of false positives, and many fibers crossing hemispheres outside the
commissures.

An important feature of our work is that comparisons of dMRI and reference data are performed in parallel
for multiple brains, which can account for individual variability. From the multiple Pareto-optimal solution for
multiple brains, we used an MCDA method to select a standard set of parameters (see Multiple criteria deci-
sion analysis for standard parameters, and Table 1). Excluding brain samples used for optimization from the

Originally, we started this effort by optimizing a single objective function, such as C? = FPR2 + (1 —
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Figure 7. Whole-brain dMRI-based optimized and default connectomes. Square dMRI-based matrix
comparison for one brain-subject example, using optimized (left) and default (right) parameters for (a) iFOD2
and (b) global tracking algorithms.

test set, we verified that the standard parameters substantially improve fiber tracking performance compared to
the default parameters (Figs. 4, 6, 7 and Supplementary S8). Standard parameters generalized better on objec-
tives evaluating connectome similarities (TPRg, Fig. 4) and correlations ( f3, Fig. 6a,b), whereas the effect from
individual subject variability is noticed in objectives measuring local features.

Improvements were similar for both experiments, but more prominent for the global tracking algorithm with
more elaborated objectives and tolerance for FP. However, the 1st experiment verified improvements on a widely
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Figure 8. Multi-objective optimization (MOO) process. (a) From the initial population of parameters (parents,
light blue dots), fitness values are obtained. Tournament selection (selection 1) creates offspring (purple dots).
Crossover and mutation are performed on offspring and fitness values are calculated. From the combined set of
parents and offspring, selection of the best elements (selection 2) creates the next generation (green dots). The
best elements are shared between brain optimization processes (red dots). Most dominant elements (selection
3) are taken from the next generation and mixed with champions via a crossover operation. After obtaining
objective values for matched elements and original champions, the next generation is upgraded by selecting

the best elements from the joint set “next generation + original champions + matched champions” and sent

as a parent for the next iteration. (b) One MOO runs for each brain of the training data set, (c) sharing the
i-generation champion with all MOO-processes (black arrows) and receiving external champions as well (red
arrows). Figure created using The MRtrix viewer 3.0.1 (https://www.mrtrix.org/) and Inkscape 1.0beta2 (https://
inkscape.org/). Image datasets are part of the Brain/MINDS project (see Data availability section).

used tracking algorithm (MRtrix3), with simpler objective functions and lower computational requirements (see
Code implementation at “Methods” section).

Results on unseen subjects demonstrate the generalizability of the standard parameters to marmoset.
Although both experiments used reference data from 20 tracer injections at the prefrontal cortex, improved
tracking was not limited to that area, but to the whole-brain, as illustrated in extended fibers in Fig. 3 and brain-
wide region-to-region connectomes in Fig. 7. The Brain/MINDS marmoset connectivity map is an on-going
effort. New reference data are expected in the short term; thus, our framework will re-run optimizations on
complete data sets, setting the standard parameters reported here as initial conditions. In addition, an important
follow-up work will be to verify whether the same solution applies to diseased animals, making new comparisons
between dMRI and tracer data of those marmoset subjects.

Our optimization and validation framework can be flexibly applied to different tracking algorithms and
objective functions, as demonstrated in the two reported experiments, as well as to different species. Complete
tracer data sets exist for mice*® and macaques®, although having similar tracer data from human subjects would
be difficult, our framework allows integration of multiple biological constraints*’. Applying the method to other
species will be important, not only for improving current results, but for verifying consistency/scaling of opti-
mal parameters across species. The implementation code is available to the scientific community for improving
accuracy and reliability of dMRI-based fiber tracking.

The framework allows assimilation of additional data as references. Recently, Zhang et al.*! proposed optimi-
zation of dMRI-based fiber tracking using the region-level coincidence with neural tracer data in the CoCoMac
database® and matching of fiber orientations with myelin staining data from a single macaque brain*2. They took
the average of Youden’s index (the sum of sensitivity and specificity)* for connected regions and the coincidence
index of fiber orientation as the criterion, and performed a grid search in a two-dimensional parameter space
of a fiber tracking algorithm*.

Other possible references include molecular cues to targets* and connectivity reported by electrophysiologi-
cal experiments*. Multiple references are desirable, and the framework manages them in a data-driven manner.
We think that more comparisons are better, despite low dMRI resolution and lack of directionality. Comparisons
are beneficial in a wider sense from potentially improving cross fiber issues to clarifying the limitations of fiber
tracking.

How to define the best objective functions from the available data, especially when the data sources are
not strictly the ground-truth, but an approximation, poses new challenges. Our optimization defined equally
weighted objectives to mitigate well-known issues of dMRI fiber tracking, but differently weighted objectives may
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work better. Objective functions can have one of two roles: “promoter” functions that maximize mapping between
reference and estimated data and “constrainer” functions that minimize assumed incorrect data mapping.

A suitable definition of objectives will play an important role in avoiding over-promoted or under-penalized
results. Incorporation of hybrid objectives, such as the True/False positive ratio, may suffice to mitigate unbal-
anced optimization.

Other important factors in choosing objective functions include whether to take global features, such as
wide-brain connectome similarities or local features like axon trajectory mapping, at voxel-level.

Objective functions designed on top of noisy and partial observations of the ground-truth should allow
tolerance for “false positives”, as in the case of incoming fibers to the injection region for anterograde neural
tracer data. We designed the multi-objective framework to equally improve important objectives while providing
tolerance, considering that cohesion of optimized objectives in trade-off solutions leads to constraint of authentic
undesirable fiber tracking estimations.

In that context, an additional challenge is how to choose the best solution from a multi-dimensional Pareto
front. We took a multi-criterion decision analysis (MCDA) that implements criteria weighting and scoring.
MCDA is useful when some objectives need to gain more than others due their relative importance, unbalanced
condition or deficient objective set-up.

Conclusion

We proposed a flexible framework that improves dMRI-based fiber tracking by multi-objective optimization
using neural tracer data as a reference. The framework runs with data from multiple brains cooperatively and
in parallel. It was tested on different tractography algorithms, parameters, and objectives, and showed improve-
ments in terms of defined objectives and other criteria for training and test data sets.

Multiple objective functions were designed to address critical issues in dMRI tractography. For iFOD2 algo-
rithm, the parallel optimization process constrained successfully false positives, while increasing sensitivity. For
global tracking algorithm, it promoted sensitivity, strong, long-range connections and high correlation with
contralateral projection areas, while controlling unrealistic fibers at the commissural passage and false positives
in comparison with neural tracer.

These results indicate the importance of optimization and validation of dMRI-based fiber tracking algorithms
and also raise concerns about connectome studies that lack validation of fiber tracking algorithms.

There is a real opportunity to exploit multi-modal data being generated by multiple global brain projects to
establish reliable methods for inferring brain structures, functions, and their relationships.

Our work provides the framework to implement it.

Methods

Statement on the use of experimental animals. Marmosets were not directly used in the present
work. Imaging data were obtained in a separate collaborative study, and will be made available upon publication
of the corresponding study.

Although there was no direct use of experimental animals, we want to emphasize that fluorescent neural
tracer experiments and diffusion-weighted magnetic resonance imaging in Brain/MINDS were conducted with
approval of the Animal Experiment Committee of RIKEN, in compliance with all required regulatory and ethi-
cal guidelines.

Optimization. The non-dominated sorting genetic algorithm II (NSGA-II)* is arranged for parallel opti-
mization of the training set (Fig. 8).

1st experiment initial settings Parameters 0=[angle, cutoff, minlength] are initialized by their default val-
ues jug = [45,0.1,2.0], while exploration ranges are settled heuristically with lower [10, 0.01, 1.0] and upper
[90, 1.0, 18.0] bounds, respectively. A population M of size 8 is drawn from random uniform distributions with
mean g and standard deviation oy = 0.01, except for o cyof = 0.001. Each element M; of M, called an individual,
is an array of length 3, corresponding to the parameters to optimize 6.

2nd experiment initial settings Parameters 6 = [width o, length [, weight w, chemPot ¢, connlike L
(see Global tractography and parameter selection at “Methods” section) are initialized to their default val-
ues up = [0.1,0.3,0.133,0.2,0.5], and the exploration is defined within heuristically determined lower
[0.01, 0.24, 0.01, 0.05, 0.5] and upper [0.15, 0.65, 0.22, 0.6, 6.0] bounds. A population M of size 8 is drawn from
random uniform distributions with mean /44 and standard deviation oy = 0.01 except for oye;gn; = 0.001. Each
individual M; is an array of length 5.

Generational process Fitness values f(M;)’s of the initial population M are calculated and the generational
NSGA-II*-based process begins. Depending on fitness values, tournament, dominance-based selection between
2 individuals M; is performed. If the f(M;)’s pair does not inter-dominate, selection is accomplished by evaluating
the crowding distance®®. With repetition, the tournament selects 8 offspring. We choose to invalidate the fitness
of the offspring and perform crossover and mutation directly. Crossover picks individuals at even positions of the
offspring array and pairs them with individuals in odd positions. Crossover uses simulated binary crossover?,
which is applied to each pair with probability cxp = 0.2 of matching two individuals. Mutation is applied to all
individuals among the offspring using a polynomial approach*’. Offspring fitness values are calculated. Then,
from the combined set of parents and offspring, the next generation of 8 elements is selected based on fitness
values and spread®. In addition, the best individual is selected from the combined set as the local “champion”
Champions are shared among brains to promote convergence of parameters in a similar locus. A process bar-
rier is used as a synchronization step to allow n = 10 training brains to receive (n — 1) = 9 champions. Once all
champions are shared, the process barrier is set to “OFF” and the process continues. From the next generation
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set, the 3 dominant individuals are selected by tournament® and added to the champion set. Crossover with
cxp = lis applied to the extended champion set by matching even- with odd-positioned individuals, as in the
preceding matching step. We process fitness values for the original and matched champions and a final selection
of the best 8 individuals from the total set “next generation + original champions + matched champions” is used
to upgrade the next generation set M. From M, in like manner, offspring are selected and the process continues
for another generation.

1st experiment adjustments From the 8th evolution, bounds were constrained to [25, 0.05, 1.0] (lower) and
[55, 0.5, 10.0] (upper) to accelerate the optimization process.

2nd experiment adjustments The process explored several parameter values widely, and after several itera-
tions, it gradually exposed a bifurcation of the inspection. Most of the parameters roughly followed an explora-
tion path on each side of the default value. In order to decide which path leads to advancement of objectives, we
compared objective values (Supplementary Fig. S2b). The comparison helps to constrain exploration by reducing
searching intervals toward better values and less computation time, speeding-up optimization. The new explora-
tion lower [0.01, 0.32, 0.01, 0.01, 0.1, ] and upper [0.10, 0.65, 0.13, 0.22, 3.0] bounds, achieved parameter stability
after approximately the 20th iteration.

Both optimizations ran for 10 brains in parallel (training set) and stopped when slight changes in parameters
produced almost no change in objective values, reaching E = 32 generations. Because optimization calculates
fitness values twice for each generation (3 times for the initial one), the total number of iterations for each brain
was E* =32 x 2+ 1

Code implementation. The method reported here was implemented on a cluster HPC computer for global
tracking algorithms. It processes several brains in parallel while sharing champion settings over the generations.
Separate jobs are generated (1 job per brain) and synchronized for sharing. Jobs keep running evolutionary pro-
cesses and were tested on a single core with low memory.

An additional parallelization of the fitness function was added due to the computational challenges of global
tracking. It allows several runs of global tracking at the same time. A single global tracking run takes from 1
to 3 h for the initial generations. Fiber density and length increase gradually while improving the parameters.
Then, every run becomes computationally expensive. For each fitness function calculation, the synchronized
jobs dispatch 8 “heavy” jobs (1 job per individual parameter setting). A “heavy” job uses more than 1 core and
requires higher memory for reading data sources (masks, neural tracer reconstructions, dMRI, atlas, injec-
tion regions), performing global tracking n times, calculating objective functions, and recording results (jobs
information, parameters, tractograms, density maps, champions, connection matrices, objective values) in a
folder-organized structure.

By this method, our framework parallelization is implemented at the level of individual brains and global
tracking runs. The whole optimization process took around 4~5 weeks.

Additionally, an alternative portable implementation is made available for desktop PC’s, targeting commonly
used tractography approaches that do not require important computing resources. This version exploits mpidpy*
to run parallel evolutionary processes, one per brain, while the fitness function runs sequentially within each
process. Champion sharing and process synchronization are implemented as well. The iFOD2 algorithm opti-
mization used this version of the code, obtaining results in less than 50% of the HPC implementation running
time. Beside the fiber tracking algorithm, the complexity of objective functions and the number of fibers to
generate may change the performance.

Fluorescent neural tracer data. Segmented neural tracer 3D images (Figs. 3, 8b, Supplementary Fig. S1
and S6a) were generated by marmonet®. Marmonet is the Brain/MINDS Al-driven pipeline for automated
segmentation of tracer signals. It incorporates state-of-the-art machine learning techniques based on artificial
convolutional neural networks*’ and robust image registration. Raw images show the fluorescent signal of an
anterograde tracer, a protein-based virus that tracks axons from injection region cells to their point of termi-
nation. Images are taken using two-photon microscopes, TissueCyte 1000 or TissueCyte 1100. Initially, they
show several patterns, shapes, contrasts, and intensities. After marmonet pre-processing, image stitching, and
segmentation, high-contrast results of the injection region and its center, corresponding cell bodies, and axon
tracers are obtained. Segmentation results include voxel-intensity weighting from the raw tracer signal. All pro-
cessed images are mapped from their 1.39 x 1.34 x 50 pm? resolution to the Brain/MINDS reference image
space of 100 x 100 x 200 jwm? resolution. Tracer injection regions and their centers as 3D reconstructions were
used in our optimization as well.

Despite differences between neural tracer and dMRI tractography, important voxel-level features from the 3D
tracer segmentation images were exploited by the framework to improve fiber tracking results. We considered
voxel intensity and its distance to the injection region as important features to promote strong, long-range con-
nections in dMRI-based tractography. Thus, we assumed both features as common characteristics.

Diffusion MRI. dMRI data were generated by ex-vivo marmoset experiments. Marmosets were perfusion-
fixed (Table 2) and cranial brains were extracted. Brains were immersed in PFA reagent for 2-3 days, which was
then replaced with PBS reagent. MRI imaging was performed on brains immersed in fluorinert liquid. A 9.4-
Tesla small-animal MR scanner was used, controlled with a Bruker Paravision 6.0.1. The solenoid coil had an
inner diameter of 28 mm. Diffusion imaging was accomplished using a spin-echo diffusion-weighted, echo-pla-
nar imaging sequence with repetition time TR = 4000 ms, echo time TE = 21.8 ms, and b-value = 5000s/ mm?.
The acquisition matrix was 190 x 190 x 105 over a 38 x 38 x 21 mm? field-of-view (FOV), resulting in a native
isotropic image resolution of 200 pwm. The diffusion sampling protocol included 128 unique diffusion directions
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Brains subjects used for optimization and validation

Brain id ‘ Gender ‘ Fixed period (h) | Age (years until the day of sacrifice)
Training data set

R01_0070_CM1180F F 80 7
R01_0029_CM696F F 48 6
R01_0072_CM1176F F 45 11
R01_0030_CM690F F 48 6
R01_0078_CM1347F F 95 9
R01_0054_CM1060F F 60 3
R01_0071_CM1178F F 143 8
R01_0034_CMS521F F 48 3
R01_0039_CM?703F F 48 6
R01_0033_CM694F F 48 6

Test data set
R01_0026_CM692F F 48
R01_0043_CM628F F 52
R01_0040_CM710M M 72

F

F

M

RO1_0053_CM1061F 58
RO1_0048_CM1011F 60
R01_0046_CM1023M 60

Wl Wl || ~]| o

Table 2. Characteristics of marmoset brains used in this study. The same brains were handled for tracer
injections and dMRI imaging.

and 2 non-diffusion-weighted (b0) measurements (the first b0 image was removed because it usually contains
noise). Total acquisition time was 2 h 40 min per sample.

Pre-processing. dMRI data, bvec and bval files, and individual whole-brain masks were acquired from
the Brain/MINDS dMRI-pipeline. dMRI was de-noised using MRtrix3* in 3 steps. First we applied dwide-
noise, which exploits data redundancy in the PCA domain using random matrix theory***'; secondly mrdegibbs
removed Gibbs ringing artifacts by local subvoxel-shifts®?. Finally, a mask filter was applied to the whole-brain
mask, eroding 2 voxels to remove noise at the boundaries and to constrain abnormal fiber growth during fiber
tracking. Injection region masks were dilated 2 voxels to improve detection of fibers contacting them, as support
against potential bias in the registration and injection region detection. For registration tasks we used b0 images

and advanced normalization tools ANTs>>.

Density maps. Evolutionary optimization requires comparison of fiber-density maps in standard brain
space against neural tracer data (Fig. 1b). A fiber-density map is built for each individual (a particular parameter
setting) using MRtrix3 commands. First, duplicated fiber tracking results are transferred from dMRI space to
standard brain space by normalization mapping (tcknormalise or tcktransform). In the latter space, tractograms
are intersected with the corresponding tracer injection region using tckedit. The resulting subset of fibers, as well
as the complete tractogram, are converted to density maps by tckmap and averaged over the duplicated tractog-
raphy runs. The density map corresponding to the subset of fibers is used for computation of f;and f. Similarly,
fi is measured by the intersection of the commissural mask with the density map of the complete tractogram.

Voxel weighting. Each voxel of TPR} (fi and f,) is weighted with 2 factors obtained from neural tracer
data, the distance d; and intensity w; (Fig. 1b). The center of the injection region contains few voxels. Refinement
to a unique voxel is performed by summing all x, y, and z-coordinates and dividing each sum by the correspond-
ing number of voxels, giving a unique 3D position. The updated center is used to calculate distances d; from all
TP voxels to the injection center. Distances d; are normalized by the maximum observed distance. Neural tracer
3D images provide voxel intensities w;, which are associated with connection strengths from the injection region.
Similarly, w; are normalized by the maximum observed intensity.

Global tractography and parameter selection.  For the second experiment, dMRI-based tractography
was performed using a global tracking algorithm?®. This method provides the whole-brain connectivity configu-
ration that optimally fits the acquired data?’-%°. The optimization applied is such that each particle (also called a
segment) tries to mimic the source data, promoting its closeness to the measurement in anisotropic areas (e.g.,
the white matter), and inferring information in ambiguous isotropic areas (e.g., gray matter) by neighboring ani-
sotropic areas. We selected this algorithm due to its documented reliability in terms of position, tangent direc-
tions, and curvature of reconstructed fibers with a phantom dataset at the DMFC-fiberCup at MICCAI'2009.
However, it requires optimization for specific anatomy or species.
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Global tracking does not use pre-defined seed(s), requiring no human intervention. Fibers are built with small
line segments that form chains during tractographic optimization, and their number and orientation are adjusted
to match data obtained from high angular resolution diffusion imaging (HARDI). From the set of segments and
their connections, a predicted MR-signal is computed. Connection behavior between segments is controlled
by internal energy from two parameters selected as relevant to our optimization: length [ is the fiber segment
length, and connlike L is the likeliness that two segments link together (also known as connection potential).
External energy measures the difference between the current and predicted diffusion-weighted HARDI signals.
From the external energy we designated as important parameters: the weight w contribution, and the width o of
the prototype-signal of each segment. In addition, two more parameters were considered: the chemPot2 ¢ (cost
of adding a particle) and chemPot1 (similar to chemPot2, also known as the particle potential, which regulates
the number and distribution of particles).

To test the significance of the selected parameters, we pre-evaluated them by running global tracking on 3
brains and assessing the fiber number and length variability caused by a single parameter change, while keeping
others fixed at their default values (Supplementary Fig. S9). Weight, width, length and connlike produced changes
in fiber density and length. However, changes of chemPot2 and chemPot1 values, produced almost no effect on
fiber density and length, practically unnoticeable in the latter case. Therefore, we selected the first 4 parameters
and chemPot2 (renamed as chemPot) for optimization.

Data availability

Optimization process code is publicly available on github (https://github.com/oist/gt_moo/). It can be adapted to
other fiber tracking algorithms, data sources, and objective functions. The global tracking algorithm is available
at https://www.uniklinik-freiburg.de/mr-en/research-groups/diffperf/fibertools.html. Datasets (neural tracer,
dMRYI, standard brain, atlas, neural tracer connectome, masks) will be made available as part of the Brain/MINDS
project in the near future (data portal site: https://www.brainminds.riken.jp). All other data presented in this
study are available from the corresponding author upon request.
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