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Giant paramagnetic 
Meissner effect in multiband 
superconductors
R. M. da Silva1, M. V. Milošević2, A. A. Shanenko3, F. M. Peeters2 & J. Albino Aguiar3,1

Superconductors, ideally diamagnetic when in the Meissner state, can also exhibit paramagnetic 
behavior due to trapped magnetic flux. In the absence of pinning such paramagnetic response is 
weak, and ceases with increasing sample thickness. Here we show that in multiband superconductors 
paramagnetic response can be observed even in slab geometries, and can be far larger than any 
previous estimate - even multiply larger than the diamagnetic Meissner response for the same 
applied magnetic field. We link the appearance of this giant paramagnetic response to the broad 
crossover between conventional Type-I and Type-II superconductors, where Abrikosov vortices 
interact non-monotonically and multibody effects become important, causing unique flux 
configurations and their locking in the presence of surfaces.

The diamagnetic Meissner effect is one of the hallmarks of superconductivity, where applied magnetic field 
is ideally screened out of the superconductor when cooled below the critical temperature Tc. However, 
many field-cooled experiments on various materials over the past two decades detected a paramagnetic 
response, i.e. enhanced magnetic field inside the sample, usually referred to as paramagnetic Meissner 
effect (PME) or Wohlleben effect. The materials in question range from elementary ones such as Nb1,2, to 
much more complex high-Tc cuprates3–9. One proposed explanation for the enigmatic origin of PME in 
cuprates is based on the d-wave symmetry of the order parameter and the idea that π junctions formed 
due to Josephson coupling between grain boundaries can result in spontaneous current loops with sig-
nificant magnetic moments10–15. A much simpler and more general explanation is the compression and 
trapping of magnetic flux on cooling. Using this picture, Koshelev and Larkin16 calculated the magnitude 
of PME in thin stripes of conventional superconductors, and concluded that its theoretical maximum is 
~27% of the full Meissner response for the given magnetic field. Kostić et al.17 performed a supporting 
experiment on bulk Nb, and further concluded that polishing the sample surfaces strongly alters the 
PME, i.e. that surface barriers for flux entry and exit play an important role.

The appearance of PME due to flux compression is easiest to understand in the case of mesoscopic 
samples, where the influence of confining boundaries is crucial. There, in analogy to surface super-
conductivity, during field-cooling the superconducting order parameter nucleates at the sample surface, 
and traps a multiquanta (giant) vortex inside the sample. Such large and compressed flux may lead to 
paramagnetic response, as first predicted by Moshchalkov et al. using self-consistent Ginzburg-Landau 
simulations18, and subsequently verified experimentally by Geim et al.19. A simple consideration shows 
that the paramagnetic moment strongly depends on the sample thickness, so that in very thick samples it 
appears only at very large fields and scales with penetration depth λ over lateral size of the sample, while 
in thin plates it can be significant and scales with λ over thickness20,21. Therefore, the enigmatic PME in 
high-temperature superconductors becomes intrinsic for thin mesoscopic conventional superconductors.
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Recent years have seen the rise of interest in multiband superconductivity, particularly since its dis-
covery in MgB2 and in iron-based materials22–24. The former has the highest Tc of intermetallics; the 
latter are layered and high-temperature superconductors. To date, there have been no investigations of 
the paramagnetic response in these materials. Instead, a lot of attention has been paid to their rich vor-
tex matter25, and their possible classification outside the Type-I/Type-II dichotomy26,27 due to observed 
non-monotonic vortex interaction28. Early works on single-band superconductors already discussed the 
broad crossover between conventional types of superconductivity29–35, where Abrikosov vortices exhibit 
long range attraction and penetration of vortices manifests as a large magnetization jump from the 
Meissner state to the mixed state (see e.g. Ref.  [32]). The lower bound of the crossover is given by the 
Hc(T) =  Hc2(T) line in the parametric space (Hc being the thermodynamic critical field and Hc2 the upper 
critical field)32–37, below which textbook Type-I behavior takes place (for Hc >  Hc2 only Meissner state is 
thermodynamically stable, unless mesoscopic effects are strong, see Ref. [38]). The disappearance of the 
long-range vortex attraction marks the end of the crossover domain, and conventional Type-II behavior 
is recovered. This picture was recently detailed and extended to the multiband case in Ref.  [39]. It is 
clear that non-monotonic vortex interaction and other interplay effects between condensates in multib-
and superconductors are bound to also affect the interactions of trapped magnetic flux with the sample 
boundaries, and can lead to novel manifestations of the paramagnetic Meissner response. To reveal, 
quantify and explain the latter is the core objective of the present report.

Results
We consider a larger than mesoscopic two-band superconducting slab of width w (w/λ ranges from 15 
to 50 for the considered parameters) in a parallel magnetic field (see Fig. 1), and report particular behav-
ior of the sample magnetization as a function of the applied field [M(H) loops]. We primarily focus on 
two-band materials, but our findings can be qualitatively extrapolated to systems with more than two 
bands. The calculations are performed within the two-component Ginzburg-Landau (TCGL) theory (see 
Methods), where we have cautiously set a sufficiently high temperature T to ensure the qualitative and 
quantitative validity of our predictions in the context of recent debates40–45, and we used full microscopic 
expressions of all coefficients in the theory44–46. TCGL theory then comprises eight independent param-
eters, namely, the Fermi velocities of the bands v1 and v2, the elements of the coupling matrix λ11, λ22 
and λ12 =  λ21, the total density of states N(0) as well as the partial density of states of the first band n1 
(note n1 +  n2 =  1), and finally Tc, which sets the energy scale W T8 7 3c

2 2 2π ζ= / ( ). By fixing the unit of 
length ζ1 and normalizing the order parameters by W, the parameters v1 and Tc are fixed, and we are left 
with six parameters in the model: λ11, λ22, λ12, v1/v2, n1 and N(0). Instead of choosing N(0), we opt to 
show the GL parameter of the first (stronger) band-condensate cW
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for the expected magnetic behavior of the sample.
In what follows, we consider an infinitely thick slab of width w =  80ζ1, and use periodic bound-

ary conditions in the longitudinal direction (with size of the unit cell l =  120ζ1, see Fig.  1). Without 
loss of generality, we take for the remaining microscopic parameters of the sample: κ1 =  1.5, λ11 =  1.55, 
λ22 =  1.3, λ12 =  0.09 and n1 =  0.48. Note that such choice of parameters does not correspond to any par-
ticular material, and is actually by no means unique - since our main study will concern the dependence 
of the magnetic properties on the ratio of the Fermi velocities v1/v2 and temperature. We demonstrate 
these properties via calculated magnetization [M(H)] loops while adiabatically sweeping the magnetic 
field up and down.

In Fig. 2 we show the M(H) loops at T =  0.94Tc, for different values of v1/v2. By increasing the latter 
parameter, we are actually decreasing the characteristic length scale of the second condensate 

v W62 2ζ = /  (since ζ1 is fixed as the unit of distance) and we are thereby driving the system into the 
Type-II magnetic behavior (since v
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increasing; for calculation of the penetration depth λ, please see Ref.  28). This directly manifests in 
magnetization curves: for low v1/v2(0.3) one easily recognizes typical response of a Type-I slab (see 

Figure 1.  Oblique view of the sample, the superconducting slab of width w, very long in other 
dimensions (indicated by dashed lines), in parallel magnetic field H. 
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Fig. 2(a)), with superheated Meissner state in increasing field (with subsequent collapse to normal state), 
and supercooling in decreasing field47, with some flux trapping present; for high v1/v2(0.65), the 
expected response of a Type-II slab is recovered48, still with some paramagnetic flux trapping (see 
Fig. 2(c)). However, at intermediate values of v1/v2 a uniquely different shape of the magnetization loop is 
found, with a pronounced jump from the Meissner state to the mixed state with increasing field, and a 
very pronounced paramagnetic response in decreasing field (see Fig. 2(b)).

In increasing field, all calculated magnetization loops exhibit a superheated Meissner state above the 
thermodynamic critical field Hc, where the superheating field Hsh agrees very well with the seminal cal-
culations of Matricon and Saint-James for Hsh(κ) of single-band materials49. At H =  Hsh, superconductiv-
ity is either destroyed (for v1/v2 <  0.34) or a jump to the mixed state occurs (for v1/v2 >  0.34). The 
delimiting value of v1/v2 =  0.34 exactly satisfies the condition Hc =  Hc2. In decreasing magnetic field, the 
superconductivity nucleates at the surface superconductivity field Hc3

46. Indeed, the nucleated states were 
only superconducting at the surfaces of the slab, with a large normal domain in the interior of the slab. 
For further lowered field and v1/v2 <  0.34 the normal domain remains trapped until abruptly expelled 
from the sample at the expulsion field He. This analysis confirms that magnetic response of the system 
for v1/v2 <  0.34 is the one of Type-I superconductors, since typical superheating-supercooling picture 
holds there, Hc2 is smaller than Hc, and no vortices are found in the paramagnetic branch where flux was 
trapped upon nucleation of surface superconductivity. However, while decreasing field for v1/v2 >  0.34, 
where consequently Hc2 >  Hc, the normal domain becomes unstable at field Hd but is not expelled; 
instead, it spreads into a vortex configuration, stable down to persistently lower expulsion field He as v1/v2 
is increased. Simultaneously, flux trapping becomes notably more efficient, so that the vortex exit is 
hampered in decreasing field and paramagnetic response increases to its maximum at He. This tendency 
continues up to v1/v2 ≈  0.53, for which paramagnetic response is almost an order of magnitude larger 
than the Meissner response at H =  He, and approximately 30 times larger than the largest theoretical 
estimate of paramagnetic response to date (scaled to the diamagnetic response at a given field, see 
Ref. [16]). We therefore refer to this property as giant paramagnetic response (GPR). For v1/v2 >  0.53, the 
cumulative paramagnetic response is still very large but gradually decreases, and magnetization curves 
in decreasing field connect to zero without any abrupt flux expulsion. In other words, we approach the 
Type-II limit, in which magnetization is expected to hover around zero for descending field in the pres-
ence of surface barriers48. In Fig. 3, we summarize the observed maximal amplitude, Max(4πM/H) in the 
entire field range, and the total cumulative paramagnetic response, M H M H dH4 H H

4 0

c c
∫π / = ( / )π , as a 

function of v1/v2, extracted from Fig. 2.
Based on Fig. 3, we argue that the giant paramagnetic response is characteristic for superconductors 

between conventional Type-I and Type-II39. Namely, this pronounced paramagnetic response is exactly 
found for sample parameters between the line Hc(T) =  Hc2(T) and the line where long-range vortex 
interaction changes sign (determined by effective GL parameter κ* calculated after Ref.  [28]), with a 
maximum found close to the parametric line where surface energy (σSN) of the superconductor-normal 
metal (S-N) interface changes sign (determining the change in the polarity of the short-range vortex 
interaction28). For the microscopic parameters considered here, we show this domain in Fig.  4(a), as 
a function of v1/v2 and temperature. To test our hypothesis further, we calculated an additional set of 
M(H) loops, shown in Fig. 4(b), for fixed v1/v2 =  0.55 and varied temperature indicated by yellow arrow 
in Fig.  4(a). From Fig.  4(b), we confirmed exactly the same behavior of the loops and relationship of 

Figure 2.  Magnetization M(H) loops at T = 0.94Tc, for sequentially increased ratio of the Fermi 
velocities v1/v2 (and other parameters λ11 = 1.55, λ22 = 1.3, λ12 = 0.09, n1 = 0.48, and κ1 = 1.5), obtained 
by sweeping up and down the external magnetic field H (given in units of the thermodynamic critical 
field Hc). 
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the giant paramagnetic response (GPR) with the delimiting lines of the critical domain: for T ≥  0.98Tc 
the expected response of a Type-II slab is found, for 0.98Tc >  T >  0.91Tc the paramagnetic response in 
decreasing field increases when crossing the long-range vortex attraction line, and finally a pronounced 
paramagnetic response followed by a jump to the Meissner state is observed when crossing the σSN =  0 
line. Besides being useful for reaffirming our conclusions, this temperature dependence of the GPR can 
also be directly verifiable experimentally. Here, the considered samples are ideally clean, but even in 
realistic samples where flux trapping is present even at zero field, the rise and fall of GPR as a function 
of temperature will be easily observable in the above discussed scenario. Note that in general, changing 
any of the parameters can drive the in silico material across the crossover between the types of super-
conductivity, and thereby change the paramagnetic response. GPR is only sensitive on the regime of 
superconductivity the material is in, i.e., where the taken parameter set lies in the reconstructed Fig. 4(a) 
- Type-I, Type-II superconductivity, or in between.

Figure 3.  Maximal paramagnetic response in decreasing field at T = 0.94Tc (red) and its total cumulative 
value over the field span (black), as a function of v1/v2. Vertical lines indicate where Hc =  Hc2, where the 
S-N surface energy changes sign (i.e. σSN =  0), and where long-range interaction of vortices changes sign (left 
to right, respectively), delimiting the crossover range between standard types of superconductivity.

Type-II

Type-I(a) (b)

SN

Figure 4.  (a) The boundaries between different types of superconductivity in the (v1/v2,T) plane, for other 
parameters as in Fig. 2. 1 2κ = /⁎  line marks the onset of long-range attraction between vortices. At 
Hc(T) =  Hc2(T) line, the mixed state vanishes in the bulk material. Dashed line shows where the energy of 
the superconductor-normal metal interface (σSN) changes sign. Arrow shows the path to obtain the sequence 
of magnetization curves shown in panel (b), for v1/v2 =  0.55 and varied temperature. Distinct changes in 
M(H) loops are found when either curve in panel (a) is crossed.



www.nature.com/scientificreports/

5Scientific Reports | 5:12695 | DOI: 10.1038/srep12695

Discussion
What is the underlying mechanism for the giant paramagnetic response? In simple terms, it is the facil-
itated trapping of magnetic flux in the crossover domain between Type-I and Type-II superconductivity, 
since vortices attract in the entire range of parameters where GPR is observed. However, GPR is found to 
be particularly large for σSN >  0, where vortex-vortex interaction is purely attractive and vortices should 
coalesce into larger normal domains. On the contrary, we observe that in decreasing field separate vor-
tex cores are still visible, though strongly overlapping (see inset in Fig.  5). To clarify the dense vortex 
packing observed in Fig. 5, we calculate the multibody vortex-vortex interaction shown for several vor-
tex clusters in Fig.  6. As a major surprise, we found that in this regime multibody vortex interactions 
become short-range repulsive and cause the formation of a vortex lattice. This is illustrated in Fig. 6(a) 
(for v1/v2 =  0.47 and T =  0.94Tc, i.e. σSN >  0), where we show the calculated vortex-vortex interaction 
as a function of the distance between vortices (labelled d), for a vortex pair, a vortex trimer, a vortex 
diamond-like cluster and a hexagonal vortex cluster. The pairwise vortex interaction is purely attrac-
tive, as expected, but in the other cases the short-range repulsion arises so that energetically favorable 
vortex-vortex distance arises in mid-range (note that this favorable distance closely corresponds to the 
average vortex distance observed in Fig. 5(b)). An insight into the physics of this short-range repulsive 
interaction can be achieved by analysing the superconducting state inside, for example, the hexagonal 
vortex cluster shown in Fig. 6. With this aim, we computed the maximum of the Cooper-pair density, 
nmax, inside that cluster for each band-condensate separately, shown as a function of vortex distance d 
in Fig. 6(b). We reveal that the Cooper-pair density in the second condensate vanishes inside the vortex 
cluster at the vortex distance where short-range repulsion arises. Hence we can conclude that inside 
the vortex cluster the physics is driven by the other condensate, which has Type-II character, hence the 
repulsive interaction of vortices prevails at short distances. It is known that multibody vortex interac-
tions are more complex than a simple superposition of pairwise interactions (see Refs.  [50–53]), but it 
has never been found before that multibody interactions can change the polarity of the vortex-vortex 
interaction. This is a key feature of the found mixed state for parameters of the system between σSN =  0 
and Hc(T) =  Hc2(T) lines in Fig. 4. In addition, we have plotted in Fig. 5(a) the number of vortices in the 
sample Nv as a function of H in the downward branch of M(H) in Fig. 2 for v1/v2 =  0.65 (in the Type-II 
limit) and v1/v2 =  0.47 (inside the crossover region). The high retention of flux is clearly seen as a nonlin-
ear behavior for v1/v2 =  0.47 which contrasts the Type-II case in which Nv is linearly decreasing towards 

v

Figure 5.  The number of vortices Nv in the sample in decreasing magnetic field (below H = Hd) at 
T = 0.94Tc (a), and the average distance between vortices (dv), for two values of v1/v2 ratio that provide 
different sign of the superconducting-normal state interface energy (σSN). Insets show cumulative Cooper-
pair density plots 1

2
2
2ψ ψ( + ) of vortex states obtained in two considered cases for the same magnetic 

field H =  0.563Hc.
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the origin. We find that although the number of vortices in the states between σSN =  0 and Hc(T) =  Hc2(T) 
lines slowly decreases with decreasing magnetic field, their favorable distance is approximately independ-
ent of field [see Fig. 5(b)]. This unconventional vortex state allows the penetration of the magnetic field in 
larger portions of the sample (inhomogeneous penetration, within but also between vortices), and clearly 
traps more flux than an ordinary vortex lattice, down to very low field - resulting in a more pronounced 
GPR. Due to the interlocking of vortices in this regime, the barrier for the expulsion of the entire vor-
tex cluster in decreasing field corresponds to the Bean-Livingston barrier for a single vortex, which we 
confirmed by an independent calculation. Notice that as soon as the S-N surface energy changes sign, 
the barrier for single-vortex expulsion becomes nonzero at all fields. However, we have the simultaneous 
appearance of short-range vortex repulsion, which in effect diminishes the Bean-Livingston barrier and 
vortices are gradually expelled from the sample depending on their density and applied magnetic field. 
This manifests in the magnetization curves as a gradual decrease of the paramagnetic effect in decreasing 
field, down to zero for zero field. As the v1/v2 ratio or temperature are further increased, vortices become 
increasingly repulsive and the paramagnetic response decreases to its conventional behavior for Type-II 
superconductors.

In summary, we revealed a possibility of giant paramagnetic response in slabs of multiband supercon-
ductors (to which many recently discovered metal-borides, iron-chalcogenides, iron-pnictides, belong), 
with magnitude similar or multiply larger than the Meissner response for the same applied magnetic 
field. We showed that such unique magnetic response occurs in the crossover region between conven-
tional types of superconductivity, and is not captured by the standard textbook descriptions. On techno-
logical end, our findings open a new class of desirable materials which can be switched to either strongly 
enhance or fully remove the applied magnetic field while having low power consumption. Further work 
is needed to characterize the behavior of these materials under e.g. applied electric current and nanos-
tructuring or downscaling.

Methods
In this work we used the two-component Ginzburg-Landau (TCGL) theory. In the TCGL framework, as 
given in Ref. 28, eight independent material parameters are needed for a system with both interband and 
magnetic coupling, namely, the Fermi velocity of the first band v1, the square of the ratio of the Fermi 

d

Figure 6.  (a) The vortex-vortex interaction energy, as a function of the distance between vortices, for 
parameters leading to pairwise vortex attraction (σSN >  0, see open dots). Nevertheless, the short-range 
repulsion between vortices arises for clusters comprising more than two vortices (insets depict the 
cumulative Cooper-pair density distribution for the considered clusters). (b) Maximum of the Cooper-pair 
density, nmax, inside the hexagonal vortex cluster for each band-condensate separately, shown as a function 
of vortex distance d between vortices. The shaded area delimits the short-range repulsion found for the 
hexagonal vortex cluster.
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velocities in the two bands v
v

2
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2
( )α = , the elements of the coupling matrix λ11, λ22 and λ12 =  λ21, the total 

density of states N(0) as well as the partial density of states of the first band n1 (n2 =  1 −  n1), and finally 
Tc, which sets the energy scale W T8 7 3c

2 2 2π ζ= / ( ). The TCGL free energy functional reads
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where j =  1,  2 is the band index, αj =  − N(0)njχj =  − N(0)nj(τ −  Sj/njδ), βj =  (N(0)nj)/W2, 
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2 2( )= / ( ) , and Γ  =  (N(0)λ12)/δ, with δ being the determinant of the coupling matrix, and 
S, S1 and S2 defined as in Ref. 41. The local magnetic field in the sample is denoted by 
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h and the external 
applied field by 

��
H .

Minimization of the free energy in Eq.  (1) with respect to ψj and 
��
A yields the Ginzburg-Landau 

equations: two for the order parameters ψ1 and ψ2, and the equation for the vector potential (calculated 
from the supercurrent of the coupled condensate). Introducing the normalization for the order parame-
ters by W, for the vector potential by A0 =  hc/4eπζ1, and for the lengths by v W61 1ζ = / , the dimen-
sionless TCGL equations are written as:
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where  denotes the real part of the expression. After the made choice of normalization units, we are 
left with six parameters: λ11, λ22, λ12, v1/v2, n1, and N(0).

In our numerical experiment, the TCGL equations (2)–(4) were integrated self-consistently on a two 
dimensional grid with grid spacing ax =  ay =  ζ1, much smaller than any characteristic length scale at the 
considered temperature. The discretization was implemented by the link variable method which pre-
serves the gauge invariance of these equations54. For the iterative solver, we combined a relaxation 
method with a stable and accurate semi-implicit algorithm55. Periodic boundary conditions were applied 
in the x direction whereas for the y direction we imposed Neumann boundary conditions at the 
superconductor-vacuum interface (for details of the numerical implementation, please see Ref. 54). Note 
that due to the infinite slab geometry, the surface magnetic field equals the applied one (the demagnet-
izing effects are negligible), and the simulation is effectively two-dimensional (in the (x,y) plane). The 
subsequently calculated magnetization, M h H 4π= ( − )/  (


 denotes spatial averaging inside the 

sample), is a measure of the expelled flux from the sample and the corresponding M(H) response was 
obtained by ramping up the magnetic field with steps of Δ H =  2 ×  10−4 (in units of H c e20 1

2 ζ= / ). The 
magnetic field is scaled to the thermodynamic critical field Hc, for easier comprehension of the related 
physics. For calculation of Hc for two-band superconductors, we refer to Ref. [28].
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