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Abstract

The fe module consists of a labile antitoxin protein, e, which in dimer form (e2) interferes with the action of the long-living
monomeric f phosphotransferase toxin through protein complex formation. Toxin f, which inhibits cell wall biosynthesis
and may be bactericide in nature, at or near physiological concentrations induces reversible cessation of Bacillus subtilis
proliferation (protective dormancy) by targeting essential metabolic functions followed by propidium iodide (PI) staining in
a fraction (20–30%) of the population and selects a subpopulation of cells that exhibit non-inheritable tolerance (1–
561025). Early after induction f toxin alters the expression of ,78 genes, with the up-regulation of relA among them. RelA
contributes to enforce toxin-induced dormancy. At later times, free active f decreases synthesis of macromolecules and
releases intracellular K+. We propose that f toxin induces reversible protective dormancy and permeation to PI, and
expression of e2 antitoxin reverses these effects. At later times, toxin expression is followed by death of a small fraction
(,10%) of PI stained cells that exited earlier or did not enter into the dormant state. Recovery from stress leads to de novo
synthesis of e2 antitoxin, which blocks ATP binding by f toxin, thereby inhibiting its phosphotransferase activity.
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Introduction

Toxin-antitoxin (TA) loci, which are ubiquitous in Archaea and

Bacteria, play important roles in several cellular processes

[1,2,3,4,5]. The TA module consists of labile antitoxin and a

stable toxin. Antitoxin degradation is achieved either by

endoribonucleases if the antitoxin is an RNA species that prevents

translation of the toxin (type I TA systems) or by ATP-dependent

proteases if the antitoxin is a labile protein (type II TA systems).

The factor(s) involved in the release of free toxins in type III TA

systems is unknown [1,2,3,4,5]. The type II toxins, which have

diverse structures and dissimilar cellular targets, and even show

functional diversity when structurally related, can be grouped at

least into fourteen different families (RelE [ParE], MazF [CcdB],

Doc, VapC, VapD, YafO, HicA, HipA, CbtA, GinA, GinB,

GinC, GinD and f/PezT) [3,6,7,8]. The physiological process that

is inhibited is known for the majority of the toxins. Toxins of seven

of these families affect protein translation (namely RelE, MazF,

Doc, VapC, YafO, HicA and HipA) [9,10,11,12,13,14], two

inhibit DNA replication (CcdB and ParE) [15,16], one inhibits cell

division (CtbA) [17], and the toxins of the f/PezT family [18,19]

inhibit the first step of peptidoglycan biosynthesis [20]. Toxin f or

PezT phosphorylates the 39-OH group (3P) of the amino sugar

moiety of uridine diphosphate-N-acetylglucosamine (UNAG)

leading to the accumulation of unreactive UNAG-3P [20]. The

f superfamily of toxins, which is proposed to be bactericide in

nature [20], together with those of the RelE superfamily are

among the most abundant in nature [8].

Several models have been proposed for integration of the

complex network of toxin action and for explaining the possible

fitness advantage of chromosomally encoded TA systems [1,2,3].

The molecular mechanisms underlying these phenomena are also

a matter of debate. The type I TisB toxin, which is DNA damage

inducible as part of the SOS response, targets the cell membrane

integrity, therefore, it should be bactericide in nature. Upon TisB

induction, cell growth was inhibited and plating efficiency

decreased rapidly. Subsequently, TisB indirectly decreased

transcription, translation and replication rates, and at high TisB

levels cells are ultimately killed [21]. Indeed, beyond 60 min of

TisB over-expression the majority of the cells were stained with the

membrane-impermeant propidium iodide (PI) dye, which is an

indicative of cell death [21]. However, when present in single copy

on the chromosome, tisB, even in the absence of its antisense

repressor, after mitomycin C addition to induce the SOS response,

only slightly reduced growth rate [21]. For the two evolutionarily

unrelated type II TA systems, which affect protein translation and

are bacteriostatic in nature, two different and even contradictory

roles have been described: (i) stress management, through
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induction of a dormant state, which is reversed by expression of

the cognate antitoxin. Here, the activity of free toxin (RelE as a

prototype) induces reversible dormancy to give time to the cell to

counteract the stress. This provides a proliferation control

mechanism, without leading to cell death, which helps free-living

prokaryotes to cope with stress and facilitates a quicker resumption

of growth when conditions improve [6]. And (ii) inhibition of cell

proliferation (dormancy) that can lead to death of a subpopulation

of cells, as has been shown for the Escherichia coli MazEF

(MazEFEco) system [1]. Indeed, over-expression of the MazFEco

toxin triggers programmed cell death in response to stress in

.95% of the cells and induces the release of an extracellular death

factor (EDF, a linear NNWNN pentapeptide) [22,23,24].

However, some doubt has been cast on the role of EDF in

eliciting MazF-mediated programmed cell death [4,25].

In addition in c-Proteobacteria, both type I and type II toxins,

when stochastically enter into the dormant state renders a small

fraction of cells able to survive antibiotic treatment (persisters)

[26]. Persistence is the capacity of an otherwise sensitive bacterial

subpopulation, which has entered a transient dormant state, to

tolerate many antibiotics, and other harmful environmental

insults. Recently it was shown that DNA damage-induced TisB

toxin controls production of multidrug tolerance (persistence) [27].

Van Melderen and co-workers showed that cells lacking five type

II mRNA endonuclease (mRNase) toxins have normal suscepti-

bility to antibiotics [28]. In a recent study, Gerdes and coworkers

extended such studied and produced E. coli strains lacking from

one to ten mRNase-toxins [29]. As previously documented the

combined deletion of four TA loci did not affect antibiotic

susceptibility, but additional deletions were accompanied by a

progressive reduction of persistence [29]. Indeed, deletion of all

ten TA loci encoding mRNA endonucleases resulted in a dramatic

100- to 200-fold reduction of persister cell formation [29].

In Firmicutes, the reversible effect of ‘‘physiological concentra-

tion’’ of toxin f remains to be addressed. There are many reasons

to consider the behavior of the fe TA system in Bacillus subtilis as a

model for understanding the heterogeneous response to toxin

induction and for addressing the question of whether death, as

determined by PI staining, is correlated with programmed cell

death also in Firmicutes. First, the structure of the inactive fe2f
complex, which binds to its target UNAG, and the mechanism of

toxin inactivation are known [18,20,30]. Second, f and PezT

toxins [18,19] by converting UNAG into UNAG-3P inhibit the

first step of peptidoglycan biosynthesis [20]. Third, a massive

production in E. coli of Firmicutes PezT or f toxin or

overproduction of wt f toxin in B. subtilis cells leads to loss of

membrane integrity and transformation to ghosts of 50 to 60% of

the cells [20,31,32]. Fourth, exponentially growing B. subtilis cells

express only one type II TA module, MazFE, also known as

EndoA-YdcD [33] that might be transiently induced during f
toxin expression. Finally, the stability of plasmid-borne vancomy-

cin resistance gene has been attributed to the presence of the vef
stability determinant in enterococcal, staphylococcal and strepto-

coccal plasmids [34,35]. All these physiological observations

encouraged us to further address the reversible effect of f toxin

at physiological concentrations in B. subtilis. Since, bioinformatics

approaches revealed the existence of hybrid systems in which the f
toxin might associate with antitoxins of different families [18,19]

and in some cases the antitoxin regulates expression of the TA

system, but in others cases a third component (e.g., protein v2)

regulates its expression [36], here toxin and antitoxin were

artificially regulated.

We report the effect of free active wild type (wt) f or fY83C

toxin in B. subtilis cells. The differential response caused by

physiological or near physiological concentrations of free active wt

f or fY83C toxin is schematically summarized in Figure 1. First

free toxin rapidly induces a set of protective responses, such as

alteration of expression of genes involved in lipid metabolism or

nucleotide synthesis, and entry into dormancy to cope with stress.

Then, the accumulation of a novel nucleotide and K+ release

parallels in time with PI staining of a cell subpopulation (Figure 1).

There is also a subpopulation of cells that are non-inheritable

tolerant (1–561025) to the action of the toxin. An ‘‘optimal’’

guanosine 39, 59-bispyrophosphate [(p)ppGpp] concentration

appears to contribute to f-induced dormancy, but high levels of

it or low levels of GTP do not. Production of the e2 antitoxin

reverses f-induced dormancy and retrieves a major fraction of f-
induced membrane-fragilized cells under physiological conditions

(Figure 1). We propose that cell membrane permeability of a small

fraction of cells (,10% in the time window of the analysis), which

fail to enter into the full dormant state, contributes to cell death.

Materials and Methods

Bacterial strains, plasmids and growth conditions
The bacterial strains used (BG687, BG689, BG1125, BG1127,

BG1143 and BG1145) were isogenic to B. subtilis BG214

(Supporting Information Table S1). In the BG689 strain the

fY83C gene under the control of XylR cassette was integrated at

the amy locus as previously described [31]. Upon xylose (Xyl)

addition the fY83C toxin variant is expressed from the xylR-

PXylAfY83C cassette (Supplementary Figure S1A). The wt f gene

was cloned into E. coli pDR111, which is an integration vector for

controlling gene expression in B. subtilis obtained from D. Rudner,

under the control of the LacI expression cassette (LacI repressor-

Hyper-Spank promoter, Phsp). The expression cassette bearing æ

gene was integrated as a unique copy at the amy locus in cells

bearing the pCB799-borne e gene under the control of XylR

cassette (xylR-PXylAe) to render BG1125 (Figure S1B). BG1127

contained the LacI expression cassette but lacks the f gene (lacI-

Phsp, empty cassette). Low Xyl concentrations (0.005%, for low

level of expression of the e2 antitoxin from pCB799) were needed

to construct the strain containing the wt f gene under Phsp

transcriptional control. Upon isopropyl-D-thio-b-galactopyrano-

side (IPTG) addition (1 mM) the wt f toxin was expressed (lacI-

Phspf, expression cassette) (Figure S1B). B. subtilis DrelA chromo-

somal DNA obtained from J.D. Wang was used to transform

BG687 and BG689 (Figure S1A) competent cells with selection for

erythromycin, to render BG1143 (xylR-Pxyl, DrelA) and BG1145

(xylR-PxylfY83C, DrelA) strains, respectively (Table S1).

Except BG1143 and BG1145, bacteria were grown in minimal

medium S7 (MMS7) supplemented with methionine and trypto-

phan (at 50 mg ml21) because the used strains are auxotrophic for

them [31]. The BG1143 and BG1145 strains, which show a

phenotypic auxotrophy for valine, leucine and isoleucine [37],

were also supplemented with these amino acids at 25 mg ml21.

The cells were plated in LB agar plates, and when indicated Xyl or

IPTG was added at the indicated concentrations.

Transcriptome analysis
BG689 (xylR-PXylAfY83C) or BG687 (xylR-PXylA cassette) cells

were grown up to 56107 cells ml21 in MMS7, then 0.5% Xyl was

added. At time zero the culture was then split into 2 equal volumes

(50 ml). Cells were harvested at 0, 5 and 15 min time points and

handled for stabilization and subsequent isolation of RNA as

described [38]. Total RNA was hybridized to microchips

containing oligonucleotides representing each of the 4017 open

reading frames of the B. subtilis genome. The integrity and purity
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of the RNA was checked with agarose gel electrophoresis, and the

concentration of the RNA was measured using UV spectrometry

at 260 nm. Transcriptome analysis by microarray hybridization

using the B. subtilis microarray was undertaken according to a

previously described method [38]. At least 3 biological replicates

(hybridizations) were included in the analysis for each time point.

After background subtraction, signal intensities for each replica

were normalized and statistically analyzed using the Lowess

Intensity-dependent Normalization method included in the

Almazen System software (Alma Bioinformatics S.L.). The p

values were calculated with Student’s t test algorithm based on the

differences between log 2 ratio values for each biological replicate.

Genes were considered differentially expressed when they fulfilled

the filter parameters of expression ratio $1.8 and p = ,0.1.

Toxin concentration, K+ flux, nucleotides and
macromolecular synthesis

Exponentially growing BG214 cells bearing a plasmid-borne

vef operon (pBT233), in its native context, or BG689, BG1145

and BG1125 cells were grown up to ,56107 cells ml21. To one

aliquot inducer (0.5% Xyl or 1 mM IPTG) was added and samples

collected at different times. The cells were centrifuged, resus-

pended in buffer A (50 mM Tris-HCl [pH 7.5], 150 mM NaCl,

5% glycerol) and lysed by sonication. For Western blotting,

extracts containing equal protein concentrations were separated

on 15% sodium dodecyl sulfate-polyacrylamide gel electrophore-

sis. Blots were probed with rabbit polyclonal antibodies rose

against f protein, which were obtained using standard techniques.

The total number of cells was estimated. For toxin quantification

serial dilutions of purified f protein of known concentration were

also loaded in the same gel, and the toxin concentration expressed

as monomers per cell (considering the cell volume of 1.2

femtoliters).

K+ flux measurements were performed as described previously

[39]. In short, BG1125 cells (lacI-Phspf) were grown to OD560 of

0.6 with traces of Xyl (0.005%) at 37uC, divided into two aliquots

30 ml each and IPTG was added. The concentration of K+ ions

was monitored with selective electrodes (Orion model 9319,

Thermo Inc.). The electrodes were calibrated at the end of every

experiment. Ag/AgCl reference electrodes (Thermo Inc.; Orion

model 9001) were indirectly connected to the measuring vessels

through an agar salt bridge. The electrodes were connected to the

electrode potential amplifying system with an ultralow input bias

current operational amplifier AD549JH (Analog Devices, USA).

The amplifying system was connected to a computer through the

data acquisition board AD302 (Data Translation, Inc., Malboro,

USA).

To quantify the ATP or GTP pool in vivo BG689 (xylR-

PXylAfY83C) or BG687 (xylR-PXylA cassette) cells were grown in

minimal medium containing 1 mM KH2PO4 and 50 mCi (32P)-

KH2PO4 to OD560 ,0.2. At time zero Xyl (0.5%) was added, and

at different times the samples were taken, the cells lysed, the

nucleotides extracted and the radiolabeled material incorporated

into ATP or GTP measured as previously described [40].

To measure the accumulation of a novel (32P)-radiolabeled

compound previously published protocols were used with minor

modifications [40]. Cultures were started at OD560#0.01. At

OD560 ,0.1 the culture was diluted into a low KH2PO4 MMS7

and allowed to growth until 0.3–04. The culture was diluted in

pre-warm low KH2PO4 MMS7 and 50 mCi ml21 (32P)-KH2PO4

was added and further incubated to reach OD560 0.2. Addition of

IPTG (BG1127 and BG1125) or Xyl (BG687 and BG689) was

used to induce expression of the promoter that transcribe or not

the wt f or fY83C toxin. At different times after toxin induction,

samples (200 ml) were taken, 40 ml of 2 M formic acid was added,

incubated on ice for 30 min and centrifuged at 4uC for 15 min to

collect the supernatant. To in vitro modify UNAG a previously

published protocol was used with minor modifications [20]. The

thin-layer chromatographies (TLCs) of the radiolabeled nucleo-

tides or sugar nucleotides were performed on polyethyleneimine-

Figure 1. Schema of phenotypes observed upon f toxin expression. At time zero expression of the f toxin was induced. Between the 5 to
15 min interval the expression of 78 genes was altered, without apparent alteration of the cellular proteome. At indicated times intervals
macromolecular biosynthesis, GTP and ATP pool was reduced, the membrane permeability altered, and a novel radiolabeled nucleotide accumulated.
After 120 min ,30% of cells became PI stained and ,1024 were able to form colonies after overnight incubation. In the lower line, at time 120 min
after toxin expression the expression of the e2 antitoxin was also induced and the number of survivals and the proportion of PI stained cells estimated
120 min later (240 min).
doi:10.1371/journal.pone.0030282.g001
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cellulose plates with 0.85 M KH2PO4 (pH 3.4) as the mobile

phase as described [40].

To quantify DNA, RNA and protein synthesis in vivo, BG687 or

BG689 cells were grown in MMS7 to OD560 ,0.2 and then Xyl

(0.5%) was added (time zero). At different times 2.5 mCi of (5-3H)-

thymidine (DNA synthesis), 2.5 mCi of (5-3H)-uridine (RNA

synthesis) or 2.5 mCi of (L-3H)-leucine (protein synthesis) were

added and the incorporation of radiolabeled material (a pulse–

chase experiment of 1 min time window) into freshly synthesized

DNA, RNA and proteins was measured as previously described

[31].

Fluorescence microscopy
Cells in the presence or absence of inducers (Xyl or IPTG) were

grown up to 56107 cells ml21 in MMS7 at 37uC. After 120 min,

cells were harvested by centrifugation, washed twice and stained

with SYTO 9, which stains all bacteria with green fluorescence,

and PI, which stains ‘‘membrane-compromised’’ bacteria with red

fluorescence, according to the manufacturer’s instructions (Mo-

lecular Probes, Leiden). Cells were visualized using a BX61

Olympus microscope and Olympus CCD DP70 camera, with the

appropriate filters as described [31].

Results

Experimental systems
The majority of type II toxins, which are bacteriostatic in

nature, by multiple mechanisms of action induce a reversible

dormant state, as the ones affecting protein translation by

degrading mRNAs [6]. The altered expression of toxins that

affect protein translation, was shown to lead to two mutually

exclusive hypothesis: (1) toxins reversibly block essential physio-

logical processes by triggering cessation of cell proliferation

(dormancy) of a large fraction of cells [2,3] but induce a fraction

of cells stainable with PI [41,42]; and (2) toxins induce autolysis of

at least 95% of the cell population [1,43]. These differences could

be due to particularities of the toxins tested or to the systems used

to express them. Indeed, massive over-expression of the Firmicutes

f phosphotransferase toxin (.9000 f monomer/cell), which

inhibits cell wall biosynthesis and is bactericide in nature, leads

to loss of cell wall integrity and to the conversion to ghost-cells of

,50% of the population after 60 min and of .95% cells after

240 min [20,31,32]. To examine the molecular mechanisms

underlying the cellular response to free f toxin it was produced

at or near physiological concentrations. As described in Support-

ing Information Figure S1 and Table S1, two inducible systems,

integrated as a unique copy in the chromosomal amy locus, were

used to mimic native levels of toxin and to bypass any host control

of the expression of the toxin and antitoxin genes. The first system

consisted of the gene encoding the short-lived toxin variant,

fY83C (half-life ,28 min) [31] under control of a Xyl inducible

promoter that transcribes the fY83C gene (xylR-PXylAfY83C

expression cassette) (Figure S1A) [31]. The level of toxin in non-

induced xylR-PXylAfY83C cells, ,10 fY83C/per cell, is too low to

measurably alter the growth rate in MMS7 medium (Table 1).

Induction of the xylR-PXylAfY83C cassette, by addition of 0.5%

Xyl, increased fY83C to a plateau with a toxin concentration of

,300 toxin monomers/cell at ,10 min (Table 1). In the presence

of Xyl, the steady-state level of the toxin remained for at least

240 min.

The second system consisted of wt f gene under the control of

an IPTG-inducible promoter that transcribes the wt f gene (lacI-

Phspf) (Figure S1B). Cells bearing the non-inducted lacI-Phspf
cassette were prone to genomic rearrangements, but the low

expression of e2 antitoxin in the background, from the pCB799-

borne xylR-PXylAe cassette by the presence of traces of Xyl

(0.005%), ameliorated this effect. Cells bearing lacI-Phspf and

pCB799 grew more slowly than its isogenic derivative with the

empty lacI-Phsp cassette, and in lower yield (stationary phase

OD560 1.5 vs 3.4) in MMS7 supplemented with 0.005% Xyl

(Table 1). In the absence of the toxin inducer (IPTG) and in the

presence of low concentrations of the short-living ,18 min) e2

antitoxin, there were ,40 f toxin monomers/per cell (Table 1)

complexed with the antitoxin. Induction in the system, by addition

of 1 mM IPTG, increased f toxin to a plateau concentration of

,1,700 wt f monomers/cell at ,30 min (Table 1). In the

presence of IPTG, the steady-state level of f remained for at least

240 min, which is the time chosen for the different analyses

performed in this study (see Figure 1). This toxin concentration is

comparable to the level of wt f toxin in its native context and

transcribed from its native promoter (,1,400 f monomers/cell

bearing pBT233-borne vef operon that are neutralized by

saturating e2 antitoxin concentrations) (Table 1) [44]. We expect

this amount to be the ‘‘physiological concentration’’ of wt f toxin,

because this should be the f level after e2 antitoxin degradation

mainly by LonA protease and in a minor extent by ClpXP [31].

However, the levels of free wt f toxin sufficient to induce

dormancy in the absence of the e2 antitoxin might be smaller.

To gain insight into the molecular mechanisms of toxin-induced

dormancy and permeabilization to PI and to find out whether the

different levels of toxin expression significantly contribute to

differences in dormancy and PI staining levels, we observed the

consequences of producing ‘‘physiological concentrations’’ of f or

fY83C toxin for 120 min. Under these conditions culture growth

ceased entering into the dormant state, a fraction, ,30% and 19%

Table 1. Level of toxin expression and bacterial growth.

Straina T or TAd Toxin levelse Doubling timef

BG214 (pBT233-borne vef) e+ f+ 1,371675 4762

xylR-PXylA - NA 4963

xylR-PXylA (DrelA) - NA 10164

xylR-PXylAfY83C fY83C2 ,10d 5964

xylR-PXylAfY83C+Xylb fY83C+ 294625d NA

xylR-PXylAfY83C (DrelA) fY83C2 ,10d 9664

xylR-PXylAfY83C (DrelA)+Xylb fY83C+ 212690d NA

lacI-Phsp e(+) NA 5863

lacI-Phspf f2 e(+) 37615d 9068

lacI-Phspf+IPTGc f+ e(+) 1,6906150d NA

lacI-Phspf cells bearing plasmid pCB799 (xylR-PXylAe) were grown in MMS7
containing 0.005% Xyl to allow limiting e2 antitoxin expression, e(+), to titrate
basal expression of the wt f toxin.
aCells grown exponentially in MMS7 to ,56107 cells ml21, a sample was
collected (corresponding to 2 ml at an OD560 of 0.4), cells lysed and subjected
to immunoblot transfer for toxin detection. Cells grown exponentially in MMS7
to ,56107 cells ml21, 0.5% Xylb or 1 mM IPTGc was added, samples collected
at different times.

dThe presence or the absence of induction of f, fY83C or e2 are indicated by +
or 2 superscript, respectively.

eSamples were collected after 60 min of induction, equivalent amounts of cells
(corresponding to 2 ml at an OD560 of 0.4) were lysed and subjected to
immunoblot transfer for toxin detection. Toxin levels are expressed as
monomers/per cells.

fCell doubling time (in min) was measured by recording the OD560 every 30 min
until reaching early stationary phase. NA, not applicable. The results are the
average of at least four independent experiments.

doi:10.1371/journal.pone.0030282.t001
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of cells expressing f and fY83C, respectively, became permeable

to PI, and 1 to 461025 were tolerant cells (Table 2). These cells

were genetically identical to non-tolerant ones, but have not

entered into the dormant state or exit early from it and formed

colonies. Indeed, toxin tolerance was not inheritable because a re-

grew new population was just as sensitive to toxin as the parental

strain (data not shown).

Expression of e2 antitoxin partially reverses both permeation to

PI and entry into dormancy (Figure 2). To determine if PI staining

is correlated with the proportion of cells that did not enter into the

f-induced dormant state, we varied the concentration of free active

f toxin by increasing the levels of the e2 antitoxin. To

exponentially growing lacI-Phspf (xylR-PXylAe) cells (,56107 cells

ml21) expressing e2 to various extents (from 0.005 to 0.5% of Xyl),

1 mM IPTG was added to induce expression of the wt f toxin.

After 120 min the cells were stained with PI and SYTO 9, and the

plating efficiency at the corresponding Xyl concentration was

analyzed. In the presence of ,1,700 f monomers (1 mM IPTG)

and saturating e2 antitoxin concentrations (0.5% Xyl), ,2% of the

cells were stained with PI and the plating efficiency was not

significantly different from that of non-induced cells (Figure 2),

suggesting that toxicity of f was abolished when the e2 antitoxin

was expressed in sufficient concentration to titrate f (see Figure 1).

In the presence of limiting e2 antitoxin concentrations (1 mM

IPTG and 0.1% Xyl) f-induced dormancy increased ,100-fold

relative to the fully protected control, but the fraction of cells

permeable to PI staining did not increased significantly (,3%).

However, in the presence of very low e2 antitoxin concentrations

and f toxin (0.005% Xyl, denoted (+), and 1 mM IPTG) ,30% of

the cells were stainable with the PI dye, the dormant state was fully

induced, but a subpopulation of ,461025 non-inheritably

tolerant cells was observed (Figures 1 and 2). It is likely therefore

that f-mediated dormancy and PI staining might be independent

events.

Previously it was shown that massive PezT or f toxin over-

production results in UNAG-3P accumulation and cell lysis of a

cell fraction [20]. To learn whether this sugar nucleotide also

accumulated at physiological toxin concentrations, cells were

incubated with (32P)-KH2PO4, toxin expression was induced and

the (32P)-labeled nucleotides were analyzed by TLC. In strains

lacking fY83C (xylR-PXylA) or wt f (lacI-Phsp), respectively,

accumulation of any novel compound in the presence of the

inductor (Xyl or IPTG, respectively) was not observed (Figure S2A

and S2B). However, in strains expressing fY83C (xylR-PXylA-

fY83C) or wt f (lacI-Phspf [xylR-PXylAe]) toxin for longer than

40 min, a diffused newly (32P)-labeled species appeared between

the GTP and ATP spots, to accumulate higher amounts of it at

later times (Figure S2C and S2D). The accumulation of the newly

labeled spot decreased upon expression of the e2 antitoxin (Figure

S3). Expression the inactive fK46A toxin, at or near physiological

concentrations however failed to accumulate any newly labeled

compound, suggesting that fK46A, which fails to bind ATP [18],

is unable to modify UNAG (data not shown). Similar results were

showed using in vitro assays [20].

To gain insight into f-mediated interference with cell wall

integrity and indirectly to learn about the basis of PI staining

under physiological toxin concentrations, leakage of K+ was

measured. No K+ leakage was observed during the first 30 min f
toxin expression, but then rose steadily so that 60 min after 1 mM

IPTG addition considerable leakage and slower cell growth was

evident (Figure 3A). PI staining was coincidental with the peak of

K+ leakage. Addition of lysozyme (30 mg ml21) to the control

strain was sufficient to release .90% of intracellular K+ within

1 min, mimicking f toxin-mediated K+ release after 90 min of f
induction (Figure 3A). But, whereas lysozyme reduced OD560 from

,1.5 to below detection levels (and viability to ,99.9%), toxin

expression did not lyse the bulk of cells (Figure 3B). It is likely that

toxin-mediated cell wall defects rise to some critical level, leading

Table 2. Percentage of PI staining and CFUs under different
toxin inductions.

Conditions of
toxin expression T or TAf % PI stained cellsg CFUs ml21,h

lacI-Phsp e(+) ,1 (600) 2.4 108

lacI-Phspf f2 e(+) 2.560.2 (800) 1.2 108

lacI-Phspf
a+IPTGb f+ e(+) 29.262.1 (800) 5.1 103

lacI-Phspf
a+IPTG+Xylc f+ e+ 9.760.8 (750) 6.7 106

xylR-PXylA
d – ,1 (1000) 2.2 108

xylR-PXylAfY83Cd fY83C2 1.760.1 (850) 1.1 108

xylR-PXylAfY83Cd+Xyle fY83C+ 1961.5 (850) 3.2 103

xylR-PXylAfY83Cd

150 mM KCl+Xyle
fY83C+ 14.161.1 (900) 2.3 103

lacI-Phsp or lacI-Phspf cells bearing plasmid pCB799 (xylR-PXylAe) were grown in
MMS7 containing 0.005% Xyl to allow limiting expression of e2 antitoxin, e(+), to
titrate basal expression of the wt f toxin.
bExpression of the wt f toxin for 120 min was induced by addition of IPTG

(1 mM).
cThe cells were grown in the presence of 1 mM IPTG and 0.1% Xyl that partially
induced the expression of the e2 antitoxin for 120 min.

dxylR-PXylA or xylR-PXylAfY83C were grown in MMS7, which contains 5 mM or
150 mM KCl.

eWhen indicated expression of the fY83C toxin was induced by addition of 0.5%
Xyl and the culture incubated for 120 min.

fThe presence or the absence of induction of f, fY83C or e2 are indicated by + or
2 superscript, respectively.

gNumber of cells analyzed are shown in parentheses.
hColonies forming units (CFUs) were measured after 120 min of toxin induction
by plating appropriate dilutions on LB plates, except in the BG1125 control
that was plated in LB containing 0.5% Xyl plates and the condition where both
IPTG and Xylc were added that was plated in LB plates containing 0.1% Xyl. The
results are the average of at least three independent experiments and are
within a 10% standard error.

doi:10.1371/journal.pone.0030282.t002

Figure 2. Variations of free f toxin levels differentially affect
dormancy and permeation to PI. lacI-Phspf (xylR-PXylAe) cells were
grown in MMS7 at 37uC up to ,56107 cells ml21 in the presence of
traces of Xyl (0.005%, denoted as (+), to allow limiting e2 antitoxin
expression to titrate basal expression of the wt f toxin. IPTG (1 mM) and
variable amounts of Xyl (0.05, 0.1 and 0.5%) were added and the culture
incubated for 120 min. Aliquots were taken and appropriate dilutions
were plated in Luria-Bertani (LB) plates with the same concentration of
Xyl, or analyzed under the microscope after live-dead staining. Means of
four parallel experiments 695% confidence intervals are shown.
doi:10.1371/journal.pone.0030282.g002
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to a drop in intracellular K+ concentration below a threshold value

needed to maintain growth rate. It is possible that toxin-induced

release of K+ can work as a buffer for membrane potential,

keeping the pumps functioning to extrude the PI (,30% of PI

stained cells) (Figure 3, summarized in Figure 1). To determine

whether decreased intracellular K+ concentration is directly

responsible for changes in PI permeability and growth rate, we

induced the fY83C toxin also in the presence of 150 mM KCl,

which is the physiological intracellular K+ concentration. Inde-

pendently of KCl concentration (5 or 150 mM), fY83C induced

the dormant state with equal efficiency. High K+ reduced the

proportion of cells stainable with PI, from ,19% to ,14%

(Table 2).

To test whether K+ leakage and PI staining were reversible

events, the proportion of PI stained cells and their plating

efficiency was measured after antitoxin production (at 120 min) to

recover from toxin induction (at time zero) as schematically

presented in Figure 1. Upon expression of wt f toxin for 120 min

,30% of the cells were stained with PI. The fraction of cells with

permeable membranes was reduced to ,10% after 120 min of

antitoxin expression (Figure 1 and Table 2), suggesting that

permeabilization to PI might be accompanied by entry or not into

dormancy, and that PI staining and autolysis may be two discrete

stages.

Expression of fY83C toxin induces a heterogeneous
response

Previously it was shown that: i) a massive over-expression of the

wt f toxin in E. coli, blocked DNA, RNA and protein synthesis;

and ii) over-expression of wt f toxin in E. coli cells in the absence of

e2 antitoxin alters translation of ,70 (26 essential) genes [31].

Among the non-essential genes were those involved in nucleotide

metabolism, energy production and conversion, cell motility,

stationary phase and starvation (e.g., down regulation of spoT gene)

[31]. Since these arrays were analyzed after e2 antitoxin decay and

under conditions of f toxin over-expression, which might lead to

possible high noise in the analysis of the genes affected, we

repeated this set of experiments using B. subtilis cells without the

antitoxin gene, and at near physiological toxin concentrations.

First, we examined gene expression profiles of exponentially-

growing xylR-PXylA and xylR-PXylAfY83C cultures 5 and 15 min

after Xyl addition, to minimize secondary effects of toxin-

regulated expression on transcription of other genes. Expression

of the fY83C toxin induced dormancy as early as 5 min after

addition of Xyl, but full induction reached a plateau at ,10 min

[31].

Analysis of our time course microarrays revealed that 34 and 78

genes exhibit differential expression at 5 and 15 min, respectively,

after induction of the fY83C toxin (Table 3). Sixty-seven of the 78

genes whose expression was affected after 15 min of fY83C toxin

induction have an assigned or putative gene function (Tables 3 and

S2). Thirty-one of the 46 down-regulated genes were organized in

13 operons, the others as single transcriptional units. When the

genes were categorized by biological function they could be

separated into several clusters (Table S2). About half (,54%) of

the down-regulated genes are involved in amino acid, carbohy-

drate, fatty acid and nucleic acid metabolism, ,17% in transport

and ,13% in regulation of transcription (Table S2). Twenty of the

31 up-regulated genes were organized in 6 operons, the others as

single transcriptional units. About half of these are involved in

membrane, amino acid, carbohydrate, lipid and nucleic acid

metabolism and ,27% in transport (Table S2). Nine of the 11

down-regulated genes required for membrane lipid synthesis are

essential (Tables 3 and S2).

Induction of fY83C toxin stimulates induction of efflux pumps,

and up regulation of relA gene (Tables 3 and S2), functions usually

needed for the adaptation to new environmental stresses. The

induction of competence development might be predicted (see

Table S2), but we were unable to detect chromosomal DNA

transformation (,161029) upon induction of f toxin. Induction of

fY83C toxin, however, did not alter the transcription of genes

coding for chromosomal type I and type II toxins, global or

dedicated stress response factors, specific RNA polymerase sigma

factors (e.g., especially those that respond to cell envelope

Figure 3. Expression of f toxin affects the membrane permeability. (A) lacI-Phspf (xylR-PXylAe) cells were grown in two parallel vessels
containing 30 ml MMS7 at 37uC up to ,56107 cells ml21 in the presence of traces of Xyl (0.005%) and the K+ concentration in the medium was
recorded. Then, 1 mM IPTG was added to one of the vessels and the monitoring of K+ concentrations in the cell suspensions was followed for
100 min (red curve). For control of the intracellular K+ content lysozyme (30 mg ml21) was added as well as calibration of the electrodes by 6 mmol
KCl additions was performed at indicated time frames (green curve). (B) lacI-Phspf (xylR-PXylAe) cells were grown in two parallel vessels in MMS7 at
37uC up to OD560 in the presence of traces of Xyl (0.005%). Then, 1 mM IPTG was added to one of the vessels (empty circles) and OD560 recorded. In A
and B, the arrows point at the time of addition of the indicated compound.
doi:10.1371/journal.pone.0030282.g003
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perturbations, sigM, sigW, yoeB), quorum sensing systems, global

regulators at the intersection between carbon and nitrogen

metabolism, genes encoding iron uptake systems, and two-

component systems involved in cell wall homeostasis or proteases

(Tables 3 and S2). Unlike some E. coli toxins [27,45,46], expression

of fY83C toxin neither induced the SOS responses nor the

accumulation of reactive oxygen species (ROS) (see Supporting

Information Annex S1 and Tables S2 and S3).

In a second step we examined DNA, RNA and protein synthesis

(Figure 4). The xylR-PXylA and xylR-PXylAfY83C cells were grown in

MMS7 to OD560 ,0.2 (time zero), then Xyl was added and pulses

of macromolecular synthesis were followed (see Materials and

methods). By 15 min RNA and protein synthesis decreased, but

DNA synthesis was unaffected (Figure 4A). All macromolecular

synthesis decreased 60 min after expression of the fY83C toxin,

suggesting that expression of the fY83C toxin exerts a pleiotropic

effect on the physiological state of the cells (see Figure 1).

Further analysis of differential gene expression induced by

fY83C could help us to understand and characterize the

molecular mechanisms underlying dormancy and permeability to

PI (Tables 3 and S2). The fY83C-induced dormancy is

characterized by minimal metabolism, and the repression of genes

involved in glycolysis such as yqeC, mtlD, glpK, glpD, yvkC, gutP, gntK,

gntR, and gntZ could explain this behavior. The repression of yqeC,

gntK and gntZ (involved in the production of 5-phosphoribosyl-1-

pyrophosphate) coupled with repression of genes involved in

purine biosynthesis suggests that ATP or GTP synthesis might be

repressed after fY83C toxin induction. For this reason, we

measured the in vivo pool of ATP or GTP. In the control strain

(xylR-PXylA), the ATP or GTP levels increase with time. During the

first 30 min of fY83C toxin expression ATP synthesis remained at

steady state levels (Figure 4B). However, at later times of toxin

expression ATP synthesis was reduced. GTP synthesis was

reduced earlier compared to the control from early times upon

fY83C toxin expression to reach a plateau at 30 min (Figure 4C).

Table 3. Gene Expression Response to fY83C Action.

Category Induced genes Repressed genes

5 min. 15 min. 5 min. 15 min.

Amino acid metabolism - 1 - 2

Carbohydrates metabolism - 4 1 10

Coenzyme metabolism - - 1

Fatty acid metabolism - 2 - 11

Nucleic acid metabolism 1 4 1 2

Adaptation to atypical conditions 1 - 1 -

Membrane bioenergetics - 2 - -

Sensors (signal translation) - - 1 -

Detoxification 2 1 2 -

Sporulation - - 1 2

Unknown genes 7 6 2 5

Antibiotic production - 1

Transcription regulation 2 1 2 6

RNA synthesis - - 1 -

Natural competence 2 3 - -

Transport/binding proteins 5 7 1 8

Total 20 32 14 46

doi:10.1371/journal.pone.0030282.t003

Figure 4. Effect of toxin expression on B. subtilis cell physiol-
ogy. xylR-PXylAfY83C cells were grown in MMS7 medium. At time zero
the culture was divided into two aliquots and Xyl (0.5%) was added to
one sample to induce fY83C expression. At various time points samples
were taken and 2.5 mCi (6-3H)-thymidine (DNA synthesis, black bars),
2.5 mCi (5-3H)-uridine (RNA synthesis, dark grey bars) or 2.5 mCi L-
(4,5-3H)-leucine (protein synthesis, white bars) was added. After a 1 min
pulse of radioactivity incorporation, samples were chased for 2 min
with an excess of unlabeled thymidine, uridine or methionine; cells
were then lysed, the DNA, RNA or proteins precipitated and
incorporated radioactivity measured in a scintillation counter (A). xylR-
PXylAfY83C cells were grown in MMS7 medium containing 50 mCi (32P)-
KH2PO4. At time zero the culture was divided into two aliquots and Xyl
(0.5%) was added to one sample to induce fY83C expression (filled
squares). At various time points samples were withdrawn, cells were
then lysed, and the relative amount of ATP (B) or GTP (C) synthesized
was measured. The ATP or GTP levels are arbitrarily defined as 1 at time
zero.
doi:10.1371/journal.pone.0030282.g004
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RelA facilitates toxin-induced dormancy
There are two lines of evidence that suggest that free active f

toxin could alter the (p)ppGpp levels and indirectly decrease GTP

accumulation. First, after induction of the fY83C toxin the

expression of the yvdC gene was repressed, with no apparent

alteration of mazEF expression (Tables 3 and S2). B. subtilis YvdC

shares homology with MazGEco, whose gene is transcribed from

the same polycistronic mRNA as mazEFEco. MazGEco is a

nucleoside triphosphate pyrophosphohydrolase that hydrolyses

(p)ppGpp, as well as nucleoside triphosphates, in the absence of

the MazEF system [47,48]. If a similar activity is associated with

the YvdC polypeptide, toxin expression might decrease the

degradation of nucleoside triphosphates and (p)ppGpp. Second,

after induction of the fY83C toxin the expression of the relA gene

was induced, while expression of the ssa1 (also known as yjbM or

relQ in different Genera of the Firmicutes Phylum) and ssa2 (ywaC

or relP) genes [49,50] was not altered (Table S2). The stringent

response in Firmicutes differs from that in b- and c-Proteobacteria

[51,52]. B. subtilis, like many other Firmicutes, possesses three

(p)ppGpp synthetases: a single bifunctional RelA-SpoT enzyme,

which modulates the intracellular levels of (p)ppGpp by both

synthesis and degradation in response to the cellular nutritional

status [37] and two alarmone synthetases, Ssa1 and Ssa2,

responsible for the maintenance of basal levels of (p)ppGpp during

homeostatic growth [49,50]. These observations suggest that the

pleiotropic effect observed after fY83C induction could be due to

increased levels of RelA and/or the decreased levels of YvdC,

resulting in a potential accumulation of (p)ppGpp with subsequent

inhibition of DNA replication, metabolic reallocation, induction of

the stringent response and expression of the sB (orthologue of E.

coli sS) factor [40,53,54,55]. To investigate this hypothesis, we

introduced a null relA mutation (DrelA) into xylR-PXylA and xylR-

PXylAfY83C strains, creating xylR-PXylA DrelA and xylR-PXylA-

fY83C DrelA strains, and measured toxin-mediated dormancy and

permeability to PI (Table 4).

Disruption of RelA is pleotropic, leading to poor growth and

accumulation of phenotypic suppressors that increase expression

of the other (p)ppGpp synthetase genes, ssa1 and ssa2 [49,54].

(p)ppGpp levels are virtually undetectable in DrelA cells [37,49,54],

suggesting that one of the key roles of RelA is to maintain the

‘‘optimal’’ concentration of (p)ppGpp, and that the contribution of

Ssa1 and Ssa2 to variation in (p)ppGpp pools is minimal [49,54].

Permeability to PI was observed in ,6% of xylR-PXylA DrelA and

,7% of xylR-PXylAfY83C DrelA cells grown in MMS7 at 37uC in

the absence of inducer (Table 4). Since this increment in PI

permeability is unrelated to toxin expression it was not further

analyzed.

fY83C synthesis was induced in exponentially growing xylR-

PXylAfY83C DrelA (,56107 cells ml21) by addition of Xyl (0.5%),

and PI permeability and plating efficiency were assayed 120 min

later. Whereas the percent of PI stained cells seemed to be additive

in the induced xylR-PXylAfY83C DrelA (24%) compared with xylR-

PXylAfY83C relA+ (17%) and ,6% in the non-induced xylR-

PXylAfY83C DrelA strain, the DrelA mutation lessened by a factor

of .150-fold the decrease in plating efficiency provoked by fY83C

(Table 4). In E. coli cells induction of the stringent response

correlates with tolerance to antibiotics [29]. In contrast, the

absence of a stringent response (DrelA) B. subtilis cells become

tolerant to the toxin (Table 4), if DrelA cells are also tolerant to

antibiotics remains unknown. We might hypothesize that the SOS

response induces tolerance to the toxin and increases cell survival

as previously described [27,45]. However, neither fY83C toxin

expression (Table 3) nor absence of RelA [56] promotes induction

of the SOS response.

To learn whether this decreased entry into dormancy or

increased exit from dormancy might correlate with a decrease in

toxin concentration and/or reduced accumulation of UNAG-3P,

the number of fY83C molecules (Table 1) and the accumulation of

the novel labeled metabolite (Figure S2E and S2F) were measured.

Toxin fY83C accumulation in relA+ or DrelA cells did not vary

more than 2-fold, however, a significant dispersion of the data was

observed in DrelA (see Table 1).

In DrelA cells there is a significantly increase in the synthesis of

UNAG pyrophosphorylase, which is a key enzyme in the synthesis

of UNAG [56,57], so that indirectly the decrease in dormancy

might correlate with an increase in the UNAG pool. As expected,

in DrelA cells the (p)ppGpp levels were virtually undetectable and

60 min after Xyl addition a diffused newly labeled species

appeared between the GTP and ATP spots (Figure S2E). The

accumulation of the (32P)-labeled metabolite was decreased ,2-

fold in DrelA cells when the data are analyzed in bulk. However,

when single colonies were analyzed the accumulation of the novel

fY83C-induced (32P)-labeled metabolite was highly variable in the

DrelA strain (Figure S2F). It is likely that: i) the accumulation of

phenotypic suppressors in DrelA cells [49,54] might be responsible

for the high variability on toxin production and the newly (32P)-

labeled species, and ii) the observed phenotype (decrease entry into

or early exit from dormancy) should be attributed to the pleiotropy

associated with the absence of RelA rather than with increased

pool of UNAG.

Decreased intracellular GTP shows no effect in toxin
activity, but excess of (p)ppGpp enhances asymmetric PI
staining

In the previous section it was shown that the absence of RelA

decreased entry or promoted early exit from dormancy without

apparent alteration in the proportion of PI stained cells. Amino

acid limitation increases (p)ppGpp and reduces the GTP pool

[53,58]; and the GTP pool size regulates the use of rRNA

promoters in B. subtilis cells [59]. To elucidate the mechanism by

which RelA modulates f-induced entry into the dormant state, the

GTP levels were lowered without affecting (p)ppGpp by treating

cells with decoyinine (Dec) (a GMP synthetase inhibitor, see

Supporting Information Annex S2). Upon expression of fY83C

toxin (by addition of 0.5% Xyl), the dormant state was fully

induced and the fraction of DrelA cells permeable to PI was

indistinguishable between cells treated or untreated with Dec

(Table 5). This result indicates that: i) decreased entry into the

dormant state or early exit from it, upon toxin induction in DrelA

Table 4. Effect of DrelA mutation in toxin induced PI staining
and dormancy.

Conditions of
toxin expression Tb % PI stained cellsc CFUs ml21,d

xylR-PXylA DrelA+Xyla - 5.960.4 (957) 2.7 108

xylR-PXylAfY83C DrelA No 7.360.6 (945) 1.1 108

xylR-PXylAfY83C DrelA+Xyla Yes 2461.6 (1061) 4.2 105

xylR-PXylA DrelA or xylR-PXylAfY83C DrelA cells were grown in MMS7.
a0.5% Xyl was added to induce expression of the fY83C toxin and the culture
was incubated for 120 min.

bThe presence of the fY83C toxin is indicated by yes or no.
cNumber of cells analyzed are shown in parentheses.
dThe CFUs were measured after 120 min of toxin induction by plating

appropriate dilutions on LB plates. The results are the average of at least three
independent experiments and are within a 10% standard error.

doi:10.1371/journal.pone.0030282.t004
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cells, is not caused by a decrease in the intracellular GTP pool, and

ii) the absence of RelA affects the dormant state without affecting

the proportion of cells stained with PI (Table 4).

RelA-dependent (p)ppGpp synthesis might constitute an

essential avenue by which cells enter into the dormant state by

inhibiting elongation of DNA replication [40]. To test this

hypothesis the (p)ppGpp levels were increased by adding serine

hydroxamate (SHX), which induces starvation for serine, or

norvaline (Nor), which induces starvation for isoleucine and

leucine, to xylR-PXylAfY83C cells, and toxin-mediated permeabi-

lization to PI and entry into dormancy was analyzed. Addition of

SHX brought growth almost to a halt, whereas addition of Nor,

which results in (p)ppGpp accumulation to ,25% of that caused

by SHX [60], inhibited growth only partly [37,49]. Inhibition by

SHX was fully reversed upon plating cells in its absence (Table 6),

confirming that SHX-induced a reversible inhibition of cell

proliferation [40]. After 120 min incubation with SHX or Nor

,2% of the cells could be stained with PI, as in the absence of the

inhibitors (Table 6). Toxin fY83C fully induced dormancy in the

presence of SHX or Nor, with a subpopulation of ,561025

tolerant cells and 17 to 20% of the population PI-stainable

(Table 6), suggesting that even a large excess of (p)ppGpp and the

consequent decrease in the GTP pool, neither affected toxin-

induced entry into the dormant state nor the permeability to PI.

In the presence of fY83C the permeability to PI in one sibling

lineage was low (,7% of 428 PI stained cells) in the relA+ strain. In

the presence of the fY83C toxin and SHX, however, asymmetrical

PI staining of one sibling lineage (one metabolically active sibling

stained with SYTO 9 and the one adjacent cell with PI) increased

,4-fold, with 26.6% of total 657 PI stained cells (Figure S4). It is

likely that senescence cannot be the main source of toxin-induced

PI staining cells, but upon starvation for serine and toxin

expression PI permeability seem to correlate with senesce or with

the asymmetrical PI staining of elder relA+ cell [61,62]. Such

increase was not observed when SHX was replaced by Nor or

when the cells were treated only with SHX. It is likely that: i)

toxin-induced membrane changes are not the main source of

‘‘senescence’’, and ii) there is more than one level of response to

amino acid starvation, because in the presence of the toxin and

high levels of induction of the stringent response (SHX addition)

asymmetrically PI stained cells accumulate, but not in the presence

of moderate levels (Nor addition).

Since different levels of (p)ppGpp were expected upon toxin

induction in relA+ and DrelA cells and after nutritional starvation,

we favor the idea that directly or indirectly ‘‘optimal’’ levels of

(p)ppGpp in normally growing relA+ cells contribute to entry into

the dormant state and/or early exit from it and PI staining by a

mechanism other than decreased levels of the GTP pools (Table 5),

stringent response (Table 6) or inhibition of elongation of DNA

replication [40].

Discussion

We have attempted to understand the molecular mechanisms

that govern the f toxin activity with the goal of gaining insight into

its primary physiological role. Current hypotheses, derived from

studies of toxins from c-Proteobacteria propose that TA systems

are involved in stress management either through induction of a

reversible dormant state as a means of coping with stress and

increasing survival as shown for RelE or TisB [27,63] or in

programmed cell death through promotion of lysis in a large

fraction of the population, although also increased cell survival in

the presence of antibiotics as shown for the MazEF system

[1,24,46]. Our experimental set-up was designed to address the

effect of the Firmicutes f toxin, which inhibits cell wall biosynthesis

and has a potential bactericidal role [20], at or near physiological

levels, independently of the factors that control its synthesis. The

results show that f toxin within the first 15 min induces a set of

protective responses, as down-regulation of essential genes

involved in membrane biosynthesis and up-regulation of genes,

that facilitate entry into dormancy (e.g., relA), without apparent

alteration of the cellular proteome [31], rather than showing a

bactericidal behavior (Figure 1). After 60 min the toxin reduces

Table 5. Effect of GTP or (p)ppGpp levels in toxin induced PI
staining and dormancy.

Conditions of
toxin expression Tf

% PI stained
cellsg

CFUs
ml21,h,i

xylR-PXylA+Deca - 3.460.2 (530) 2.8 108

xylR-PXylAfY83C No 1.860.2 (800) 1.8 108

xylR-PXylAfY83C+Deca No 5.360.4 (478) 1.8 108

xylR-PXylAfY83C+Xyla Yes 1761.3 (937) 1.5 103

xylR-PXylAfY83C+Dec+Xylb Yes 1961.6 (1041) 5.0 103

xylR-PXylA (DrelA)+Deca - 3.260.2 (700) 3.0 108

xylR-PXylAfY83C (DrelA) No 4.360.5 (800) 2.7 108

xylR-PXylAfY83C (DrelA)+Deca No 4.860.3 (350) 2.6 108

xylR-PXylAfY83C (DrelA)+Xyla Yes 23.961.9 (350) 4.6 105

xylR-PXylAfY83C (DrelA)+Dec+Xylb Yes 22.762.1 (450) 3.0 105

xylR-PXylA or xylR-PXylA DrelA or xylR-PXylAfY83C or xylR-PXylAfY83C DrelA were
grown in MMS7. At ,56107 cells/ml21 0.5% Xyla (to induce fY83C expression)
or 0.5 mg ml21 Deca (to reduce GTP synthesis) or bothb, Xyl and Dec, were
added and the culture was incubated for 120 min.
fThe presence of fY83C toxin is indicated by yes or no.
gNumber of cells analyzed are shown in parentheses.
hDue to poor growth of the DrelA strains CFUs were measured after two days of
incubation.

iThe CFUs were measured after 120 min of toxin induction by plating
appropriate dilutions on LB plates. The results are the average of at least three
independent experiments and are within a 10% standard error.
doi:10.1371/journal.pone.0030282.t005

Table 6. Effect of GTP or (p)ppGpp levels in toxin induced PI
staining and dormancy.

Conditions of
toxin expression Tf

% PI
stained cellsg

CFUs
ml21,h

xylR-PXylA+Xylc - ,1 (900) 2.0108

xylR-PXylA-fY83C No 1.760.2 (850) 1.9 108

xylR-PXylAfY83C+Xylc Yes 1761.5 (937) 2.5 103

xylR-PXylAfY83C+SHXd No 2.060.2 (698) 5.1 107

xylR-PXylAfY83C+Xylc+SHXd Yes 2061.5 (750) 2.8 103

xylR-PXylAfY83C+Nore No 1.760.2 (600) 1.0 108

xylR-PXylAfY83C+Xylc+Nore Yes 1861.6 (600) 3.8 103

To xylR-PXylAfY83C cells, at ,56107 cells/ml21, 0.5% Xylc, 1.5 mg ml21 SHXd or
0.5 mg ml21 Nore (or both Xyl and SHX or Nor) was added to induce expression
of the fY83C toxin or (p)ppGpp accumulation and the culture was incubated for
120 min.
fThe presence of fY83C toxin is indicated by yes or no.
gNumber of cells analyzed are shown in parentheses.
hThe CFUs were measured after 120 min of toxin induction by plating
appropriate dilutions on LB plates. The results are the average of at least three
independent experiments and are within a 10% standard error.

doi:10.1371/journal.pone.0030282.t006
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the synthesis of macromolecules as well as GTP and ATP, alters

membrane potential, catalyzes the transfer of a phosphoryl group

of ATP to a novel (32P)-labeled compound that migrates as

UNAG-3P and a fraction of cells becomes permeable to PI (up to

30% of total cells) (see Figure 1). When the cells overcome the

stressful situation transcription and translation resume, leading to

the accumulation of e2 antitoxin, inactivation of the toxin with

subsequent reversion of the dormant state and growth resumption

(Figure 1). However, a fraction of the cells (,10% of total cells), by

a poorly defined mechanism, either fail to enter into the dormant

state or in these cells, the supply of cell wall precursors may

become inadequate, showing cell membrane permeability and

perhaps cell death (see Figure 1).

The bulk of our data gathered so far indicate that the reversible

cell proliferation arrest (dormancy) and the permeability to PI

induced by f are separated events, because in the presence of

limiting free f toxin concentrations or physiological f toxin

concentrations in DrelA cells there is not significant change in PI

staining, but it increased the proportion of non-inheritable tolerant

cells (Figures 1 and 2, Table 4). Optimal (p)ppGpp and/or GTP

levels seem to play an important role in stress tolerance, but

neither a decrease in the intracellular levels of the GTP pools, by

decoyinine (Dec) addition, nor overproduction of (p)ppGpp, by

SHX-mediated induction, seem to contribute to f-mediated entry

into the dormant state (Tables 5 and 6). Toxin-mediated PI

staining does not correlate with cell aging. Nevertheless, the

cumulative loss of fitness, by toxin expression and high level of

(p)ppGpp) (by SHX addition), increases permeabilization to PI of

one sibling, which could be argued that is the sibling that inherited

the old-pole [61,62].

Several observations lead us to propose that the f phospho-

transferase toxin induces a set of protective responses that facilitate

entry into dormancy. Expression of the toxin neither induces

general survival (SOS response, Table S2), synthesis of the host-

encoded TA loci, quorum sensing factors or a precursor of EDF

nor a killing response (production of ROS) (Tables 3, S2 and S3).

This is consistent with the observation that: i) 2,29-dipyridyl, which

blocks the Fenton reaction in vivo without affecting the oxygen

concentration [64], could not overcome permeabilization to PI

(Table S3). It is likely that Firmicutes f/PezT toxin halts cell

proliferation, readjusts the membrane and cell wall biosynthesis,

and a small population become permeable to PI. Expression of the

e2 antitoxin reverses the dormant state and permeation to PI of a

fraction of cells, however e2 antitoxin fails to fully reverse PI

staining, suggesting that the sub-fraction, which fails to enter into

the dormant state, cannot be recovered upon antitoxin expression

(Figure 1).

Supporting Information

Figure S1 Experimental systems used. (A) Illustrations showing

the structure of the empty cassette (xylR-PXylA, BG687 and its DrelA

derivative BG1143) or the fY83C expression cassette (xylR-

PXylAfY83C, BG689 and its DrelA derivative BG1145) integrated

as a unique copy into the B. subtilis chromosome (amy locus). (B)

Illustrations showing the structure of the empty cassette (lacI-Phsp,

BG1127) or the wt f expression cassette (lacI-Phspf, BG1125)

integrated as a unique copy into the B. subtilis chromosome (amy

locus), and a plasmid-borne e gene (xylR-PXylAe, pCB799, 7–9

copies per cell) under the control of a Xyl-inducible cassette.

(TIF)

Figure S2 Toxin expression leads to the accumulation of a novel

compound. (A) xylR-PXylA, (B) lacI-Phsp (xylR-PXylAe), (C) xylR-

PXylAfY83C and (D) lacI-Phspf (xylR-PXylAe) cells were grown in

MMS7 at 37uC up to ,56106 cells ml21 and (32P)-KH2PO4

(50 mCi ml21) was added and the cells were grown up to ,56107

cells. At time zero expression of the toxin was induced or not (in A

and C, Xyl 0.5%) or (in B and D, 1 mM IPTG) and cells were

collected and processed at the indicated times as indicated in

Materials and methods. xylR-PXylAfY83C relA+ or DrelA cells were

grown in MMS7 at 37uC up to ,56106 cells ml21, (32P)-KH2PO4

(50 mCi ml21) was added and the cells were grown up to ,56107

cells ml21. At time zero Xyl (0.5%) was added or not and cells

were collected at the indicated times (E) or at 90 min (F). + and 2

denote the presence or absence of fY83C. The resulting

supernatants were collected and processed as indicated above.

The positions of the origin, signals corresponding to (32P)-labeled

ATP (lane a), CTP (b) and GTP and UTP (c) are indicated. An

arrow denotes the position of the novel (32P)-radiolabeled

compound that is likely to be a phosphorylated variant of UNAG

that accumulates in the presence of commercially available UNAG

and purified f phosphotransferase in vitro.

(TIF)

Figure S3 The accumulation of f-induced novel metabolite halts

upon e2 antitoxin expression. lacI-Phspf (xylR-PXylAe) cells were

grown in MMS7 at 37uC containing 0.005% Xyl (+Xyl) up to

,56106 cells ml21 and (32P)-KH2PO4 (50 mCi ml21) was added

and the cells were grown up to ,56107 cells ml21. At time zero

the culture was divided into two aliquots and expression of the f
toxin was induced (1 mM IPTG) in both sample and 60 min later

expression of the e2 antitoxin was induced with 0.5% Xyl in one of

the cultures and the cells were collected at the indicated times. The

(32P)-labeled nucleotides were separated and visualized as denoted

in Fig. S2. The parentheses in (xylR-PXylAe) and (+Xyl) denote that

there are traces low antitoxin levels upon induction with 0.005%

Xyl. An arrow denotes the position of the novel (32P)-radiolabeled

compound (see Fig. S2).

(TIF)

Figure S4 Expression of fY83C and SHX addition increment

the PI staining of siblings. xylR-PXylAfY83C cells were incubated

for 120 min with Xyl 0.5% (A and B) and 1.5 mg/ml SHX (B),

stained with SYTO 9 and PI and analyzed by fluorescence

microscopy. White arrows show the PI staining of one sibling in

the Xyl+SHX condition.

(TIF)

Annex S1 ROS accumulation is not correlated with f-induced

membrane permeation.

(DOCX)

Annex S2 Decreased intracellular GTP does not affect f-induced

dormancy.

(DOCX)

Table S1 Bacterial strains used.

(DOCX)

Table S2 Gene expression response after 5 and 15 min of

fY83C toxin action.

(DOCX)

Table S3 Percentage of PI stained cells and CFUs under low

ROS condition.

(DOCX)
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