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Abstract

The brain mechanism of extracting visual features for recognizing various objects has consistently been a controversial issue
in computational models of object recognition. To extract visual features, we introduce a new, biologically motivated model
for facial categorization, which is an extension of the Hubel and Wiesel simple-to-complex cell hierarchy. To address the
synaptic stability versus plasticity dilemma, we apply the Adaptive Resonance Theory (ART) for extracting informative
intermediate level visual features during the learning process, which also makes this model stable against the destruction of
previously learned information while learning new information. Such a mechanism has been suggested to be embedded
within known laminar microcircuits of the cerebral cortex. To reveal the strength of the proposed visual feature learning
mechanism, we show that when we use this mechanism in the training process of a well-known biologically motivated
object recognition model (the HMAX model), it performs better than the HMAX model in face/non-face classification tasks.
Furthermore, we demonstrate that our proposed mechanism is capable of following similar trends in performance as
humans in a psychophysical experiment using a face versus non-face rapid categorization task.
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Introduction

Although real-world object recognition is one of the most

complex and difficult of tasks, it is robustly and rapidly performed

by the primate visual system. The visual system can easily adapt

itself to real-world object recognition, where objects are presented

in cluttered backgrounds that can vary in illumination, viewpoint,

position and scale. Neurobiological evidence demonstrates that

object recognition in the visual cortex is mediated by the ventral

visual pathway [1], which starts from the primary visual cortex V1,

continues over the extrastriate visual areas, V2 and V4, to the

inferotemporal cortex (IT) and then to prefrontal cortex (PFC) [2–

4]. This pathway exhibits a hierarchical structure in which the

complexity of the preferred stimuli and the receptive field of cells

correspondingly increase along the hierarchy [2,3]. Based on

widely accepted evidence, several models of visual cortex have

been proposed. For example, a major breakthrough in this field

has been derived from the work of Hubel and Wiesel on the cat

[5,6] and macaque primary visual cortex [7]. These studies

demonstrate that the processing in the visual cortex follows a

hierarchical structure. Following Hubel and Wiesel’s pioneering

proposal of a hierarchical model for the primary visual cortex,

several hierarchical object recognition models have been devel-

oped. For example, Fukushima [8] proposed Neocognitron, a

hierarchical multilayered neural network that is capable of robust

visual pattern recognition through learning [9,10]. Riesenhuber

and Poggio [11] also proposed the HMAX model, which is based

on the classical simple-to-complex cells model by Hubel & Wiesel.

The HMAX model attempts to quantitatively resemble visual

processing in the ventral visual pathway. A significant degree of

invariance to scale and translation are some characteristic of the

HMAX model. Furthermore, this model outperforms some state-

of-the-art computer vision systems in applications such as object

recognition and scene understanding [12].

Another group of models, including the LAMINART and

SMART models, does not fall into the category of object

recognition models. These models try to implement details of

circuits and layers of the visual cortex. The LAMINART model

[13–15] is a model of the visual cortex that attempts to implement

details of layers and circuits in the lateral geniculate nucleus (LGN),

and the V1 and V2 areas of the visual cortex. The Synchronous

Matching ART model (SMART) [16] implements interactions

between the laminar cortical circuits and higher-order thalamic

nuclei. These models are based on the adaptive resonance theory,

which was developed and inspired by how the brain performs

information processing [17,18].

Solving the stability-plasticity dilemma together with achieving

memory stability in an evolving input environment is considered as

a fundamental goal. The stability-plasticity dilemma is related to

how our brain learns enormous amounts of information and can

remain stable against forgetting previously learned material. The

LAMINART and SMART models attempt to show how the ART
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mechanism may be embedded in the cerebral cortex and attempt

to propose a solution to the stability-plasticity dilemma observed in

the cerebral cortex.

Extracting biologically plausible visual features that can mimic

visual processing in the primate brain has been a challenging goal

for computational models of object recognition. For example,

learning in the model proposed by Serre et al. involves a simple

mechanism of selecting random patches from the training images

[19]. However, random selection is not a biologically plausible

approach. To select only relevant features for a given task, LeCun

used a supervised back-propagation approach to learn visual

features in a convolutional network [20]. M. Ghodrati et al.

proposed a method which uses feedbacks from classifier (analogous

to PFC) to extract informative visual features. Their method uses

an optimization algorithm to select informative patches from a

large pool of patches [21]. Masquelier et al. [22] used the spike

timing-dependent plasticity (STDP) learning rule in an architecture

on the basis of the Serre et al. model. Although this is a

biologically-plausible approach, it is not stable due to the

forgetting of previously learned information. Furthermore, each

input is required to be presented several hundred times, whereas

usually our brain is able to learn scenes at first glance.

In this paper, by using a stable visual feature learning

mechanism, we propose a model which incorporates one of the

well-know object recognition models (the HMAX model), that is

based on the hierarchical model of Hubel and Wiesel. The HMAX

model is a feedforward network of four layers of alternating simple

and complex units (S1, C1, S2, C2). The HMAX model with our

proposed feature learning mechanism, inspired by the ART

system, suggests a mechanism for solving the problem of stability

versus plasticity in object recognition systems. Both the ART

mechanism, which is employed in our model, and the STDP rule

are biologically plausible. However, the ART mechanism enables

our model to learn informative features in a single presentation of

the input image. This is in contrast to the STDP rule, which

requires hundred times of image presentation.

There are some other object recognition models that have used

the Adaptive Resonance Theory. For example, Woodbeck et al.

[23] proposed a biologically plausible hierarchical structure which

was an extension of the sparse localized features (SLF) suggested

by Mutch et al. [24]. One of their contributions was that, instead

of using support vector machines (SVM) for classification, they

used Fuzzy ARTMAP as a biologically plausible multiclass classifier

[25] which is based on the Adaptive Resonance Theory (ART).

There are also some other studies that have employed Adaptive

Resonance Theory to classify objects after extracting features

[26,27]. However, we have adopted Adaptive Resonance Theory

for selecting informative visual features before classification stage

in a learning mechanism. There are also many other pattern

recognition systems based on the ART mechanism [28–32], which

do not have a hierarchical structure inspired by the primate visual

cortex.

We evaluated the proposed learning mechanism in a facial

categorization task and compared the results with a benchmark

model of object recognition; we also compared the performance of

the both models with the performance obtained from a

psychophysical experiment using human observers. Our results

demonstrate that the proposed model has a higher classification

performance than the benchmark model and resembles human

responses at an acceptable level.

Materials and Methods

The stability-plasticity dilemma
Humans can memorize new faces at a glance, but this fast

learning ability does not yield forgetting the previously known

faces. The ability of our learning system to memorize novel events

is called plasticity. In contrast, the ability that prevents the

catastrophic forgetting of previously learned information is called

stability. This mechanism, which exists in all adaptive processes of

the brain, is called the stability-plasticity dilemma [18]. This

dilemma hinges on the idea that human and mammalian brains

are able to learn massive amounts of new information throughout

their life without forgetting previously learned information.

One theory that addresses the stability-plasticity dilemma is the

ART, which was proposed by Grossberg [17]. The ART is a

cognitive and neural theory that attempts to provide a solution for

the stability-plasticity dilemma. It proposes a top-down matching

mechanism in which bottom-up signals activate top-down

expectations; this attracts attention to the relevant information in

the bottom-up pathway (Figure 1). The ART works with an on-

center, off-surround network that amplifies the activities of the

cells within the matched portion (on-center) while suppresses the

activities of irrelevant cells in the non-matched portion (the

surround) (Figure 1). The top-down modulatory on-center, off-

surround circuit [33–37] is used for the matching process in our

proposed model. We used this matching process for selecting

attended features and inhibiting unattended ones. This proposed

model makes use of the bottom-up adaptive weights as well as the

top-down expectations, which enables the attended feature

patterns to be learned. If the input pattern adequately matches

the top-down expectations, then these top-down expectations will

reactivate relevant bottom-up pathways, thereby generating a state

of feedback resonance between the bottom-up and top-down

pathways. In contrast, a large mismatch can lead to hypothesis

testing or searching for a new and more predictive category.

As previously described, top-down connections exist in the early

layers of the visual cortex such as V1 and V2, which demonstrates

Figure 1. The top-down matching mechanism. The bottom-up
weighted connections cause the activation of some units in the upper
layer. These units send excitation signals to the relevant units through
direct top-down weights and inhibit signals to all units and amplify the
activities of cells within the matched (on-center) portion while
suppressing the activities of irrelevant cells in the non-matched
(surround) portion; thus, this network is named the on-center, off-
surround network. The units in the first layer receive both excitation
and inhibition (on-center), and additional excitations may overcome the
inhibitions. In contrast, when the cells receive only top-down inhibition
(off-surround), then one inhibition may counteract one excitation from
the input.
doi:10.1371/journal.pone.0038478.g001

Stable Learning of Biologically Inspired Features

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e38478



that the visual cortex not only has feed-forward connections

(unlike the classical model of Hubel and Wiesel), but also possesses

feedback connections, which is thought to have a key role in the

stabilization of both development and learning within multiple

cortical areas including the V1 and V2 areas [40]. Therefore, the

feedback loop from complex cells to simple cells through a

modulatory on-center, off-surround network can be thought of as

an implementation of ART matching in the visual cortex.

The stability-plasticity dilemma in the visual cortex
How the visual cortex automatically develops circuits and can

still remain stable is a major question for which several models

have been developed, including the LAMINART model [13], that

attempts to implement details of the layers and circuits of the LGN,

V1, and V2 areas in the visual cortex. The Synchronous Matching

ART model [16] is another example, which goes beyond the

LAMINART model and implements interactions between laminar

cortical circuits and higher-order thalamic nuclei. The LAMI-

NART and SMART models are based on the adaptive resonance

theory, which suggests a solution for the stability-plasticity

dilemma.

Simple cells in the V1 area receive direct inputs from the LGN

and also from an on-center, off-surround network [38]. Complex

cells receive inputs from simple cells with the same orientation but

different contrast polarities and can thus respond to both

polarities. In addition to these bottom-up connections, cortical

connections of the visual cortex have been shown to provide

feedback to lower level layers. For instance, active complex cells

send top-down signals to simple cells through an on-center, off-

surround network, and simple cells in turn activate complex cells.

This feedback process is called folded feedback (see Figure 2B in

[14]). The top-down signals from complex cells to simple cells,

Figure 2. A schematic diagram of the proposed model architecture. Grayscale images are applied to the system and the outputs of S1 and
then C1 are attained. Then, the S2 responses are computed using existing prototypes. Next, to compute the C2 responses, the S2 units with the
maximum response for each prototype for all positions and scale bands are selected. The highest active C2 units are then selected as prototypes to
represent the image (these are shown in the red box at the top of the figure). This selection is achieved by top-down expectations, which match the
input image to the prototypes. A lateral subsystem (vigilance control), which uses a vigilance parameter (r), determines the matching degree
between the prototypes and various parts of the input image. If a selected active C2 unit has a smaller response than the vigilance value, then a new
prototype is extracted from the current input image and added to the existing prototypes.
doi:10.1371/journal.pone.0038478.g002
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using an on-center off-surround network, enables highly active

complex cells to inhibit lower active cells [39]. The V2 circuitry

also demonstrates a similar pattern to that of V1, but on a larger

spatial scale.

The proposed model
We propose a biologically motivated object recognition model

which incorporates the HMAX model, and uses a stable learning

method, inspired by the ART mechanism, to solve the stability-

plasticity dilemma. The proposed model is generally based on

Neocognitron [9] and HMAX (which is another hierarchical model

based on Neocognitron) proposed by Riesenhuber and Poggio [11].

Some parameters of the model proposed in this study, particularly

those in the edge detection stage, have been adjusted to be

comparable with the HMAX model in facial categorization tasks

(We used the HMAX MATLAB implementation, which was freely

available at http://cbcl.mit.edu/software-datasets/index.html).

Furthermore, to solve the stability-plasticity dilemma, we used

the ART mechanism to extract more informative features of

intermediate complexity, and this consequently provides a more

realistic biologically inspired model.

The proposed model has a hierarchical structure and intends to

emulate rapid object categorization in the visual cortex. The

model consists of alternating simple and complex units: simple (S)

units correspond to the simple cells in the visual cortex, which

combine their inputs according to a bell-shaped tuning function to

increase selectivity. Complex (C) units correspond to the complex

cells in the visual cortex, which show tolerance to a shift in the

position and size of the stimuli within their receptive field. These

units pool their inputs through a maximum (max) operation [11]

to increase invariance (biologically plausible circuits for these two

operations can be found in [41]). The proposed model consists of

four layers of alternating simple and complex units (Figure 2). The

S1 units take the form of the Gabor function [42] and convolve the

input image to detect bars and edges. The Gabor function has

many free parameters, which agrees well with physiological data

recorded from simple cell receptive fields in cat striate cortex [43].

The parameters of the Gabor function were set up to match the

tuning properties of simple cells in V1. The S1 units include 16

filter sizes, spanning a range of sizes from 767 to 37637 pixels in

steps of two pixels, and four orientations (0u, 45u, 90u, 135u).
Totally, there are 64 different S1 units. These 64 filters are then

divided into eight bands where each band contains two adjacent

filter sizes [12].

Each of the complex C1 units pools its inputs over a group of

simple S1 units which have the same preferred orientation but at

slightly different positions and sizes. The index of the filter size

bands determines the pool range for the C1 units. This pooling

increases the invariance to the changes in shift and size inside the

receptive field of the units.

The next layer is S2, which is selective to more complex patterns

than bars or edges within their receptive field. The units of this

layer receive their input from retinotopically organized C1 units in

a spatial grid and in all four orientations via weighted connections

that respond to specific patterns or prototypes, bottom-up weights

(Figure 1).

The last layer of the model consists of C2 units that respond to

the prototypes of the input image extracted from different

locations, which increases invariance. A C2 unit has connections

with S2 units of the same prototype but in a different size and

position. Thus, the results of this layer are C2 values in a vector of

size N, where N is the number of prototypes learned by the model.

The C2 responses illustrate the matching between the prototypes

and the input image. A high C2 response indicates that the

extracted prototype is sufficiently matched by a portion of the

input image and is thus suitable for representing the input image.

The feedback from complex cells to simple cells through the on-

center, off-surround network in the V1 and V2 areas of the visual

cortex leads to the excitation of related simple cells by winner

complex cells and inhibits irrelevant cells. In addition to the

feedback from complex cells to simple cells, the feed-forward

connections between simple and complex cells create a feedback

loop that yields a resonant state for relevant cells [39].

According to this feedback loop, we simulate this match

learning to learn informative intermediate-level visual features

from the input images. This feedback excites portions of inputs

that are matched by the prototypes of the active C2 units and

inhibits portions of inputs that are not matched by these

prototypes (Figure 1). In contrast, if the mismatch is higher than

the value of vigilance parameter (this parameter is explained later),

this means that the existing C2 units are unable to represent the

input image. Next, new prototypes from the current input are

extracted and added to the preceding C2 units. In other words, we

assume that for each input image, P numbers of C2 units are

sufficient to represent the image. If these P features were

previously available in the current pool of patches, we would

have an accurate representation of the input image. Otherwise, the

new patches will be extracted and added to the pool of patches. To

achieve informative prototypes for each image, we employed the

match learning and reset mechanism of the ART system (Figure 2).

An analogy can be seen between adding new C2 units and match-

based learning, which has been suggested to be a learning

mechanism in the brain. Match-based learning updates memory

only when a completely new input occurs or there are some inputs

from the external world, which are sufficiently close to internal

expectations [16].

We presented all of the training images to the system, and

outputs of S1 and then C1 were attained. The S2 responses were

then computed by utilizing the existing prototypes. Next, to

compute the C2 responses, the S2 units with a maximum response

for each prototype for all of the positions and scale bands were

selected. We selected P C2 units with the highest activity to

represent the image (this selection was achieved by top-down

expectations, which match the input image to prototypes) and

compared them with a vigilance parameter to determine the

matching degree between the prototypes and the input image.

These selected units are shown separately at the C2 level (Figure 2).

If the amount of matching is lower than the vigilance, then the

prototype will not represent the input image appropriately and

results in extracting new prototypes from the current image and

adding them to the prototype pool. Using this learning process,

with a single presentation of an image of the training set, proper

prototypes that represent the image are efficiently extracted.

To control the generality of the learned features, a vigilance

parameter in the model was used that is analogous to the process

mediated by acetylcholine. According to the SMART model [16], a

combination of nonspecific nuclei and the nucleus basalis of

Meynert is proposed to play the role of the vigilance parameter in

our model (see Table 1 in [16]). The vigilance parameter is set in

such a way to attain the highest performance with the fewest

prototypes. The selection of the vigilance parameter is highly

critical in an ART network, and there is no special rule for setting

the value of vigilance [44]. To determine the vigilance parameter,

a group of images were randomly selected from the dataset prior to

the training and testing stages. Next, from these images, the

vigilance parameter was specified manually. Finally, the vigilance

parameter remained fixed during both the training and testing

stages for these experiments.

Stable Learning of Biologically Inspired Features
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The classification stage: to compare our model with the HMAX

model [12] in a face/non-face categorization task, we added a

classification stage to the model that is similar to that of the HMAX

model. For all images in the training and testing sets, each image

was passed through the layers of the model, and the responses of

the C2 units were computed and saved as a vector representing the

extracted features for that image. Next, these vectors were

subsequently passed to a linear classifier (Simple linear SVM

classifier) for classification.

Images dataset
To evaluate the performance of the proposed model, we used

the face image category of the widely used California Institute of

Technology (Caltech101) datasets [45]. These datasets consist of

101 different object classes as target images and a background

folder as negative examples. We used the background dataset as

distractor images. The face dataset contains face images of various

people against various backgrounds in various positions. This

dataset appears to be challenging for facial categorization. The

number of images in the face and background datasets are 435 and

Figure 3. Various comparisons between the proposed model, another biologically plausible model and human subjects. (A, B), The
performance achieved across different number of training images. (C), The performance achieved across different number of features (green digits
are p-values obtained using the Wilcoxon-rank sum test [49] and dark blue digits are those obtained from the two-Sample Kolmogorov-Smirnov test
[50]). (D), The average performance achieved by the human observers, the proposed model, and the HMAX model on images with various levels of
noise, error bars are standard deviation (SD).
doi:10.1371/journal.pone.0038478.g003
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451, respectively. The dataset is freely available at http://www.

vision.caltech.edu/Image_Data sets/Caltech101 (This dataset is

completely free and has been widely used and represented by

authors. Some researchers who have used these face images in

their work include [22,45–48]).

Classification by the Proposed Model
We designed various experiments to compare the proposed

model with the HMAX model in face/non-face categorization

tasks. The images were converted to grayscale values and rescaled

to be 140 pixels in height. The width was rescaled accordingly to

preserve the aspect ratio. In all experiments, the following

procedure was performed:

1. Extracting C2-level features: Our stable fast learning algorithm was

performed on the training dataset to extract a set of C2-level

features.

2. Training the SVM classifier: All of the training set images were

applied one by one to the model, and C2 responses were

calculated. The C2 responses with labels (1 for positive and -1

for negative examples) were used to train a classifier (i.e., the

Simple linear SVM classifier). It is noteworthy that layers are

fixed at this stage, and learning in lower levels of the system is

stopped.

3. Evaluating the extracted features: The performance of the classifier

on the test set was evaluated. The overall procedure was

repeated 20 times, and the average performance and standard

deviation (SD) were reported.

In the first experiment, we evaluated the performance of the

proposed model in a face/non-face classification task. For this

purpose, the datasets were randomly divided into two subsets with

equal number of images, i.e., for the training and test sets. The first

subset was used for extracting C2-level features and training the

SVM classifier, and the second subset was used for evaluating the

classification performance.

In the next experiment, we studied the effect of the number of

training samples on the classification performance. The model was

evaluated using different numbers of positive training samples (1,

3, 6, 15, 30, and 40). We used 50 negative training samples, 50

positive test samples, and 50 negative test samples. To demonstrate

that our model extracts informative and as few intermediate-level

features as possible from the images, we measured the classifica-

tion performance across different number of extracted features.

For further studies regarding the biologically plausibility of the

proposed model, we compared the performance of the face/non-

face categorization task in humans with the model.

Results

In the next two sections, we report the results of different

comparisons made between the proposed model, another biolog-

ically plausible model (HMAX), and human subjects. First, the

results of the proposed model are compared against the HMAX

model in three different experiments. As a follow-up to these

results, we compare the performance of the human subjects in a

psychophysical test (rapid categorization of faces versus non-faces)

with the performance of our proposed model.

Comparison with another biologically plausible model
We compared our results against another established biologi-

cally motivated object recognition model, the HMAX model. This

model outperformed many machine-vision object recognition

systems at several tasks [12]. We evaluated the performance of the

HAMX model using the proposed visual feature learning

mechanism against the standard HMAX model. For this purpose,

we used the face category of Caltech101.

In the first experiment, the face and background datasets were

randomly divided into two separate sets of equal sizes. Next, we

applied our stable fast-learning algorithm to the training dataset to

extract the most informative intermediate-level features from the

images. The vigilance parameter in the model was determined

such that the most informative features with the highest possible

performance were extracted. After this stage, the prototype

learning was stopped, and the obtained features were applied in

the face/non-face classification task. The classification perfor-

mance of these features was then computed. In the classification

stage, we used a linear SVM classifier. The performances were

reported with an accuracy measure at the equilibrium point,

which occurs at the accuracy point when the false positive rate

equals the missed rate. For a fair comparison, we also used the

HMAX model on the same training and test set. The classification

Figure 4. Generated images with different levels of noise. (A), Examples of faces. The first row consists of noise-free images, and each noisy
image in the second row corresponds to the above noise-free image. (B), Examples of distractors. The first row consists of noisy images, and the
second row corresponds to noise-free images. (C), The psychophysical task process. A face image is presented for 20 ms, and then a blank screen is
presented (ISI 10 ms). Next, a noisy mask is presented for 80 ms. Finally, the subject is asked to select ‘‘YES’’ or ‘‘NO’’ by pressing the appropriate key
on a computer keyboard.
doi:10.1371/journal.pone.0038478.g004
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performance was 98.5% for our model and 98% for the HMAX

model. To determine whether the performance differences

between the HMAX model and the proposed model were

statistically significant, we used two non-parametric statistical

tests, i.e., the Wilcoxon rank sum [49] and the two-Sample

Kolmogorov-Smirnov test [50] (Implemented in MATLAB

statistical toolbox. Under the null hypothesis the distribution and

mean of both groups are equal, so that the probability of an

observation from one population (X) exceeding an observation

from the second population (Y) equals the probability of an

observation from Y exceeding an observation from X. Note that,

distributions are classification performances obtained over 20

Figure 5. ROC for the proposed model and humans. The upper and lower green curves correspond to the maximum and minimum ROC curves
for the proposed model, and each of the red circles corresponds to the results obtained by a human observer. The average of these ROC curves is
shown by the blue curve.
doi:10.1371/journal.pone.0038478.g005
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independent runs of the HMAX model with random feature

extraction, and with the proposed feature learning mechanism.

Under the alternative hypothesis, the probability of an observation

from one population (X) exceeding an observation from the

second population (Y) is not equal to 0.05. Rejection of the null

hypothesis is at the 0.05 significance level. The reported p-values

using these methods were 0.009 and 0.059, respectively.

To study the potential effects of using a different number of

training examples on the performance of the system, we selected 1,

3, 6, 15, 30, and 40 positive training samples. We used 50 negative

training samples together with 50 positive and 50 negative test

samples. The performances of the proposed model and the

benchmark model using different number of training images are

compared in Figure 3A (experiments were independently

performed 20 times. Afterwards, the average performance and

standard deviation were reported). For each training stage run and

after giving the training data to the proposed model, sufficient

informative C2-level-features were extracted and subsequently

used to train the classifier for the face/non-face classification task.

We then implemented the benchmark model using the same

number of features. To make the comparison more challenging for

our proposed model, we also performed the benchmark model

using 1,000 features. As shown in Figure 3A and 3B, the

performance of the proposed model was better than the

benchmark model (for the same number of features) across

different number of training examples; the proposed model also

performed moderately better than the benchmark model with

1,000 features. In some cases in Figure 3A and 3B our results are

not statistically significant. However, when we use fewer features,

as it can be seen in Figure 3C, the classification performances of

our method are significantly better, and p-values reveal that the

results in this case are statistically significant.

In the next experiment, we compared the performance of the

proposed model with the HMAX model using different numbers of

features. In this case, the parameters of the proposed model were

set to extract a number of features, and these features were then

used in the classification task. The datasets were randomly divided

into two separate subsets of equal size (the training set and the test

set). As shown in Figure 3C, when we use fewer numbers of

features, our proposed model significantly outperforms the

Figure 6. Details of the process used to compare the stability of the proposed model with the HMAX model. The first iteration can be
explained as follows: first, two images (i.e., the t1 set) are randomly selected and sent to the train bag. Next, both the proposed model and the HMAX
model are used to extract a pool of patches called t1 patches, which are depicted in the red-colored dashed box (box Q). Subsequently, patches are
extracted of two other randomly selected images (i.e., the t2 set), and these patches are added to the pool of training patches, indicated by the pink-
colored squares in box Q. The process is continued by extracting patches of all of the images in the test bag and storing them in box P (the patches
are shown as pale blue-colored squares). Next, the average distances between all the training and test patches, which are shown in boxes Q and P,
respectively, are computed.
doi:10.1371/journal.pone.0038478.g006
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Figure 7. Investigating the stability of the different patch sizes. (A–F) show the average minimum distances between the test and training
patches for the six patches of sizes 4, 8, 12, 16, 20, and 24. As the trend moves downward, it indicates that more diverse prototypes are being learned
and that these prototypes are able to better represent the test images. (A), The result for patch size 4; the proposed model shows an upward trend,
and thus, this specific patch size is not stable along the image presentation sequence. (B–F), As can be seen, the proposed model exhibits steeper
downward slopes in most cases unlike the HMAX model, which mostly shows upward trends. In E and F, both models exhibit downward trends;
however, the trend in the proposed model demonstrates a steeper downward slope.
doi:10.1371/journal.pone.0038478.g007

Figure 8. Performance for all patch sizes. Horizontal axis shows six different patch sizes (from 4 to 24) and vertical axis reports the performances
for each patch size with different number of positive training images, each colored line illustrates an specific number of training image (specified with
black for six images to blue for 200 images).
doi:10.1371/journal.pone.0038478.g008
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benchmark model. For example, the proposed model had

significantly better performance when using fewer features (e.g.,

approximately 93% with only 9 features) than the benchmark

model (e.g., approximately 80% with 9 features). This demon-

strates that the proposed visual feature learning mechanism can

strongly improve the performance of the HAMX model using very

few features in contrast to the HMAX model with randomly

extracted features. This finding illustrates that our mechanism has

extracted more informative features from the input images than

did the standard HMAX model. With such a biologically plausible

learning mechanism, we addressed the stability-plasticity dilemma

and also solved the problem of extracting redundant features.

Moreover, the proposed model suggests a stable biologically

plausible learning mechanism for extracting intermediate level

visual features (for more information regarding the stability of the

proposed model please refer to the stability of the proposed model

section).

Comparison with human
We performed a psychophysical experiment for categorizing

faces versus non-faces to compare the proposed model with

human observers. For this purpose, we selected the Caltech face

and background datasets as positive samples and distractors,

respectively. In addition, we added various levels of salt and

pepper noise to these images. The noisy images were shown to

human subjects using a computer screen in a random order. The

human subjects were instructed to respond as fast and as

accurately as possible to determine whether the image contains a

human face or a distractor by pressing the ‘‘YES’’ or ‘‘NO’’ key.

The results obtained from the human subjects were compared

with those obtained using the proposed model on the same image

set.

We used 16 human subjects in this experiment (18–36 years old)

with an equal number of male and female subjects. The Stimulus

Onset Asynchrony (SOA) in this test was a fixed SOA of 30 ms

(20 ms image presentation followed by an Interstimulus Interval

(ISI) of 10 ms). The experiment was performed in a dark room.

The participants were seated 0.5 m away from the computer

screen (Intel core 2 duo processor (2.66 GHz), 4 GB RAM). We

used the MATLAB software with the psychophysics toolbox [51–

53]. In the experiment, the image was presented for 20 ms, and

this was followed by the presentation of a random noise mask. The

mask appeared after a fixed ISI for duration of 80 ms (which

corresponded to an SOA of 30 ms). Please refer to Figure 4C for

additional details of the psychophysical experiment procedure.

To pose a variety of challenges to the task, we used five sets

consisting of an equal number of images in each set (60 faces and

60 distractors at the same level of noise in each set, 600 stimuli in

total). These five sets correspond to various levels of noise (0, 20,

40, 60, and 80 %; see Figure 4). These images (300 faces and 300

distractors) were randomly selected from both the face and

background datasets. Next, various levels of salt and pepper noise

were generated and superimposed on the images in each group.

The images were presented in a random order at the center of the

screen (256*300 pixels, grayscale images). Each image only

appeared once to omit the potential for image-specific learning

effects. The subjects were then asked to accurately respond as fast

as they could as to whether the image contained a human face or a

distractor image by pressing the ‘‘YES’’ or ‘‘NO’’ key on the

computer keyboard. In addition, the subjects were alternately

asked to use their left or right hand to press the ‘‘YES’’ vs. ‘‘NO’’

key. Each experiment lasted approximately 15 minutes. The

remaining images for both the face and distractor datasets were

used to extract C2-level features and to train the classifier in the

proposed model. Obviously, the training images were noise-free.

Next, we evaluated the performance of the classifier on the ‘‘test’’

set.

A comparison between the average performance of the human

observers (n = 16, 30 ms SOA) and the proposed model in the face/

non-face classification task is shown in Figure 3D. The perfor-

mance was measured using a performance measure d9, which

combines both the hit and false-alarm rates of each observer into a

single standardized score. The responses of both the proposed

model and the human subjects were roughly similar. The

proposed model was capable of following similar trends in

responses as humans in this experiment. The performance of the

HMAX model for this experiment is also demonstrated in

Figure 3D (green line).

We also compared our results with human responses using ROC

curves. The blue curve in Figure 5 was obtained by averaging all

of the ROC curves across 10 random runs and the upper and lower

green curves are the maximum and minimum ROC curves,

respectively, which correspond to the highest and lowest perfor-

mance of the proposed model in the different runs. Because it is

impossible to use the ROC curve for the human observer responses,

we represented the true positive to false positive ratio of each

subject using the sixteen red circles shown in Figure 5 (we

magnified some important parts of the plots in Figure 5 for better

visualization). The majority of the red circles were located below

the maximum, above the minimum, and adjacent to the average

ROC curves, which implies that the proposed model nearly

resembles the performance of the human observers.

Stability of the proposed model
One interesting property of the proposed model is its stability,

which means that after learning new features, the model is still

capable of remembering previously learned ones. To examine the

stability of the model, we designed an experiment that enabled the

measurement of the stability of the proposed model and the

comparison of its stability with the HMAX model.

For the purpose of measuring stability, we trained each model

using n images, and subsequently, added m new images to both

trained models. The two models were compared to determine how

well the different models retained the first n trained images. For

each iteration of this procedure, while previously learned features

are preserved, we present m new training images to both models.

In this step, our stable visual feature learning mechanism will only

extract new patches in which the vigilance parameter determines

whether the patches are necessary to be added to the previously

learned pool of patches; in this way, the new pool becomes more

capable of representing these new m images. However, in the

HMAX model, the same number of patches is randomly extracted.

Next, in the test phase, we extract new patches from all of the

preceding images except for the recent m training images. Then

the average of the minimum distance between these two groups of

patches is computed (for details see Figure 6) to determine how

similar the extracted patches remain to the previously extracted

patches after adding m new training images. We consider this

average distance a measure for comparing the stability of the

models (additional details are depicted in Figure 6). In each step,

we present two new images, and new training patches are

extracted from these new images.

Figure 7 provides information about the stability of our

proposed approach, which was trained with various patch sizes.

In this experiment, we compared the stability of the proposed

model with that of the HMAX model. The average minimum

distances between the test and training patches for six patches of

sizes 4, 8, 12, 16, 20, and 24 are reported. In general, a downward
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trend in each curve indicates that the average distance decreases

on adding new training images, thus confirming that the model

will not forget previously learned features (as the slop goes steeper,

it shows more stability). For more clarification, imagine the model

has learned some features from an input image, then, by adding a

new image to the model, it may require learning new features or

may not. Therefore, the model learns new features only when the

previously learned features are insufficient for describing the new

input image. As a result, the average minimum distance decreases

in each stage because the model does not forget previously learned

features and only extracts new required features. If the model was

not stable, it would extract non-required features in every stage

which would result in an increase to the average minimum

distance. As observed, the proposed model exhibited steeper

downward slopes in most cases unlike the HMAX model, which

mostly shows upward trends. In Figure 7E and 7F, both models

exhibit downward trends; however, the trend in the proposed

model has a steeper downward slope. With the exception of patch

size 4 (Figure 7A), for which the proposed model showed an

upward trend, indicating that this specific patch size was not

stable. This could be due to the small area that a patch of size 4

covers. This small patch size may not cover important discrim-

inative components of the face in an image; therefore, it may not

able to separate a face from a distractor sufficiently well (Figure 8

also illustrates that the performance was close to chance level for

patch size 4).

We also probed the relationship between the performance and

stability of the model by running an experiment for all of the patch

sizes separately using a different number of training images. In this

experiment, the classification performance was measured for each

patch size. As shown in Figures 7 and 8, we observed that when

the proposed model is trained with patches that are more stable,

better performance could be obtained. This suggests a direct

relationship between the stability of the proposed model and its

performance.

Discussion

The most widely accepted biological evidence shows that visual

processing in the brain exhibits a hierarchical structure, which

starts from the primary visual cortex (V1), and then continues to

the extrastriate visual areas (V2 and V4), which are next followed

by the inferotemporal cortex (IT) and the prefrontal cortex (PFC).

It is thought that plasticity and learning probably occurs at all

stages, in particular, at the level of the IT and PFC [54]. The way

by which this learning and plasticity occurs in the cortex has been

a major concern in computational models of the visual cortex. For

example, the learning process in the proposed model of Serre and

colleagues occurs only between layers C1 and S2 which is a simple

mechanism of indiscriminately selecting patches from the training

images [19]. This approach leads to acceptable results, but

redundancy between features is very high. Moreover, many of the

features may be irrelevant to the task of classification. This

increases the cost of classification and decreases the performance.

However, random selection is not a biologically plausible

approach. Apart from random selection, some other approaches

have been suggested including the use of a supervised back-

propagation approach to learn the visual features in a convolu-

tional network. Another potential approach used the STDP

learning rule to extract intermediate-complexity visual features

[22]. These features have been shown to exhibit robust object

recognition in some classification tasks. However, due to the

nature of the STDP rule, which causes forgetting previously

learned information, this approach is unstable. Furthermore, for

the sake of learning by this rule, each input must be presented

several hundred times, whereas our brain is able to learn scenes at

a glance. In contrast to the STDP rule, we proposed another

approach for the learning of intermediate-level features, which is

not only a biologically plausible method but also addresses the

problems of instability, the need for repeated image presentation,

and the issue of the redundancy of the extracted visual features in

the HMAX model. Whereas other models do not illustrate how the

visual cortex is stable against the destruction of previously learned

information over time, our model applied the ART mechanism,

which solves the stability-plasticity dilemma. We showed that the

proposed model is capable of learning new information without

losing previously learned information. We also demonstrated that

there is a direct relationship between the stability of the model and

its performance. This means that if the model is trained with more

stable patches, it performs better. This mechanism was imple-

mented in a hierarchical feed-forward model of the visual cortex

and used in face categorization. We also compared our results with

the HMAX model in face/non-face categorization tasks, and the

obtained results showed that it performed better than the HMAX

model in ‘different number of training images’ experiment

although not significant. However, our model significantly

outperformed the HMAX model in ‘different numbers of features’

experiment, particularly with fewer numbers of features. Per-

formed experiments using different numbers of features showed

that our model extracts as fewest as possible features from the

training images, which are the most informative features; and yet

achieves an acceptable performance. In contrast, the HMAX

model requires extracting more features to reach the similar

performance. This showed that features learned by the proposed

mechanism are highly informative which makes them capable of

giving much better representation of the input images in higher

processing layers. This thus results in improving the classification

performance while using fewer numbers of features, as shown in

Figure 3C.

To determine to what extent the proposed model can mimic the

performance of human subjects, we performed the same face/non-

face categorization task on humans in a rapid categorization

psychophysical test. Our results showed a trend using the model

that approximately resembles the trend observed in human

subjects.

Acknowledgments

We would like to thank Vahid Ashrafian for his helpful comments and

contributing to discussions. We would also like to spread our warm

appreciation to referees for their valuable comments on this paper which

have considerably improved the quality of it.

Author Contributions

Conceived and designed the experiments: KR RE MG SK. Performed the

experiments: KR. Analyzed the data: KR RE MG SK MS. Contributed

reagents/materials/analysis tools: KR RE MG SK. Wrote the paper: KR

MG SK.

References

1. Ungerleider LG, Haxby JV (1994) ‘‘What’’ and ‘‘where’’ in the human brain.
Curr Opin Neurobiol 4: 157–165.

2. Perrett DI, Oram MW (1993) Neurophysiology of shape processing. Image

Vision Comput 11: 317–333.

3. Kobatake E, Tanaka K (1994) Neuronal selectivities to complex object features

in the ventral visual pathway of the macaque cerebral cortex. Journal of

Neurophysiology 71: 856–867.

Stable Learning of Biologically Inspired Features

PLoS ONE | www.plosone.org 11 June 2012 | Volume 7 | Issue 6 | e38478



4. Tanaka K (1996) Inferotemporal cortex and object vision. Annual review of

neuroscience 19: 109–139.
5. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. J Physiol 160: 106.

6. Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two
nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology;

Journal of Neurophysiology.
7. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of

monkey striate cortex. J Physiol 195: 215.

8. Fukushima K (1980) Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biol Cybern

36: 193–202.
9. Fukushima K (1988) Neocognitron: A hierarchical neural network capable of

visual pattern recognition. Neural networks 1: 119–130.
10. Fukushima K (2003) Neocognitron for handwritten digit recognition. Neuro-

computing 51: 161–180.

11. Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in
cortex. Nat Neurosci 2: 1019–1025.

12. Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T (2007) Robust object
recognition with cortex-like mechanisms. IEEE transactions on pattern analysis

and machine intelligence: 411–426.

13. Grossberg S, Mingolla E, Ross WD (1997) Visual brain and visual perception:
How does the cortex do perceptual grouping? Trends in neurosciences 20: 106–

111.
14. Grossberg S (2003) How does the cerebral cortex work? Development, learning,

attention, and 3-D vision by laminar circuits of visual cortex. Behav Cognit
Neurosci Rev 2: 47.

15. Grossberg S (2007) Towards a unified theory of neocortex: laminar cortical

circuits for vision and cognition. Progress in Brain Research 165: 79–104.
16. Grossberg S, Versace M (2008) Spikes, synchrony, and attentive learning by

laminar thalamocortical circuits. Brain Res 1218: 278–312.
17. Grossberg S (1976) Adaptive pattern classification and universal recoding: II.

Feedback, expectation, olfaction, illusions. Biological cybernetics 23: 187–202.

18. Grossberg S (1980) How does a brain build a cognitive code? Psychological
review 87: 1.

19. Serre T, Wolf L, Poggio T (2005) Object recognition with features inspired by
visual cortex Ieee, Vol. 2. 994–1000 vol. 2.

20. LeCun Y, Bengio Y (2003) Convolutional networks for images, speech, and time
series. The Handbook of Brain Theory and Neural Networks. Cambridge, MA:

MIT Press. p. 276–279.

21. Ghodrati M, Khaligh-Razavi SM, Ebrahimpour R, Rajaei K, Pooyan M (2012)
How Can Selection of Biologically Inspired Features Improve the Performance

of a Robust Object Recognition Model? PloS one 7: e32357.
22. Masquelier T, Thorpe SJ (2007) Unsupervised learning of visual features

through spike timing dependent plasticity. Plos Comp Biol 3: e31.

23. Woodbeck K, Roth G, Chen H (2008) Visual cortex on the GPU: Biologically
inspired classifier and feature descriptor for rapid recognition. Computer Vision

and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE Computer
Society Conference on. 1–8.

24. Mutch J, Lowe DG (2008) Object class recognition and localization using sparse
features with limited receptive fields. International Journal of Computer Vision

80: 45–57.

25. Carpenter GA, Grossberg S, Markuzon N, Reynolds JH, Rosen DB (1992)
Fuzzy ARTMAP: A neural network architecture for incremental supervised

learning of analog multidimensional maps. Neural Networks, IEEE Transactions
on 3: 698–713.

26. Kadiran S, Patnaik LM (1993) Distortion-invariant object recognition using

adaptive resonance theory. Artificial Neural Networks and Expert Systems,
1993. Proceedings., First New Zealand International Two-Stream Conference

on. 341–344.
27. Uysal M, Akbas E, Yarman-Vural FT (2006) A hierarchical classification system

based on adaptive resonance theory. Image Processing, 2006 IEEE International

Conference on. 2913–2916.
28. Zikan K, Caudell TP (1991) D-ART: a pattern recognition system based on

adaptive resonance and algebraic metric space theories. Neural Networks, 1991.,
IJCNN-91-Seattle International Joint Conference on. Vol. 2. p. 959–vol.

29. Liao IE, Shieh SL, Chen HC (2008) An Evolutionary Classifier Based on

Adaptive Resonance Theory Network II and Genetic Algorithm. Intelligent

Systems Design and Applications, 2008. ISDA’08. Eighth International

Conference on. Vol. 1. 318–322.

30. Akhbardeh A, Varri A (2005) Novel supervised fuzzy adaptive resonance theory

(SF-ART) neural network for pattern recognition. Intelligent Signal Processing,

2005 IEEE International Workshop on. 149–154.

31. Carpenter GA, Martens S, Mingolla E, Ogas OJ, Sai C (2004) Biologically

inspired approaches to automated feature extraction and target recognition.

Applied Imagery Pattern Recognition Workshop, 2004. Proceedings. 33rd. 61–

66.

32. Antón-Rodrı́guez M, Dı́az-Pernas FJ, Dı́ez-Higuera JF, Martı́nez-Zarzuela M,
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