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Abstract: A multicenter (LCAO) B-spline basis is described in detail, and its capabilities concerning
affording convergent solutions for electronic continuum states and wavepacket propagation are
presented. It forms the core of the Tiresia code, which implements static-DFT and TDDFT hamiltoni-
ans, as well as single channel Dyson-DFT and Dyson-TDDFT descriptions to include correlation in
the bound states. Together they afford accurate and computationally efficient descriptions of pho-
toionization properties of complex systems, both in the single photon and strong field environments.
A number of examples are provided.
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1. Introduction

Quantum Chemistry (QC) approaches to the calculation of electronic bound states
of complex molecules have reached a large degree of sophistication, and have given
rise to a multitude of highly advanced computer codes. The treatment of continuum
states to describe photoionization and electron scattering has significantly lagged behind,
probably because of unfamiliarity with continuum states in the chemistry community, the
unsuitability of bound state algorithms for the determination of approximate solutions,
and the limitations of the ubiquitous Gaussian type orbital (GTO) basis sets in describing
continuous states. A strong revival of interest in molecular continuum states, especially for
ionization, has been spurred by the development of novel light sources, high intensity laser
and Free Electron Lasers (FELs), capable of ultrashort pulses, together with the continuous
development of Synchrotron Radiation (SR) sources, and the parallel development of
ever more performant detectors for electrons and ions, which have produced a flurry of
new experiments affording unprecedented detail in studies of light–matter interaction in
molecules [1].

In the treatment of continuum states, two new problems appear. The first is the
accurate solution of the one-particle Schrödinger equation for positive energies. The second
is the treatment of many-electron systems, compatible with the asymptotic structure of the
wavefunction. Initial studies on atoms naturally employed numerical radial grids. While
this approach can be generalized to a one center expansion (OCE) of the wavefunction
in the molecular case [2,3], it suffers from the very slow convergence of the partial wave
expansion for heavy atoms far from the expansion center. Generalization to 3D grids is
difficult, because a natural coordinate system is spherical around each nucleus, due to
the Coulomb singularity and the relative cusps in the wavefunction. In the Continuum
Multiple-Scattering Method (CMS) shape approximation of the potential allows efficient
numerical integration [4]. Other adaptive grids have been suggested [5]. Cartesian grids
are, however, in use, employing pseudopotentials to smooth the Coulomb singularities,
especially for the treatment of time dependent phenomena [6]. Another difficulty is the
implementation of asymptotic boundary conditions, which are most neatly expressed
in a partial wave expansion. The obvious solution is suggested by the well established
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LCAO approach in molecules. The superposition of spherical basis sets centered on the
various atoms effectively mimics the change of coordinates from spherical around one site
to spherical around another, dealing very effectively with coulomb singularities. In the
continuum case these have to be added to the OCE expansion, which is needed to describe
the long range part of the wavefunction. This prompts the use of a basis set approach,
requiring, however, new basis functions, capable of approximating the oscillatory behavior
of continuum wavefunctions. Note however that the expansion can be limited to a finite
spherical volume, large enough that all bound states of interest are negligible beyond this
boundary, and the continuum states have reached their asymptotic form, so that they can
be fitted to analytical forms (spherical Bessel or Coulomb functions), or to the solutions of a
weak multipolar field by an OCE approach (Figure 1).

Figure 1. Multicenter (LCAO) expansion.

Recent work has converged to the use of local polynomial functions as radial basis,
finite elements [7] or B-splines [8–10], times spherical harmonics, at least for the long
range OCE part, although GTOs have been used for small ranges and low electron ki-
netic energies [9]. For the short range, multicenter part, often GTOs are used, in various
combinations [9,10].

The second issue is the treatment of the many electron problem. A single determinant
description of the bound states is easily extended to the continuum, replacing a bound
state orbital with a continuum one, obtained by solving a resultant one particle equation,
like Frozen Hartree–Fock (HF) or Density Functional (DFT). If |Φ0〉 denotes the HF or DFT
ground-state of the N-electron system:

Φ0 = |φ1 · · · φi · · · φN〉, (1)

then the set of degenerate solutions at energy E > 0 can be written as:

ΦEilm = |φ1 · · · φElm · · · φN〉, (2)

where index i in Equation (2) labels the MO from which the electron is ejected. In HF theory,
the approach is called Static Exchange (SE), while it has been termed SE-DFT in DFT theory.
Coupling among channels is implemented as Configuration Interaction Singles (CIS), also
known as the Tamm–Dancoff approximation (TDA). Some initial state correlation can be
included at the linear response level, giving the well known random phase approximation
(RPA) or equivalent Time Dependent DFT (TDDFT), in the ab initio or DFT framework,
respectively. This can be generalized to the use of correlated bound states, both initial and
final, giving rise to the so called close-coupling form of the wavefunction
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ΨN
EIlm = ∑

J
ΨN−1

J φEI Jlm + ∑
K

ΦN
K CKI . (3)

In Equation (3), the first term comprises antisymmetrized products of N-1 particle
bound eigenstates ΨN−1

J , describing the final states of interest (target states), times contin-
uum orbitals φEI Jlm, and ensures the correct asymptotic limit. The second part describes
short range correlations and autoionization resonances. Actually, some restrictions have
to be included to avoid linear dependencies and ensure unique solutions [11]. Given its
generality, it can be considered as the equivalent of CI in the continuum, and several
variants can be designed depending on specific forms for the bound states included in the
expansion. For instance, restricting the target states to single hole states relative to an initial
closed shell state, and ignoring correlating functions, one recovers the CIS ansatz, or by
including a single, correlated target state ΨN−1

I , relative to the final state of interest, one
has the Single Channel (SC) approximation.

ΨN
EIlm = ΨN−1

I φEIlm. (4)

At this level, correlation is fully included in the bound states, but neglected in the
continuum. The close-coupling expansion can in principle be very accurate, but it is
computationally expensive, and simpler approximations are often employed.

2. The Tiresia Program
2.1. The Basis Set

Our current implementation uses B-splines for the OCE and also for the LCAO part. B-
splines (B is for basis) are functions defined over a set of points (knots) which divide a given
interval, [0, Rmax] in our case, in nint subintervals. Over each subinterval a B-spline is a
different polynomial of a common fixed order n (degree n− 1), spanning n + 1 consecutive
knots, and is zero outside. Different polynomial pieces are joined at the boundaries with
a high degree of continuity, typically the maximum admissible, i.e., C(n−2), continuity up
to the derivative of order n− 2, but that can be relaxed employing coincident knots. In
fact in the present implementation continuity is completely relaxed at the endpoints, 0
and Rmax, putting here n coincident knots, so that the first and last spline are nonzero
there, while employing single knots, i.e., maximum continuity, at the interior points. This
ensures a complete basis, entirely contained in the interval [0, Rmax]. Actually the first
spline is deleted, so as to enforce the boundary condition f (0) = 0. The same is done at
Rmax when dealing with bound states, assumed to be negligible at the outer boundary.
The last spline is instead retained in continuum calculations, as the solution naturally
oscillates and is nonzero at the boundary. With this choice the dimension of the basis is
n + nint − 1, so the B-spline order has a very limited impact on the dimension, but higher
orders vastly increase accuracy, before degrading due to numerical truncation errors. B-
splines as well as their derivatives are easily evaluated at a given point, and integration
by Gauss–Legendre quadrature is accurate down to machine precision. A full discussion
including fortran routines is available in the monograph [12], and a detailed treatment of
atomic and molecular applications can be found in [13].

In the present case the B-spline basis is completely defined by the polynomial order n
(default value is n = 10) and the knot sequences that define intervals [0, Rmax] and [0, Rmaxi]
of the OCE and LCAO expansions around each atom. In the OCE sequence it is important
to have a knot at the radial position of each atom, as the singularity of the potential
there degrades the accuracy of the numerical integration otherwise. As the primitive
functions are

χilm(r, θ, φ) =
1
r

Bi(r)Ylm(θ, φ) (5)

the complete basis is specified by the maximum L values of the spherical harmonics for the
OCE, Lmax and the LCAO part, Lmax,i. The OCE part is numerically very stable; in normal
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photoionization typical Rmax around 20–40 atomic units (au) are employed, but values up to
several thousands have been employed for long wavepacket propagation without trouble.
For photoionization a linear grid of knots is adequate, with spacing h being determined by
the maximum electron momentum kmax (electron kinetic energy KE = k2

max/2). A choice
h = 1/kmax is generally very accurate. Lmax has to accommodate both convergence of the
expansion in the molecular region, and the number of continuum partial waves carrying
significant contribution at kmax. For the latter, Lmax is roughly proportional to kmax times
the “size of the molecule”, by the classical argument based of momentum times impact
parameter. So large systems and high electron energies may require large Lmax, and small
step h, making the basis very large. In the case of heavy atoms, steps have to be reduced
close to the origin. If only bound states are needed, e.g., high Rydberg states, an exponential
grid becomes more convenient. Then, with appropriate range, quantum numbers above
100 can be reached.

In contrast, LCAO Rmax,i are generally very small, of the order of about 1 au. As
corresponding Lmax,i are the usual values of the maximum L in the free atom, or L + 1,
the dimension of the LCAO basis is generally very small compared to OCE, which alone
determines the computational cost of the calculation. The very short range of the LCAO
expansion is dictated by the need to avoid overcompleteness, i.e., numerical linear de-
pendence of the basis, which destroys numerical stability. Actually, the overcompleteness
problem is even more severe with GTOs, which have a very large overlap. The ease of se-
lecting the range of B-splines makes it easier to control overcompleteness. There is actually
a bargain between LCAO radii and OCE Lmax, as with larger Lmax shorter Rmax,i have to
be employed, and with low Lmax larger Rmax,i make up for convergence in the molecular
region. Limiting the LCAO basis to non-overlapping ranges in the present implementation
does not constitute a limitation and has the additional benefit of reducing the number
of matrix elements to be evaluated, as products of LCAO functions on different centers
are strictly zero, Bi(rp)Bj(rq) = 0. The last LCAO splines (usually 3) are then deleted,
so that the basis has overall continuous second derivative at all internal points. All two
center integrals between OCE and LCAO functions are accurately evaluated by numerical
integration within the LCAO spheres.

The basis is then fully adapted to point group symmetry, if present, which brings a
great reduction in the dimension of the matrices and the computational effort

χijλµ ≡ χilhλµ =
1
r

Bi(r)∑
m

Ylm(θ, φ)blmhλµ (6)

for the OCE basis, and

χpijλµ = ∑
q∈p

1
rq

Bi(rq)∑
m

Ylm(θq, φq)bqlmhλµ (7)

for the LCAO part. Here (λµ) are the labels for the irreducible representations, j ≡ lh counts
the number of total angular independent components, with h counting the independent
components relative to a given l value. For the LCAO functions, p counts the number of
sets (shells) of symmetry equivalent atoms, and q runs over the atoms in this set. The final
basis is then

χν = {χijλµ} ∪p {χpijλµ} (8)

The final basis has a lot of flexibility, and can afford good convergence for a rather
wide range of parameters. It requires, however, some care, as it is easy to overdo, which is
signalled by the minimum eigenvalues of the overlap matrix S that become very low. It
is then necessary either to restrict the range of LCAO functions or decrease the OCE Lmax.
The upside is that it is possible to accomodate a large variety of situations.
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2.2. The Galerkin Approach

The one particle Schrödinger equation:

hφ = Eφ (9)

is converted to the generalized eigenvalue problem

hc = ESc, (10)

when the solution φ is expanded as a linear combination of basis functions

φ = ∑
ν

χνcν (11)

In Equation (10) h and S denote the Hamiltonian and overlap matrices, respectively,
of dimension equal to the number of basis functions employed in the expansion of φ.
Bound state eigenvectors are obtained from a usual diagonalization. It is important to have
accurate initial orbitals, in particular in the outer tails, which are often not well described by
conventional basis sets, like GTO, because the transition matrix elements for the continuum
prove sensitive to them. In the case of continuum eigenvectors several algorithms can be
used. Note that in this case, because of the last nonzero spline at the end of the interval,
the Hamiltonian matrix, h, is non-Hermitian. We employ the Galerkin approach, originally
proposed in [14], which amounts to requiring orthogonality of the residual vector (h− E)φ
to all basis functions. Defining the energy dependent matrix A(E) = h− ES, this amounts
to solving:

A(E)c = ac (12)

for the no lowest eigenvalues, where no is the number of open channels, i.e., the number
of independent solutions. Actually, an alternative formulation [15,16], employing the
hermitian product AT A is more stable and accurate. It turns out that, with a good basis, the
gap between the lowest no eigenvalues and the following ones is many orders of magnitude,
and the eigenvectors are easily extracted with a block inverse iteration, which generally
converges very fast. The resulting continuum eigenvectors are fitted to a linear combination
of regular and irregular asymptotic functions and are then normalized to the K-matrix
asymptotic form. Full details are in [15]. Note that, as the basis is close to complete within
the sphere, any type of linear equation, either homogenous or inhomogeneous can be
accurately solved in matrix form. We currently employ this technique to evaluate the
Coulomb potential generated by a charge distribution solving the Poisson equation, to
solve inhomogenous equations in TDDFT and so on.

2.3. The Many Electron Wavefunction
2.3.1. The Static Exchange Approach

The Static Exchange (SE) approach is defined by the use of the same (frozen) orbitals
for the ground state as for for the ionic states. The simplest approach is the DFT-SE scheme.
We employ a fixed Kohn–Sham (KS), or DFT, single particle hamiltonian

hKS = −1
2
4+ VN(r) + VC(r) + VXC(r) (13)

where VN is the nuclear attraction potential, VC is the classical Coulomb (Hartree) potential
generated by the electronic density ρ(r) and VXC[ρ(r)] is a local exchange-correlation
potential defined by the same density. The density is that of the ground state (GS), obtained
by a previous self-consistent field (SCF) calculation with a separate QC program. The h
and S matrices are computed in the B-spline basis, and the occupied orbitals obtained
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by diagonalization, defining the initial state in Equation (2). At each energy E > 0, no
independent degenerate solutions are obtained by inverse iteration:

hKSφElm = EφElm (14)

with the asymptotic behaviour (close to Rmax):

φElm = ∑
l′m′

REl′m′ lm(r)Yl′m′(θ, φ). (15)

In Equation (15), the radial functions REl′m′ lm(r) can be written as:

REl′m′ lm(r) = AEl′m′ lm fl′(kr) + BEl′m′ lm gl′(kr) (16)

where fl and gl are the regular and irregular radial solutions in the asymptotic region, and
the matrices A and B are obtained by fitting the numerical solution to the asymptotic form
at the boundary (we use the two last interior knots [14]). Multiplying the solution by A−1

gives the final K-matrix normalized form:

REl′m′ lm(r) = δll′δmm′ fl′(kr) + Kl′m′ lm(E) gl′(kr) (17)

From the final state ΦEilm (Equation (2)) the transition dipole matrix elements are
evaluated as:

DEilmγ = 〈ΦEilm|Dγ|Φ0〉 = 〈φElm|dγ|φi〉 (18)

where γ is the dipole operator component. These, together with the K-matrix, are passed to
a separate program that evaluates photoionization cross sections and angular distributions.

2.3.2. The TDDFT Approach

We employ first-order linear response, which describes the screening of the external ex-
citing field due to the response of the electron cloud. The fundamental equations governing
linear response are

δρ = χVSCF, δV = Kδρ, VSCF = µext + δV (19)

where δρ is the first-order change in electron density induced by the field, χ is the electric
susceptibility, δV is the first-order change in the potential induced by a density change δρ,
and K is the linear kernel relating the two quantities. The final full potential (VSCF) is the
sum of the external perturbing potential (µext) and the response potential (δV).

In the response framework, the effect of electron polarization gives rise to an effective
potential, which is the sum of the external dipole field and the electronic response potential.
The evaluation of the photoelectron matrix element then boils down to replacing the pure
dipole field in Equation (18) by the effective potential VSCF:

DEilmγ = 〈φElm|VSCF
γ |φi〉 (20)

From Equation (19) one can obtain an equation for VSCF

VSCF = µext + Kδρ = µext + KχVSCF (21)

We then solve directly for the response potential VSCF as the prime dynamical vari-
able, using a non-iterative numerical algorithm [17]. By representing VSCF as well as the
operators K and χ in the B-spline basis, the integro-differential equation, Equation (21), is
converted into a linear algebraic one

(Kχ− 1)VSCF = −µext. (22)
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The kernel K is the sum of the Coulomb potential and the linearized exchange-
correlation response

K(r̄, r̄′) =
1

|r̄− r̄′| + δ(r̄− r̄′)
δVXC

δρ
(23)

The computationally expensive part is the calculation of the KS (non-interacting) linear
susceptibility, which is energy dependent, and is computed for each photon energy by
solving the inhomogeneous first order perturbative equations.

hKS(E− εi ±ω)φ±1
i = −QVSCFφi (24)

where Q in Equation (24) is a projector over the space of KS virtual orbitals and φ±1
i are first

order perturbations of the KS orbitals. The completeness of the basis ensures convergent
solutions. Full details are available in Ref. [17].

2.3.3. The Correlated Single Channel Approach

One can improve the treatment of bound state correlation by employing fully corre-
lated initial and final target bound states, computed by ab initio CI or equivalent approaches
in a single channel framework, Equation (4). Here we label ΨN

I the initial state and ΨN−1
F

the target state. The SC approximation neglects correlation between the target and the
continuum, between different channels (interchannel coupling) and autoionization reso-
nances. However, important correlation effects, especially in the inner ionic states, are
fully accounted for. Moreover, it deals equally well with multiconfigurational states, like
ionization from excited initial states, and multielectron excitations in the final states.

In this approximation the many-particle transition moment reduces to:

DEFIlmγ = 〈ΨN
EFlm|Dγ|ΨN

I 〉 = 〈φEFlm|dγ|φD
FI〉+ 〈φEFlm|ηD

FI,γ〉 (25)

where

φD
FI = ∑

p
γFI,p φp γFI,p = 〈ΨN−1

F |ap|ΨN
I 〉, (26)

and

ηD
FI,γ = ∑

p
χFIγ,p φp χFIγ,p = 〈ΨN−1

F |Dγap|ΨN
I 〉. (27)

φD
FI and ηD

FI are called the Dyson orbital and the conjugate Dyson orbital, respectively,
relative to the two bound states ΨN−1

F and ΨN
I . So the full transition matrix element reduces

to a single particle transition element between the Dyson and the continuum, plus an
overlap term of the continuum with the conjugate Dyson [18]. The latter is, moreover,
generally neglected, as it is expected to be very small (it is in fact zero in the SE or TDDFT
approaches, as the continuum is rigorously orthogonal to the bound eigenstates of the
same hamiltonian).

The continuum relative to a given target state can be computed variationally or can be
separately approximated. In the present developments we use the same continuum as in the
SE-DFT scheme, which is already quite accurate. We call it the Dyson-DFT approach [19].
In practice this amounts to substituting the Dyson orbital for the bound DFT orbital of
the SE approach. Dyson orbitals can be computed by several ab initio approaches. A file
containing the details of the ab initio data and Dyson orbitals is provided, and the latter,
expressed in GTOs, are then reexpressed in the B-spline basis by projection, which is again
very accurate, for the ease of computing transition moments with the final continuum. In
the same spirit, one can couple the SC treatment, i.e., the Dyson orbital, to the TDDFT
continuum, i.e., substituting in the computation of the transition matrix element the external
perturbation µext

γ , i.e., dγ with the perturbed one VSCF
γ , giving:
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DEFIlmγ = 〈φEFlm|VSCF
γ |φD

FI〉 (28)

called the Dyson-TDDFT formulation [20]. This hybrid approach proves quite effective
when the additional correlation included in TDDFT proves important.

One important issue is the one-electron effective potential used in the continuum
calculation. Our choice for the DFT VXC potential is the VLB94 potential from [21], which
was designed to implement an asymptotic coulomb tail, which proves effective for pho-
toionization [22]. Earlier a transition state density (i.e., half electron removed from the
ionized orbital) VXα [23] or VVWN potentials [24] were employed. VLB94 proves at least
comparable or better, and has the additional advantage that the same potential proves
adequate to cover the entire ionization spectrum that is from outer valence to deep core
states. The potential can be truncated to an analytical coulomb tail. This is necessary,
for instance, with very large Rmax, when VLB94 becomes numerically unstable. Finally,
the level of correlation for the treatment of bound states in the Dyson approaches is also
important. Despite recent advances, highly correlated ab initio approaches are difficult to
afford for relatively large molecules and good basis sets. This is an area where further work
is certainly warranted.

3. Multiphoton and Strong Field Processes

Let us consider for a moment the differential cross section for photoionization, which
is expressed via a transition (dipole) matrix element between the initial and the final
continuum (or bound) state

dσ

d~k
→ 〈Ψ(−)

F~k
|D|ΨI〉 = 〈Ψ

(−)
F~k
|ΦDI〉 (29)

which can also be seen as a projection of a “final wavepacket” or “prepared state” ΦDI onto
a field free continuum (or bound) final state, eigenvector of the free hamiltonian. The same
logic can be employed for wavepackets relative to more complex processes.

One can consider separately

1. Calculation of ΦDI , which is L2 and depends on the particular excitation mechanism
considered.

2. Calculation of Ψ(−)
F~k

or equivalently Ψ(−)
FElm, which is independent of the former, as

eigenvector of the molecular hamiltonian already considered.

Projection on free hamiltonian eigenstates amount to wavepacket analysis, giving the
corresponding transition probabilities.

1. In the multiphoton domain, generally the lowest order perturbation theory is employed

ΦNph
DI = D(H− EN−1)

−1D(H− EN−2)
−1D · · ·DΦI = D(H− EN−1)

−1ΦNph−1
DI (30)

Em = Ei + mh̄ω

valid for a single photon field, and non-resonant intermediate states, but can be easily
generalized, and can be evaluated recursively.

2. For nonperturbative fields a standard approach is now the solution of the time depen-
dent Schrödinger equation (TDSE)

ΦDI(t) = U(t)ΨI − i
d
dt

ΦDI(t) = H(t)ΦDI(t) (31)

with a time dependent hamiltonian which includes the external field.

Both approaches have become rather standard for computational simulations of the
relevant processes. As the time evolution is unitary, at all times the wavepacket is square
integrable, and can be accurately described by the B-spline basis as long as its amplitude
at the boundary remains negligible. This may require very long range bases, spanning
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hundreds or even thousands of atomic units [25], which can, however, be easily accomo-
dated in the B-spline basis. Techniques like the use of complex absorbing potentials at the
boundary can reduce the need of such extended ranges [26].

One typical approach is employing a spectral method, i.e., a preliminary full diagonal-
ization of the free molecular hamiltonian,

HΨI = EIΨI

so that the resolvent can be expanded as

(H − E)−1 = ∑
I

|ΨI〉〈ΨI |
EI − E

(32)

and the amplitude (30) can be easily evaluated. Similarly, the TDSE equation, after expan-
sion of the wavepacket

ΦDI(t) = ∑
I

CI(t)ΨI (33)

is reduced to a well conditioned system of ordinary differential equations

− i
dCI(t)

dt
= ∑

J
(EIδI J + V(t)I J)CJ(t) (34)

which can be solved by a variety of approaches.
In the static-DFT framework one is working with an independent particle hamiltonian

H = hKS(1) + · · ·+ hKS(N) (35)

hKSφi = εiφi ⇒ HΦI = EIΦI (36)

ΦI = |φI1 · · · φIN 〉 EI = ε I1 + · · ·+ ε IN (37)

The single particle hKS can be fully diagonalized even with large B-spline bases. Then
all equations and matrix elements reduce to one-particle problems and large systems
become affordable. While this is the most basic level, as it lacks correlation among the
states, it is capable of giving a generally semiquantitative description [27]. Note that, as
the coupling with the external electromagnetic field, h(t) = hKS + V(t), is a single particle
operator, within this approximation the full hamiltonian remains of single particle type, and
it is easy to show that the full N-particle TDSE is equivalent to the solution of individual
one-particle TDSE for the initial orbitals

− i
d
dt

φi(t) = h(t)φi(t), Φ(t) = |φ1(t) · · · φN(t)〉 ⇒ −i
dΦ(t)

dt
= H(t)Φ(t). (38)

This means that the single particle states φi are propagated independently, without any
restriction, and due to the unitarity of the evolution they remain orthonormal at all times.
Moreover, as the exact solution of a model hamiltonian, the result is gauge independent,
provided the basis is sufficiently accurate, as has been well verified numerically.

Final projection of the wavepacket ΦDI , either from multiphoton or time propagation,
is straightforward, with the corresponding continuum functions already available in the
same B-spline basis. In other formulations, techniques based on the evaluation of the
electronic flux at the boundary can be employed [26].

It may be remarked that most algorithms reduce to straightforward operations of
linear algebra that can be parallelized efficiently also with the use of optimized libraries
and scale very well.
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4. Ab Initio Developments

The B-spline basis maintain excellent performance in an ab initio setting [28]. Actually,
most algorithms employed remain unchanged, the main difference being the choice of the
hamiltonian, or implicitly the structure of the many electron basis, and the evaluation of
matrix elements. An obvious choice is the close-coupling approach, but other structures
like multiconfigurational SCF can be equally employed.

Clearly, a prerequisite is the availability of two electron integrals, relative to the
Coulomb interaction, in the LCAO basis

〈φi(1)φj(2)|φk(1)φl(2)〉 =
∫ ρik(1)ρjl(2)

r12
dr1dr2 (39)

relative to the electron densities ρik(1) = φi(1)φk(1) and similarly for ρjl(2). The one-center
radial two electron integrals have been long available [29,30], and the angular part is
analytical, as is well known in atomic theory. Actually, for not too large systems, that may
be a reasonable compromise, as it is partly used in some current well known codes [2,3].
The full evaluation of LCAO B-spline two electron integrals, essentially by numerical
approaches, is demanding but by no means unfeasible. One straightforward approach
is full numerical integration. Due to the limited range of functions on atomic centres, all
integrals will have one density (particle 1, ρ(1)) restricted to an atomic sphere, whose
Coulomb potential may be easily evaluated in multipolar form and integrated over the
second particle density ρ(2), which in many cases is also restricted to an atomic sphere.

A second approach is to solve the Poisson equation for the first density. As the basis is
very accurate, so is the computed potential. It requires implementation of multipolar bound-
ary conditions at Rmax, which is easily implemented with B-splines. After the evaluation of
the the expansion of the density in the basis, ρµ1 = 〈χµ|ρ1(1)〉 the corresponding potential

V1 = ∑
µ

vµ1χµ (40)

is obtained by solving the linear system

∑
µ

∆νµvµ1 = −4π ρν1 (41)

V1 is then integrated with the second density ρ2∫
ρ1(1)

1
r12

ρ2(2) dr1dr2 =
∫

ρ2(1)V1(1) dr1 = ∑
µ

vµ1ρµ2 (42)

which reduces to the last equation if ρµ2 = 〈χµ|ρ2〉 is also available. This approach is
particularly effective if not all integrals over primitive χµ functions are required. In a close
coupling expansion only integrals of the type

〈χµφi|χνφj〉, 〈χµχν|φiφj〉, 〈χµφi|φjφk〉

are required and the relative smooth ρ1 densities are accurately approximated in the B-
spline basis. Moreover, this avoids the need for integral transformation from primitive to
the MO basis.

A general routine for these two electron integrals has been recently completed and
will be separately reported with full details [31]. It is used in the B-spline ADC(2) code
developed by Ruberti [32], mainly devoted to strong field and attosecond processes.

The second main point is the evaluation of the matrix element in the chosen N-particle
basis, including dealing with nonorthonormality. In the case of close-coupling expansions,
explicit formulas entail up to three particle transition density matrices between the bound
states {ΨN−1

I , ΨN
K } [7,9]. Some implementations have been discussed in the literature, and
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represent generally a computationally expensive task, although special algorithms may
afford significant speedup.

Explicit formulas have been derived for the lowest level, CIS wavefunctions, and
have been implemented at the OCE level [28]. Implementation with RASCI wavefunctions
is currently studied. These will be available in a future release of Tiresia. Moreover,
separate treatment of Auger and resonant Auger decay [33] via golden rule formulation is
currently underway.

5. Applications
5.1. Molecular Photoionization

The most common application is the description of single photon molecular pho-
toionization. This is interesting per se, as it is an important probe of molecular electronic
structure, or as an initial step of strong field or ultrafast phenomena, as well as a probe in
time dependent studies. From the transition amplitudes and K-matrix the cross section
observables σ and β, which define the differential cross section for randomly oriented
molecules, and linear polarization

dσ

dθ
=

σ

4π
[1 + β2P2(cos θ)] (43)

can be obtained. P2(cos θ) is the second Legendre polynomial and θ is the angle between
light polarization and photoelectron momentum. More complex angular distribution, for
partially aligned or oriented molecules, nondipole contributions, etc, can also be obtained.

Photoionization of C60 has been investigated several times [34–37]. Illustrative results
from recent studies are reported in Figure 2. A comparison of DFT and TDDFT results
show a very similar shape of the total cross section, with a significant increase of the
absolute value in TDDFT (left upper panel). Note that the latter incorporates oscillator
strength due to discrete excitations above threshold that do not appear in the DFT cross
section but show up as autoionization resonances in TDDFT. Actually the fixed nuclei
cross section shows an amazing array of very sharp structures, arising both from shape
and autoionization resonances. These are washed away by nuclear motion, and we have
actually broadened the computed profiles for a better comparison with the experiment,
which is reproduced quite accurately. To show, however, the high resolution attainable, a
very fine energy scan of the total DFT core cross section is reported in the central upper
panel for the first 20 eV KE. Considering that only shape resonances can appear at the DFT
level, the presence of these sharp structures is very surprising. Clearly a specific feature
of C60, it hints at the presence of very localized quasi bound states in the one-particle
continuum. The absence of dramatic effects in going from DFT to TDDFT results appears
to disprove the claim of giant plasmonic effects in C60, which derives from results obtained
with jellium models, which smear the carbon cores over a spherical shell. Indeed, seen
on a large energy scale, total valence and core ionization of C60 follows closely the sum
of 60 free-atom cross sections [37]. TDDFT becomes very close to DFT some 150 eV above
threshold. Indeed the jellium models, lacking the hard cores which are responsible for the
high energy cross section, give results that decay much too fast with increasing KE. Still,
a lot of structure survives up to pretty high energies, as strong oscillations in the cross
section. These are best seen in individual ionizations, like the highest occupied molecular
orbital (HOMO) 6Hu channel (left lower panel). The phase of oscillation is opposite for
states of opposite parity, so that their cross section ratio enhances the oscillations (right
lower panel). These have been detected since the first photoemission studies in C60. The
DFT results match closely the experimental data available up to about 300 eV [38]. Further
results suggest that the oscillations persist undamped up to at least 600 eV, after which they
become irregularly damped [37]. However, nuclear motion neglected in this study may
induce some earlier damping.
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Figure 2. C60 photoionization. Upper left: Total DFT and TDDFT cross section, from Ref. [36] with
permission. Upper right: High resolution DFT core cross section [37]. Lower left: HOMO and
HOMO-1 cross sections; lower right HOMO/HOMO-1 cross section ratio (circles are experimental
data), from Ref. [38] with permission.

Oscillations in the cross sections are indeed quite ubiquitous, caused by diffraction
effects due to multicenter emission of the electron wave [39–42]. Further structures at high
energies are associated with non-dipole effects [43].

Correlation effects in bound states due to ionization have been noticed and explained
long ago [44,45], especially as concerns ionization energies and the appearance of satellite
states. One subtle manifestation is a modification of the orbital structure in the ion. In most
small molecules the orbital structure is quite rigid, and ground state orbitals, either HF
or DFT, change very little in the ion. However, in larger systems, a so called hole-mixing
effect, associated with a rotation of the GS orbitals in the ion, can be relevant [19,46]. An
example is in low symmetry molecules, where many MOs can remix without symmetry
constrains. Another typical situation is in transition metal compounds, where the mixing
between metal d and ligand orbitals can change dramatically by electron removal. Whie
often signalled by large changes in ionization energies with respect to Koopman’s values,
the orbital change, which is embodied in the corresponding Dyson orbital, can be detected
only by transition properties, like photoionization observables or electron momentum
profiles [47]. A recent study on a prototypical system, bis-allyl nickel Ni(C3H5)2 [19],
shows the large changes in σ and β parameters from those afforded by HF or DFT orbitals
(Figure 3). Moreover, it shows the value of photoionization observables concerning aiding
in the difficult problem of assigning the spectrum in strongly correlated systems, e.g., the
appearance of the strong 3p→ 3d autoionization resonance in ionizations involving metal
3d participation.
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Figure 3. Nickel bis-allyl cross section and β parameter at the DFT, HF and Dyson-DFT level. From
Ref. [20] with permission.

A new parameter β1 appears in the angular distribution of photoelectrons in photoion-
ization of chiral molecules with circularly polarized light:

dσ

dθ
=

σ

4π
[1 + mrβ1 cos θ − 1

2
β2P2(cos θ)] (44)

where mr is +1 or −1 for left and right circular polarization. This can be measured and
is an important tool for the study of molecular chirality. It arises purely from an electric
dipole transition, and the effect is orders of magnitude stronger than circular dichroism,
which is very difficult to measure for diluted samples in gas phase. DFT calculations have
often afforded a fair reproduction of the experimental results [48]. However, the effect is
largest close to the threshold, and dies after about 50 eV KE. Unfortunately the threshold
region is the most difficult to describe, and is very sensitive to the specific DFT potential
employed, as illustrated in the case of camphor HOMO ionization in Figure 4. The left
upper panel taken from [49] shows results from a multiple scattering Xα calculation and
present LB94 results, compared to experiments. Other panels show results obtained with
additional choices of the potential, employing GS or transition state densities. A further
problem is the proper treatment of correlation effects, e.g., in the case of chiral transition
metal molecules, which are still pretty large for higher level ab initio approaches.

A case is photoionization of Cobalt tris-acetylacetonate. The photoelectron spectrum,
with superimposed KS eigenvalues from the LB94 potential, and IEs calculated with the
outer valence greens function (OVGF) approach [44], a usually pretty accurate treatment
for ordinary organic molecules, is presented in Figure 5. While HOMO ionization is
reasonably described by DFT, the following ones are clearly inadequate. As a consequence
the computed β1 parameter is in fair agreement with the experiment for HOMO ionization,
but pretty off for the following ones [50,51] (Figure 6).
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Figure 4. Dichroic parameter β1 for Camphor HOMO ionization. Results for different potential
choices. Left upper panel from ref. [49] with permission

Figure 5. Valence photoelectron spectrum of cobalt tris-acetylacetonate, with LB94 eigenvalues (black)
and OVGF IEs (red). Experimental spectrum from [51] with permission.
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Figure 6. β1 parameter computed for the valence levels of Cobalt tris-acetylacetonate (from [51] with
permission). Right panel in the region of autoionization resonance.

All results considered are evaluated at a fixed nuclear geometry. To include nuclear
motion effects it is necessary to evaluate transition dipoles at various geometries and
integrate over vibrational wavefunctions [40,41]. Only one-dimensional problems have
been considered, but it is easy to generalize to multidimensional models currently available.
Vibronic coupling effects have been amply observed [40–42]. More demanding is the
simulation of pump-probe femtosecond experiments via time resolved photoelectron
spectra (TRPES) that require evaluation of photoionization observables for hundreds or
more nuclear configurations. For this reason up to now only rather crude approximations,
like plane or coulomb waves, have been considered, and computational efficiency becomes
of paramount importance. A recent simulation of pyrazine employing a surface-hopping
method and the Tiresia code has been presented [52].

A comparison of experimental and calculated time resolved spectra is presented in
Figure 7. The agreement is quite satisfactory, some deficiency at the lowest KE is probably
due to inaccuracy of the cross section close to threshold. Up to now laser ionization has
been employed almost exclusively in this field, and photon energy available is quite low.
It is expected that such experimental limitations will be soon overcome. In this respect
the simulation may even suggest an optimal photon range for maximum sensitivity to
the dynamical aspects investigated. Moreover, additional information may be gained if
molecular orientation is not random, but prealigned with an additional laser pulse, so that
a richer angular distribution is achieved.
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Figure 7. Time resolved photoelectron spectra of pyrazine. Cross section (upper panels), β parameter
(lower panel). (a,c) experimental; (b,d) calculated. From [52] with permission.

5.2. Strong Field and Ultrafast Processes

The program has been used rather extensively to describe and analyze wavepackets
in strong field ionization and attosecond pump-probe experiments [53,54] (see also the
program by Ruberti [32] based on the same B-spline basis). One of the first applications was
to study the angular dependence of strong field ionization probability, and to highlight the
role played by ionization of deeper levels besides HOMO [55]. Some results of a study of
water [56] are reported in Figure 8. It illustrates the dependence of ionization yield on the
laser intensity (at λ = 800 nm). The inset shows how the simple MO-ADK approach that
was often used, based on the exponential dependence on ionization energy, overestimates
the HOMO contribution except at the highest intensities. Moreover, the different angular
dependence of the ionization yield on the angle with the laser polarization, for different
orbitals, may even switch the dominant contribution. These results are obtained at the
DFT level, and it has been recently shown that important modifications are induced by
interchannel coupling [57].

The full energy resolved photoelectron spectrum relative to HOMO ionization, with
laser polarization along Z is reported in Figure 9 for different laser intensities. It is interest-
ing to see as, starting with a regular series of peaks corresponding to individual photon
absorption, the spectrum becomes chaotic at the highest intensities.
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Figure 8. Strong field ionization yield in water (from [56] with permission).

Figure 9. Photoelectron spectrum (ionization probability) relative to HOMO ionization in water at
I = 1.0× 1014, 3.0× 1014, 5.0× 1014 and 7.0× 1014 (blue) W/cm2.

Finally, we present a calculation of HHG emission in CO2 at different field intensities
(Figure 10). It was experimentally found that a minimum in the HHG emission appears,
shifting to higher harmonics as intensity is increased. The DFT results reproduce the
trend, although they underestimate the harmonic order of the minimum. A more refined
calculation, which included interchannel coupling at essentially the CIS level, is able to
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obtain complete agreement [58]. It is clear that a lot of information and insight can be
obtained already at the DFT level, as might be expected from the great success of one-
electron models to explain most of the strong field phenomena. For quantitative agreement,
however, some level of correlation has to be included, even at the lowest level, like CIS of
linear response TDDFT. This is important since higher-level correlated approaches become
often prohibitively expensive in larger systems.

Figure 10. HHG spectra of CO2 at I = 0.6× 1014 (red), 0.85× 1014 (green) and 1.4× 1014 (blue) W/cm2.

6. Conclusions

The structure of the Tiresia code for describing continuum states as well as electronic
wavepackets has been presented. The multicenter (LCAO) B-spline basis set has been
illustrated in detail. It affords:

• A dense set within a finite range (a sphere) of arbitrary length. It can approach
completeness and therefore converge to the required solutions.

• A complete control of the overlap matrix, hence numerical linear independence
and stability.

• Accurate solutions of homogeneous and inhomogeneous equations within the range,
with proper boundary conditions, which are easily implemented.

In particular for photoionization studies, it affords convergent solutions of the multi-
channel problem, at selected energies from threshold up to very high KE (10 keV have been
reached) and arbitrary energy resolution, for ionizations from valence to deep core, and
complex molecular systems. In the present static-DFT and TDDFT formulations, as well
as Dyson-DFT and Dyson-TDDFT, it provides a rather accurate description of a vast phe-
nomenology. The algorithms implemented are simple, mostly based on linear algebra, and
easily parallelized, leading to efficient computation that makes the treatment of complex
systems, and calculations of many geometries easily affordable. Important steps towards
the implementation of fully ab initio close coupling formulations have been performed,
and further work is in progress. The same basis and hamiltonians allow calculation of
multiphoton and strong field processes, in particular time propagation of wavepackets in
external electromagnetic fields, and their analysis by projection on free field states of the
same hamiltonian. A number of examples from past results and current work are provided
for illustration.
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