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Abstract. Because of extraordinarily tight coiled-coil 
associations of type I and type II keratins, the compo- 
sition and structure of keratin subunits has been 
difficult to determine. We report here the use of novel 
genetic and biochemical methods to explore the early 
stages of keratin filament assembly. Using bacterially 
expressed human K5 and K14, we show that remark- 
ably, these keratins behave as 1:1 complexes even in 
9 M urea and in the presence of a reducing agent. Gel 
filtration chromatography and chemical cross-linking 
were used to identify heterodimers and hetero- 
tetramers as the most stable building blocks of keratin 

filament assembly EM suggested that the dimer con- 
sists of a coiled-coil of K5 and K14 aligned in register 
and in parallel fashion, and the tetramer consists of 
two dimers in antiparallel fashion, without polarity. In 
4 M urea, both end-to-end and lateral packing of 
tetramers occurred, leading to a variety of larger het- 
eromeric complexes. The coexistence of multiple, 
higher-ordered associations under strongly denaturing 
conditions suggests that there may not be a serial se- 
quence of events leading to the assembly of keratin in- 
termediate filaments, but rather a number of associa- 
tions may take place in parallel. 

I 
NTERMEDIATE filaments (iFs) ~ are composed of pro- 
teins (molecular mass range 40-210 kD) that self- 
assemble into complex 8-12-rim cytoskeletal fibers (for 

reviews, see Steinert et al., 1985; Fuchs et al., 1987; Weber 
and Geisler, 1987). Based on structure, IF subunits belong 
to a large class of proteins, including tropomyosin (McLach- 
lan and Stewart, 1975), myosin (Quinlan and Stewart, 1987), 
and leucine-zipper transcription factors (Landshulz et al., 
1988), all of which have a-helical domains that associate to 
form coiled-coil dimers (Pauling and Corey, 1953; Crick, 
1953). The unique feature driving the assembly of coiled- 
coils is a heptad repeat of hydrophobic residues, where the 
first and fourth amino acids of every seven in the u-helical 
sequence are hydrophobic (McLachlan and Stewart, 1975). 
In the case of transcription factors, the stretches of coiled- 
coil-forming helices are short, with only 28 residues, or four 
coiled-coil units (Landshulz et al., 1988). In contrast, IF 
subunits have long coiled-coil domains: the central or-helical 
portion of cytoskeletal IF proteins is 310 amino acid residues 
long (Geisler and Weber, 1982; Hanukoglu and Fuchs, 
1982), while the nuclear lamins have a 350 amino acid 
coiled-coil domain (McKeon et al., 1986; Fisher et al., 
1986). At least in part, the long coiled-coil domains of IFs 
lead to very stable intermolecular associations. 

Of proteins forming coiled-coil structures, keratins are the 
most complex, constituting a group of >20 proteins. A sub- 
group of IF proteins, keratins can be further divided into two 
distinct classes based upon their amino acid sequence within 
the 310 residue tx-helical domains: type I and type II ot-heli- 
1. Abbreviations used in this paper: 1B, inclusion body; IBF, IB-rich frac- 
tion; IE intermediate filament. 

cal segments share only ~25-35 % sequence identity, de- 
pending upon the particular keratins within each class 
(Fuchs et al., 1981; Hanukoglu and Fuchs, 1982, 1983; 
Crewther et al., 1983; Steinert et al., 1983, 1984; Jorcano 
et al., 1984a,b). In contrast to other IF proteins, which can 
assemble into homopolymers, keratin filaments have a strict 
requirement for equimolar amounts of both types of keratins. 
This is true both in vitro (Franke et al., 1983; Hatzfeld and 
Franke, 1985) and in vivo (Giudice and Fuchs, 1987). Al- 
though type I and type II keratins are expressed as specific 
pairs in vivo (for review, see Sun et al., 1984), in vitro, al- 
most any type I keratin can be combined with any type II ker- 
atin to form 10-nm filaments (Franke et al., 1983; Hatzfeld 
and Franke, 1985). 

It is now widely accepted that the basic structure of IFs is 
highly similar and that the IF coiled-coil is a dimer. The sug- 
gestion of a dimer subunit was originally based on chemical 
cross-linking studies (Ahmadi and Speakman, 1978; Woods 
and Inglis, 1984; Quinlan and Franke, 1982; Quinlan et al., 
1984, 1986) and model building (Parry et al., 1977; 
McLachlan, 1978). Recently, dimers of nuclear lamins have 
been visualized by EM. The polypeptides associate in paral- 
lel and in register, to form a ,,~50-nm coiled-coil rod. The 
nonhelical COOH-terminal end domain is larger than the 
nonhelical NH2-terminal domain, and can be seen as a 
globular "head; thereby producing a lollipop-like structure 
(Aebi et al., 1986; Parry et al., 1987). For desmin, Fab 
fragment-decorated tetramers appear as 50-nm dumb-bell- 
like structures, suggesting that dimers interact in an an- 
tiparallel fashion and in register (Geisler et al., 1985). In 
some cases, tetramers with partially staggered, antiparallel 
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dimer configurations have been reported (Ip et al., 1985; 
Kaufman et al., 1985; Potschka, 1986; Fraser et al., 1987; 
Stewart et al., 1989), leaving the physiological state of the 
functional tetramer unresolved. This is an important issue, 
since in order to account for a 22-25-nm repeat visible in 
electron micrographs of IFs, the building block of IFs most 
likely has a half-staggered subunit configuration: if this is not 
at the dimer or tetramer stage, the stagger is likely to be 
achieved in either a higher-ordered subunit (e.g., an octa- 
mer) or in the packing of tetramers into the IF (for reviews, 
see Aebi et al., 1988). 

Much of what we know about the composition and struc- 
ture of the IF dimer and tetramer was obtained using the 
more soluble desmin, vimentin, or lamin proteins. Work 
with keratin subunits has been greatly hampered by the fact 
that they form extraordinarily stable complexes with one an- 
other (Crewther et al., 1983; Franke et al., 1983; Hatzfeld 
and Franke, 1985; Eichner et al., 1986). Consequently, it 
has not only been difficult to purify individual keratins, but 
it has also been difficult to examine the basic building blocks 
of keratin filaments. In a paper of major significance, Quin- 
lan et al. (1984) described the isolation of keratin tetramers 
using 4 M urea and a reducing agent. These complexes con- 
tained two each of type I and type II proteins. Under these 
conditions, type I or type II keratins by themselves also 
seemed to form intermolecular associations, having sedimen- 
tation characteristics of homodimers (Hatzfeld and Franke, 
1985; Quinlan et al., 1986; Hatzfeld et al., 1987). While the 
existence of heterotetramers has been suggested independently 
on the basis of chemical cross-linking studies (Ahmadi and 
Speakman, 1978; Woods and Inglis, 1984; Quinian and 
Franke, 1982; Quinlan et al., 1984, 1986; Eichner et al., 
1986), the significance of the homodimers detected in 4 M 
urea is still uncertain, since analyses of helical particles from 
proteolytic digests of wool and murine epidermal keratin IFs 
have indicated that the keratin coiled-coil might be a hetero- 
dimer (Woods and Inglis, 1984; Parry et al., 1985). Moreover, 
in a recent paper by Hatzfeld and Weber (1990), homodimers 
appeared to form under certain conditions, but heterodimers 
of genetically modified I(8 and K18 occurred under more 
stringent conditions, and appeared to be the only form capa- 
ble of filament formation. Elucidating the basic subunit com- 
position and structure of the keratin dimer and tetramer is 
a fundamental prerequisite to elucidating the nature of the 
homo- and hetero-polypeptide interactions involved in kera- 
tin IFs. While understanding the basic subunit structures of 
any IF protein is a prerequisite to elucidating the complex 
interactions underlying the self-assembly of intermediate fil- 
aments, understanding the basis of type I and type II keratin 
associations is particularly important for two additional rea- 
sons (a) the state of the dimer determines whether or not the 
keratin heterotetramer will have polarity: heterodimers would 
give rise to nonpolar heterotetramers, whereas homodimers 
would generate polar heterotetramers; and (b) type I/type II 
keratin subunits are among the most stable of all inter-chain 
interactions thus far known in nature, and whether the coiled- 
coil is a homodimer or heterodimer is a prerequisite to un- 
derstanding the basis for the extraordinary intermolecular 
associations involved, and the unique interdependency of type 
I and type II keratins. 

To probe the composition and structure of the building 

blocks of keratin filaments, we focused on K5 (58 kD) and 
K14 (50 kD), type II and type I keratins, respectively, that 
are expressed in the basal layer of most stratified squamous 
epithelia (Nelson and Sun, 1983). To circumvent difficulties 
imposed by strong intermolecular interactions between type 
I and type II keratins, we over-expressed full-length human 
K5 and K14 keratins separately in bacteria, which have no 
endogenous IF networks. Using anion exchange and gel 
filtration chromatography in the presence of denaturing or 
partially denaturing conditions, we have been able to isolate 
and examine populations of keratin monomers, dimers, and 
tetramers, and to begin to probe the hierarchy of their higher 
ordered interactions. Using PAGE, chemical cross-linking, 
and EM, we have determined the composition and structure 
of these subunits, and have examined the early stages of 
higher ordered packing of these subunits. Finally, we have 
reconstituted IFs from these populations, indicating that the 
subunits we have isolated are bona fide building blocks of 
keratin IFs. Collectively, our data reveal interesting and 
novel insights into the composition, structure, and assembly 
of the basic coiled-coil subunits of keratin filaments. While 
the denaturing conditions which we used in our approach 
were much more stringent than those required for most 
coiled-coil structures, the basic concepts of our approach 
should be widely, if not universally, applicable to the study 
of other coiled-coil proteins. 

Materials and Methods 

Plasmids 

pET-KI4. An inlrouless, near full-length human K14 cDNA was constructed 
as a hybrid from a cloned cDNA (Hanukoglu and Fuchs, 1982) and the cor- 
responding gene (Marchuk et ai., 1984). This cDNA was contained within 
a 2.0-kb Pst I-Sac I fragment, and extended from 9 nucleetides 3' of the ATG 
translation start codon of human K14 cDNA to ~450 nncleotides 3' of the 
polyadenylation signal of the human KI4 gene. The fragment was first sub- 
cloned into the Pst I-SacI sites of the multiple cloning region of plasmid 
pGEM5zf (Promnga Biotec, Madison, WI). This plasmid has an Nco I site 
(CCATGG) conveniently located just 5' to the Pst I site. To place the ATG 
sequence of the Nco I site in-frame with the KI4 coding sequence, the hy- 
brid vector was lineafiz~ with Nco I, followed by DNA polymerase to fill 
in the ends, followed by Not I digestion, followed by Mung Bean exonncle- 
ase digestion of the 3' extended ends, followed by ligation of the plasrnid 
with 1"4 DNA ligase. The KI4 fragment containing the ATG translation ini- 
tiation codon was then excised from this hybrid plasmid with Nco I and Mlu 
I endonuclease digestion. The fragment was inserted into the Nco I-Barn 
HI sites of plasrnid pET-Sc (Studier and Moffat, 1986), and the plasmid, 
pETK14 (6.5 kb) was transformed into E. coli strains HMSI74 (control) and 
BL21(DE3)pLysS (containing the I"7 RNA polymerase gene). The nncleo- 
tide sequence flanking the ATG site of the resulting plasmid was confirmed 
by sequencing. As a result of the cloning strategy, the first two amino acids 
of the human K14 cDNA, Thr-Thr, were changed to a single Ala residue. 

pET-KS. An intronless, full-length cDNA for human K5 in Bluescript 
KS+ (Stratagene Cloning Systems, La Julia, CA) was constructed as a hy- 
brid between a near full-length cDNA (Lersch and Fuchs, 1988) and the 
corresponding gene (Lersch et al., 1989). An Nco I site was engineered at 
the beginning of the coding segment by using oligonucleefide-directed muta- 
genesis. This changed the sequence at the beginning of the coding segment 
from CCATGT to CCATGG, resulting in a change in the codon of the first 
amino acid residue of K5 from Ser to Ala. The change was confirmed by 
DNA sequence analysis, and it enabled the use of partial enzyme digestion 
to excise the fuU-length cDNA as a single 1.83-kb Nco I fragment. This 
fragment was inserted into the Nco I site of plasmid pET-Sc (Studier and 
Moff-att, 1986), to generate pET-K5 (6.3 kb). The plasmid was subsequently 
used to transform E. coil strains HMSI74 and BL21(DE3)pLysS (Studier 
and Moifatt, 1986). 
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Overexpression of Keratins in E. coli 

Plasmid pET-Be is a derivative of pET-7 (Rosenberg et al., 1987), and it 
has a T7 RNA polymerase promoter located just 5' from an Nco I site 
(Studier and Moffatt, 1986). Bacterial strain BL21 (DE3) pLys S contains 
a cloned chromosomal copy of T7 RNA polymerase under the control of 
the lacUV5 promoter (Studier and Moffatt, 1986). When induced with 
IPTG, the T7 polymerase gene is expressed, leading to induction of the tar- 
get gene/cDNA inserted into pET-8c. 

Bacterial clones of BL21(DE3)pLys, transformed with plasmids pET-KS 
or pET-K14 were cultured in the presence of M9LB medium supplemented 
with 0.2% (wt/vol) glucose, 10 mM MgSO4, and 1 mM CaC12 (Studier 
and Moffatt, 1986). At an A~0 of 1, corresponding to '~5 x 108-1 x 109 
cells/mJ, induction of keratin expression was achieved by adding isopropyl- 
/3-D-thiogalactopyranoside to the medium to a final concentration of 2.0 
raM. After 16--20 h with further shaking, bacteria were harvested by cen- 
trifugation. Typically, 10 g of bacteria were obtained per liter of culture. 

The specificity of keratin expression was evaluated by PAGE and immu- 
noblot analyses of total protein extracts of the BL2 I(DE3) cells transformed 
with either pET-K5 or pET-K14. Antisera used were either anti-K5 (a rabbit 
polyclonal antiserum against a synthetic peptide corresponding to the 7 
COOH-terminal amino acid residues of human K5; Lersch and Fuchs, un- 
published observations) or anti-K14 (a rabbit polyclonal antiserum against 
a COOH-terminal peptide of human K14; Stoler et al., 1988). For controls, 
we used protein extracts from (a) pET-keratin transformants of HMS174, 
an E. coli strain that does not contain the cloned T7 RNA polymerase gene; 
and (b) BL21(DE3)pLysS bacteria transformed with either pET-8c, pET- 
K5-o.f., in which the K5 coding sequence was out-of-frame with respect to 
the ATG translation start codon, or pET-K14-o.L, in which the KI4 coding 
sequence was out-of-frame with respect to the ATG translation start codon. 

FPLC Purification of Keratins from Bacterial Extracts 
Purification of keratins from total bacterial proteins was achieved in three 
steps. First, an inclusion body (IB)-rich fraction (IBF) was prepared from 
the frozen bacterial cells using the method of Nagai and Thogersen (1987). 
The final pellet consisting predominantly of keratin-containing IBs was 
sohibilized in a freshly prepared solution of 6 M urea, 50 mM Tris HCI, 
2 mM DTT, 0.3 mg/ml phenyl methyl sulfonyl fluoride, pH 8.l (i.e., the 
anion exchange running buffer; see below). The concentration of proteins 
was adjusted to 5-10 mg/ml as required, and the IBFs were stored at -70°C 
until needed. This procedure resulted in a keratin fraction that was 
"~35-40 % pure. 

To further purify keratins, we used an inert (i.e., titanium-coated) HPLC 
system manufactured by Pharmacia-LKB (Piscataway, N J). IBF extracts 
("o5-10 mg protein) were first passaged through a 1-ml Mono-Q anion ex- 
change column (Pharmacia-LKB). The anion exchange running buffer (see 
above) was pumped at a flow rate of 0.5 ml/min. Keratins were eluted with 
a 25-ml gradient of 0-200 mM guanidine-HC1 (Hatzfeld and Franke, 
1985), run at 0.5 ml/min. 500-tA fractions were collected, and analyzed by 
SDS-PAGE and Coomassie Blue staining. Peak fractions were then pooled 
and stored at -70°C until needed. Before use, samples were concentrated 
by ultrafiltration through Centricon-10 units, as specified by the manufac- 
turer (Amicon; W.R. Grace & Co., Boston, MA). 

Final purification of keratins was accomplished by subjecting the concen- 
trated fractions obtained above to gel filtration chromatography. For purifi- 
cation of keratin monomers, we used a Superose 12 column (Pharma- 
cia-LKB), and a running buffer of 6 M urea, 50 mM Tris HCI, 10 mM 
13-mercaptoethanol, 0.3 mg/ml PMSF, pH 7.4. Samples were pumped at 0.1 
ml/min, and 100-/~1 fractions were collected. Fractions were analyzed by 
SDS-PAGE, and fractions containing pure keratins were pooled and con- 
centrated as described above. 

In Vitro Reconstitution of lO-nm Filaments 
Essentially, the procedure of Franke et al. (1982) was followed. Keratin 
complexes were first equilibrated by dialysis against a urea buffer consisting 
of 50 mM Tris-HCl, 10 mM/3-mercaptoethanol, 0.3 mg/ml PMSF, pH 7.25, 
containing either 6 or 9 M urea, for 2 h at room temperature. Additional 
dialyses were performed with 10 mM Tris HCI, 10 mM/5-mercaptoethanol, 
pH 7.25, for 2 h at room temperature, followed by 12 h at 4"C, and finally 
50 mM Tris HCI, 10 mM/5-mercaptoethanol, pH 7.25, for 12 h at 4°C. 
Preparations were then stored at 4°C until examined under a Philips CM10 
electron microscope. 

Keratin Complex Formation and Isolation 
Pure preparations of K5 and KI4 in either 6 or 9 M urea buffers were ob- 
tained by FPLC chromatography, as described above. For the 9 M urea sam- 
ples, the buffer systems used were identical to the 6 M urea ones. K5- or 
K14-rich fractions were pooled, and the protein concentration measured 
using an assay kit (Bio-Rad Laboratories, Richmond, CA). K5 and K14 
were then mixed in the desired ratio in a final volume of 1.5 ml and at a 
final concentration of 1.0-1.2 mg/ml. After 30 rain at room temperature, 
K5-KI4 mixtures were stored at 4*(2 until further processed. K5-K14 com- 
plexes formed in either 6 or 9 M urea buffer were separated from uncom- 
plexed K5 and K14 using anion-exchange chromatography, using the same 
conditions described above. Fractions were collected and analyzed by 
SDS-PAGE. 

Gel Filtration Chromatography 
KS, K14, and K5-K14 complexes in either 6 or 9 M urea, 50 mM Tris HC1, 
10 mM B-mercaptoethanol, 0.3 mg/ml PMSF buffer, pH 7.4, were subjected 
to gel filtration chromatography in the presence of molecular weight stan- 
dards (Sigma Chemical Co., St. Louis, MO). The standards used include 
rabbit muscle myosin (205 kD), E. coli B-galactosidase (116 kD), BSA (66 
kD), and bovine carbonic anhydrase (29 kD). At concentrations of urea 
>6 M, these proteins behave as denatured monomers (Tsao, 1953; Wong and 
Tanford, 1973; Chreighton, 1979). Keratins were combined with 75-150 
#g of each protein in gel filtration buffer before chromatography. 

A Superose 12 column (molecular mass range 1-300 kD; Pharmacia- 
LKB) was used for gel filtration chromatography of keratin monomers. K5- 
K14 complexes were sized using a Superose 6 column (molecular mass 
range 5-5,000 kD; Pharmacia-LKB). Buffer conditions were identical to 
those used to purify individual keratins (see above). In both cases, the buffer 
was pumped at a 0.05 rrfl/min flow rate, 0.1-ml fractions were collected, and 
elution of proteins was monitored by UV absorbance at 280 #m. 
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/ I  / 

! 

200 bp 

Figure 1. Genetic map of plasmids pETK14 and 
pETK5. Details of plasmid constructions can be 
found in Materials and Methods. The components 
of the plasmid are represented as follows. (a) The 
black box represents the T7 RNA polymerase pro- 
moter used to drive expression of the constructed 
cDNAs. The transcription initiation site is marked 
by the arrow. The 5' untranslated sequence is part 
of the vector, since the K5 and K14 cDNAs were 
cloned into the Nco I site of pET-8c at the ATG 
start codon. (b) The white boxes represent com- 
plete human K5 and K14 cDNAs, as indicated. (c) 

The hatched box represents 3' noncoding sequences corresponding to either human K5 or human K14 genes. (d) The stippled box represents 
the transcription terminator sequence present in the pET-8c expression plasmid. (e) The origin of replication for plasmid pBR322 is indi- 
cated (Ori) as is the ampicillin resistance gene contained in plasmid pET-Be. Important restriction endonuclease sites are marked. K, Kpn 
I; S, Sac I; B, Bam HI; R/, Eco RI; Bg, Bgl II; N, Nco I; P, Pst I. 
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Chemical Cross-Linking 

Glutaraldehyde cross-linking studies were performed in 6 and 9 M urea 
buffers using a procedure adapted from Quinlan et al. (1986). Samples 
(125-150/~g/ml) of human vimentin, K14, K5, and K5-K14 were purified 
by anion exchange chromatography, followed by dialysis for 12 h at room 
temperature against a solution of 50 mM sodium phosphate, 10 mM ~-mer- 
captoethanol, pH 7.7, containing either 6 or 9 M urea, as indicated in the 
text. EM-grade glutaraldehyde (Ted Pella, Inc., Irvine, CA) was added such 
that final concentrations ranged from 0 to 0.12% (vol/vol), and samples 
were incubated for 30 rain at either 10°C (6 M urea) or 15°C (9 M urea). 
The cross-linking reactions were terminated by addition of one half volume 
of the same urea buffer, containing 2 M glycine. Cross-linked samples were 
resolved through 7 % SDS polyacrylamide gels, and transferred to nitrocel- 
lulose paper by blotting (Towbin et al., 1979). Blots were incubated with 
either antihuman vimentin (Stellmach and Fuchs, 1989), anti-typa I or anti- 
type II keratin antisera (Fuchs and Marchuk, 1983), followed by t25I-la- 
beled S. aureus protein A (Amersham Corp., Arlington Heights, IL). Blots 
were then processed for autoradiography using Kodak X-Omat film. 

Type I/type II keratin complexes cross-linked in either 6 or 9 M urea 
were purified by anion exchange chromatography, subjected to gel filtration 
chromatography, and analyzed by SDS-PAGE as described above. Molecu- 
lar mass standards were utilized for the 6 M run. For the 9 M run, standards 
were omitted, but sizes were estimated according to the expected elution 
profiles for the column. 

EM of KS-K14 Complexes and of lO-nm Filaments 

Carbon-coated electron microscopic nickel grids (300 mesh; Ted Pella, 
Inc.) were glow discharged before applying the specimen. K5-KI4 complex 
samples were diluted to 0.01-0.03 mg/mi with urea-Tris buffer, and a 5-~tl 
aliquot was adsorbed on a pretreated grid for 30 s. Grids were then washed 
gently with several drops of the urea-Tris buffer (30 s), followed by several 
drops of 10 mM Tris-HC1 buffer (1 rain), and negatively stained for 30 s 
with 1% uranyl acetate. Excess stain was removed by blotting with filter pa- 
per. Filament preparations were processed in a similar fashion, except that 
they were diluted to 0.04-0.05 mg/mi with 50 mM Tris buffer and rinsed 
only with Tris buffer (1 rain) before staining. Specimens were examined in 

a Philips CM-10 electron microscope operated at an acceleration voltage of 
80 kV, under minimal dose conditions. Magnification was calibrated using 
a #10021 diffraction grating replica from Ernest E Fulham, Inc. (Schenec- 
tady, NY). 

Resul ts  

Isolation of  BacteriaUy Derived Human 
Keratins: Purified Keratins Are Fully Competent 
for IF Assembly In Vitro 

Previously, we isolated and characterized near full-length 
cDNAs encoding the human keratins, K14 (Hanukoglu and 
Fuchs, 1982) and K5 (Lersch and Fuchs, 1988). Through 
subsequent isolation and characterization of the functional 
genes encoding these keratins (Marchuk et al . ,  1984, 1985; 
Lersch et al . ,  1989), we were able to construct full-length 
cDNAs. To express these cDNAs in bacteria, we subcloned 
them both individually (pETK14 and pETICS, respectively) 
into the bacterial  expression plasmid pET-8C, which has a 
T7 RNA polymerase  promoter  sequence located just  5' from 
a multiple cloning region (Studier and Moffatt, 1986; Rosen- 
berg et al . ,  1987). Fig. 1 illustrates the constructs that were 
engineered. 

When E. coli strain BL21(DE3)pLysS, harboring a single 
copy of the T7 RNA polymerase  gene under the control of  
the IPTG-inducible lacUV5 promoter, was transformed with 
pETK5 and subsequently treated with IPTG, large cytoplas- 
mic IBs formed that were not present in the untransformed 
cells. Similar bodies were seen in pETKl4-t ransformed bac- 
teria. That these inclusion bodies contained human keratin 
was confirmed by immunoelectron microscopy (performed 

Figure 2. SDS-PAGE analyses of keratin purifica- 
tion. E. coli strain BL21(DE3)pLysS was trans- 
formed with pET (control), pETKS-o.f.(out of 
frame K5 eDNA; control), pETICS, pETKI4- 
o.f.(out of frame K14 eDNA, control); or pETK14, 
and keratin expression was induced by addition of 
IPTG to the medium (Studier and Moffatt, 1986). 
After induction, bacteria were harvested and in- 
clusion bodies were isolated as described in Ma- 
terials and Methods. Keratins were purified by 
Mono Q anion exchange chromatography and Su- 
perose 12 gel filtration chromatography using an 
LKB HPLC system (see Materials and Methods). 
Protein samples from total bacterial protein ex- 
tracts, inclusion bodies, and from pooled peak frac- 
tions of chromatography runs were then analyzed 
by electrophoresis through 8.5% polyacrylamide 
SDS gels. Proteins were visualized by staining with 
Coomassie Blue. Proteins were from (lane 1) IF 
extract of cultured human epidermal cells (KS +, 
K6 +, K14 +, K17+); (lane 2) untransformed BL21- 
(DE3)pLysS; (lane 3) BL21(DE3)pLysS trans- 
formed with pETK5-o.f.; (lane 4) BL21(DE3)- 
pLysS transformed with pETK5; (lane 5) IBF from 
bacterial extract in lane 4; (lane 6) Mono Q purifi- 
cation of K5 IBF in lane 5; (lane 7) Superose 12 
purification of pooled Mono Q fractions from lane 
6; (lane 8) BL21(DE3)pLysS transformed with 
pETK14-o.f.; (lane 9) BL21(DE3)pLysS trans- 

formed with pETK14; (lane 10) IBF from bacterial extract in lane 9; (lane 11) Mono Q purification of K14 IBF in lane 10; and (lane 
12) Superose 12 purification of pooled Mono Q fractions from lane 11. Molecular masses of epidermal keratins are indicated at left. 
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Figure 3. In vitro assembly of purified keratins into filaments. Pur- 
ified K5 and K14 from peak fractions of the Superose 12 column 
were combined at a concentration of 400 #g/ml in 9 M urea buffer, 
and dialyzed twice against nonurea buffers as described in Mater- 
ials and Methods. Assembled filaments were visualized under a 
Phillips CM 10 electron microscope. Bar, 0.1 #m. 

as in Coulombe et al., 1989), using rabbit polyclonal an- 
tisera specific for the COOH-terminal domain of either K14 
or K5 (not shown). 

To further characterize the keratins generated from the 
pET expression constructs, we first isolated IBFs from 
pETK5-transformed bacteria, and extracted total proteins 
from these structures. When resolved by PAGE, the IBF pro- 
teins included a prominent 58-kD polypeptide (Fig. 2, lane 
5). This band corresponded in electrophoretic mobility to 
bona fide human K5 from cultured keratinocytes (lane/).  
IBF preparations from untransformed bacteria (lane 2) and 
from E. coli transformed with an out-of-frame pETK5 con- 
struct (lane 3) yielded protein profiles that were identical to 
that of the pETK5-transformed cells, with the exception of 
this single 58-kD band. Subsequent immunoblot analysis 
using an anti-KS monospecific antiserum confirmed the iden- 
tity of the 58-kD band (data not shown). IBF preparations 
from cells transformed with in-frame constructs of pETK14 
produced a 50-kD protein (lane 10), with an electrophoretic 
mobility identical to that of human epidermal K14 (lane/). 
For both keratin-producing bacterial cell lines, ,~35-40 % of 
the total inclusion body fraction consisted of keratin. These 
data are similar to that obtained by Magin et al. (1987), who 
purified a simple epithelial keratin K8 from transformed E. 
coli bacteria. 

Keratins from pETK5- and pETK14-transformed cells 
were purified to homogeneity in two steps, using ion ex- 
change (FPLC) chromatography, followed by gel filtration 
(FPLC) chromatography. To maintain keratins as solubilized 
fractions with uniform and discrete behavior, they were al- 
ways kept in the presence of at least 6 M urea. Fig. 2 shows 
the purity of K5 and K14 after (a) ion exchange chromatogra- 
phy (lanes 6 and 11, respectively), and (b) gel filtration chro- 

matography (lanes 7 and 12, respectively). As judged by 
densitometry scanning of the Coomassie Blue-stained gels, 
keratins were >98% pure after gel filtration chromatog- 
raphy. 

To verify that the purified keratins were competent for fila- 
ment assembly, we combined K5 and K14 at 0.4 mg/ml in 
9 M urea buffer and then dialyzed away the urea as indicated 
in Materials and Methods. Electron microscopic analysis of 
the dialyzed mixture demonstrated clearly that some of the 
E. coli-generated proteins were fully competent to form 10- 
nm filaments (Fig. 3). To determine whether the purified 
keratins were quantitatively competent for filament forma- 
tion, we reduced the keratin concentration to as low as 37.5 
#g/ml. Even under these conditions, we observed abundant 
10-nm filaments. This was initially surprising, since 50 
#g/ml had been assigned as the critical concentration, be- 
low which keratins purified from mammalian ceils did not 
assemble (Steinert et al., 1976). Hence, not only are our 
E. coli-generated keratins largely, if not wholly, competent 
for filament formation, but in addition, the critical keratin 
concentration for filament formation is less than previously 
measured. 

In Separate Solutions of  KS or K14 in 6 M Urea, 
the Keratins Exist as Monomers 

To determine whether purified K5 and K14 alone exist as 
monomers or in a multimeric state in the presence of 6 M 
urea and a reducing agent, we repassaged purified keratin 
preparations through the gel filtration column, this time in 
the presence of molecular mass standards (Fig. 4). Under 
these conditions, all the standard proteins were known to ex- 
ist as monomers (see Materials and Methods). While the 
standard proteins were not in their native state, their mobil- 
ity through the gel filtration column was largely as expected, 
i.e., in proportion to the log of their molecular mass. Rela- 
tive to these size standards, K5 and K14 eluted at an esti- 
mated size of '~55-58 kD and 52-56 kD, respectively (Fig. 
4, left and right frames). These size estimations were in good 
agreement with those predicted on the basis of(a) amino acid 
sequence (Marchuk et al., 1984; Lersch et al., 1989), and 
(b) their electrophoretic mobility through polyacrylamide 
gels (Sun and Green, 1978). Thus, by these criteria, both K5 
and K14 appeared to run as monomers in the presence of 
6 M urea and a reducing agent. 

To make certain that our assignment of these subunits as 
monomers was correct, we added 1% SDS to separate urea- 
/3-mercaptoethanol solutions of K5 and K14 and preboiled 
them. The gel filtration analyses were then repeated in 0.1% 
SDS urea buffer. The patterns of elution of K5, K14, and all 
protein standards were indistinguishable from the elution 
profiles shown in Fig. 4. Since it is well-known from SDS- 
PAGE analyses that similar conditions lead to quantitative 
disruption of all keratin-keratin interactions (Sun and Green, 
1978; see additional data to follow), and since no difference 
in elution profiles were observed, we conclude that K5 and 
K14 by themselves exist as monomers in 6 M urea, 50 mM 
Tris-HCl, 10 mM/3-mercaptoethanol, pH 7.4. 

When Combined in the Presence of  6M Urea, K5 and 
K14 Associate in a 1:1 Ratio to Form a Complex 

To determine whether K5 and K14 have the capacity to as- 
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Figure 4. Determination of monomer state of K5 and K14 in 6 M urea. FPLC-purified K5 (left) and K14 (right) were combined with molecu- 
lar mass standards in 6 M urea buffer and subjected to gel filtration chromatography on Superose 12 as described in Materials and Methods. 
Protein elution was monitored by ultraviolet absorption at A280 run, and 100-/~1 fractions were collected. 30-#1 aliquots of each fraction 
were analyzed by electrophoresis through SDS polyacrylamide gels, followed by staining with Coomassie Blue (shown below each UV 
absorbance profile in the diagram). From left to right, first lane (S) represents an aliquot of protein used in the analysis, and vertical bars 
over protein profiles indicate sequential fractions examined by SDS-PAGE. Sizes of molecular mass standards are indicated at left. My, 
myosin; ~'G, t3-galactosidase; AI, BSA; CA, carbonic anhydrase. 

sociate with each other under conditions where they do not 
associate with themselves, we combined K5 and K14 in vari- 
ous molar ratios, in the presence of 6 M urea and a reducing 
agent. Resulting products were examined by (a) ion exchange 
chromatography (Fig. 5), and (b) gel filtration chromatogra- 
phy (Fig. 6), both run in the presence of urea and a reducing 
agent (see Materials and Methods for details). When K5 and 
K14 were combined in a 2:1 ratio and bound to an anion- 

exchange column, two peaks were subsequently eluted: one 
with 70 mM and one with 133 mM guanidinium hydrochlo- 
ride (Fig. 5, frame A). The first peak eluted at the same salt 
concentration as pure K5, but the second peak (arrow) eluted 
at a higher salt concentration than either K5 or K14. When 
aliquots of the peaks were analyzed by SDS-PAGE, the first 
peak contained pure K5 protein, whereas the second peak 
contained K5 and K14 in a I:1 molar ratio, as determined by 
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Figure 5. Anion exchange analysis of monomer and heteromer complexes formed upon combining K5 and K14 in 6 M urea. Anion-exchange 
(Mono Q)-purified K5 and K14 were combined in various ratios, each at a final total keratin concentration of 1.2 mg/ml in 6 M urea buffer 
and applied to an anion-exchange FPLC column as described in Materials and Methods. Arrow denotes presence of K5:K14 complex. 
30-#1 aliquots of each fraction were analyzed by electrophoresis through SDS polyacrylamide gels, followed by staining with Coomassie 
Blue (shown below each UV absorbance profile in the diagram). From left to right, first lane (S) represents a 5-/~1 aliquot of protein used 
in the analysis and vertical bars over protein profiles indicate sequential fractions examined by SDS-PAGE. Ratios of K5:K14 were (frame 
A) 2K5:lK14; (frame B) ,~lK5:lK14; and (frame C) 1K5:2K14. Sizes of molecular mass standards are indicated at left in daltons. Note 
presence of faint bands <58 kD represent small amounts of specific degradation products of K5 and K14. 

densitometry scanning of the Coomassie Blue-stained gel 
(frame A, gel profile). This 133-mM Gu.HC1 peak con- 
stituted >95 % of the protein when K5 and K14 were com- 
bined in ~1:1 molar ratio (Fig. 5, frame B). When K5 and 
K14 were combined in a 1:2 molar ratio, this peak was still 
observed, but this time it was accompanied by an additional 
peak eluting with 110 mM Gu.HC1 (Fig. 5, frame C). SDS- 
PAGE analysis revealed that this peak contained pure K14, 
whereas the peak eluting at 133 mM Gu.HCI contained K5 
and K14 in a 1:1 molar ratio (frame C, gel profile). Collec- 

tively, these data indicated that in the presence of 6 M urea 
and a reducing agent, K5 and K14 associated in an equimolar 
ratio to form a complex(es) with an as yet unidentified num- 
ber of K5 and K14 polypeptide chains. Moreover, since none 
of the three K5/K14 combinations yielded peaks representing 
both unassociated K5 and unassociated K14, these data indi- 
cate that under the conditions used, the equilibrium greatly 
favored formation of complexes between K5 and K14. 

A priori, the presence of a peak of K5/K14 eluting with 
a salt concentration greater than either K5 or K14 alone, only 
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Figure 6. Sizing of the K5-K14 complex in 6 M urea by gel filtration. (A, without SDS) The KS-K14 complex purified by anion-exchange 
chromatography was combined with molecular mass standards and applied to a Superose 6 FPLC column. Samples were collected as 
described in the legend to Fig. 5. 30-t~l aliquots of each fraction were analyzed by electrophoresis through SDS polyacrylamide gels, fol- 
lowed by staining with Coomassie Blue (shown below each UV absorbance profile in the diagram). From left to right, the first lane (S) 
represents a 6-/~1 aliquot of protein used in the analysis, and vertical bars over protein profiles indicate sequential fractions examined by 
SDS-PAGE. Sizes of molecular mass standards are indicated at left. Note that the complex showed a mobility corresponding to a molecular 
mass that was larger than that predicted for a dimer, but smaller than that predicted for a tetramer. We later demonstrate that this peak 
is likely to represent a tetramer, and that the mobility is faster than expected due to the compactness of the complex relative to keratin 
monomers and other standards. (B, with 0.1% SDS) Similar to A, but in this case, the complex was treated with SDS and boiled briefly 
before loading on the Superose 6 column. The running buffer also contained 0.1% SDS. Note that the complex dissociated into monomers, 
which each eluted according to their respective mobilities. 
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Figure 7. Keratin heterodimers exist in 9 M urea. (A) Purified samples of K5 and K14 were combined in a 1:1 ratio at a total keratin concen- 
tration of 1.2 mg/ml in 9 M urea buffer and applied to a Mono Q anion exchange FPLC column. Thin overhead arrows denote peaks eluting 
at similar salt concentration expected for K5 (left) and K14 (right). Thick arrow denotes peak eluting at the same salt concentration as 
the K5:K14 complex observed in Fig. 6. To verify the composition of peak fractions, 30-#1 aliquots were analyzed by electrophoresis through 
SDS polyacrylamide gels, followed by staining with Coomassie Blue (shown below each UV absorbance profile in the diagram). From 
left to right, the first lane (S) represents an aliquot of protein used in the analysis, and vertical bars over protein profiles indicate sequential 
fractions examined by SDS-PAGE. Sizes of molecular mass standards are indicated at left. Note: the pure K5 monomer peak showed some 
trailing, which led to appreciable K5 contamination in the K14 monomer peak. (B) Fractions corresponding to the keratin complex were 
pooled, combined with molecular mass standards, and applied to a Superose 6 FPLC column as described in Materials and Methods. 
100-#1 fractions were collected and analyzed as described in the legend to Fig. 5. Thick arrow denotes a minor species eluting at the same 
mobility as that observed for the 6 M urea K5-K14 complex. Thin arrow denotes major species coeluting with serum albumin. Note: This 
major species eluted before that expected for K5 and K14 monomers, and almost every fraction had a ,,o1:1 ratio of K5 and K14 (compare 
with the behavior of K5 and K14 monomers as shown in Fig. 4, A and B). 

confirmed that K5 and K14 existed as a stable complex under 
the conditions used. To estimate the size of  this complex, we 
subjected the same mixtures to gel filtration chromatogra- 
phy, along with molecular mass standards (Fig. 6). As shown 
in frame A for the 1:1 mixture, the complex eluted as a single 
species, after myosin (205 kD) and before fl-galactosidase 
(116 kD). When based against the monomer molecular mass 

standards, the complex showed a mobility with an apparent 
molecular mass of 135 kD. We anticipated that a K5/K14 
complex might elute aberrantly due to (a) the extraordinarily 
tight intermolecular interactions, and (b) the relative stiff- 
ness of  the coiled-coil domain. Hence, further analyses were 
necessary to determine whether the complex represented a 
heterodimer (predicted size of  113 kD) (Marchuk et al., 
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Figure 8. Chemical cross-linking of IF polypeptide chains in the 6 and 9 M urea samples. (A) Since the properties of glutaraldehyde cross- 
linked, vimentin homodimers were known (Quinlan et al., 1986), vimentin was used as a control. Details of the E. coli expression vector 
construct used to generate human vimentin will be published elsewhere (M. B. McCormick and E. Fuchs). Haman vimentin was purified 
using FPLC anion exchange chromatography as described for keratins. Cross-linking studies on purified vimentin were carded out in the 
presence of either 6 M 0anes 1-4) or 9 M urea (lanes 5-8) sodium phosphate buffer as described in Materials and Methods. Samples 
shown were cross-linked in the presence of the following glutaraldehyde concentrations (vol/vol) (lanes 1 and 5) 0%; (lane 6) 0.02%; 
(lanes 2 and 7) 0.04%; (lanes 3 and 8) 0.08%; and (lane 4) 0.12%. Mobilities of molecular mass standards are shown at left. Mobility 
of vimentin monomer is indicated as V. Thick arrow indicates mobility of the vimentin homodimer (consistent with that reported by Quinlan 
et al., 1986); thin arrow indicated mobility of putative vimentin homotetramers. Note: a small amount of cross-linked vimentin did not 
enter the gel. (B) Human K5 and K14 were purified alone or as a complex using FPLC anion exchange chromatography, and cross-linking 
studies on K14 alone (lanes 1-4 and 9-12), K5 alone (lanes 17-20), or the KI4-K5 complexes (lanes 5-8, 13-16, and 21-24) were carded 
out in the presence of either 6 M (lanes 1-8) or 9 M urea (lanes 9-24) phosphate buffer as described in Materials and Methods. Blots 
were incubated with antitype I keratin (lanes 1-16) or anti-type II keratin (lanes 17-24) (Fuchs and Marchuk, 1983), followed by t25I- 
labeled S. aureus protein A. Samples shown were cross-linked in the presence of the following glutaraldehyde concentrations (vol/vol) 
(lanes 1, 5, 9, 13, 17, and 21) 0%; (lanes 10, 14, 18, and 22) 0.02%; (laiaes 2, 6, 11, 15, 19, and 23) 0.04%; (lanes 3, 7, 12, 16, 20, and 
24) 0.08 %; and (lanes 4 and 8) 0.12 %. Mobilities of molecular mass stagOards are shown at left. Mobility of keratin monomers are indicated 
as K5 and K14. Thick arrow indicates mobility of the keratin heterodimer; thin arrow indicates mobility of keratin heterotetramers. 
Notes:(a) overexposures of the gels were used to demonstrate the absence ~f any other bands. (b) There was no cross-linking observed 
when K5 was subjected to glutaraldehyde in either 9 M urea (shown) or 6 M urea (not shown). (c) That the cross-linked dimers and tetramers 
contained a 1:1 ratio of K5 and K14 was confirmed by measuring the amount of radiolabel in the dimer and tetramer bands of the anti-type 
I and anti-type II blots with the amount of radiolabel obtained by dotblotting a series of known concentrations of K14 and K5 in parallel. 

1984; Lersch et al., 1989) or a heterotetramer (predicted 
size of  226 kD). However, since the single heteromeric com- 
plex showed no evidence of dissociation during the run, it 
was already apparent that the intermolecular interactions 
leading to its formation must have been particularly strong. 

The 1:1 complex of  K5 and K14 formed in the presence of  
6 M urea was readily dissociated by boiling the sample in the 
presence of added 1% SDS, as judged by gel filtration chro- 
matography of  the boiled mixture. Under these conditions, 
K5 and K14 monomer peaks were obtained (frame B), both 
appearing after the albumin peak, and eluting according to 
their predicted molecular mass. These data confirm that (a) 
the aberrant elution of  the K5:K14 peak in the absence of 
SDS was due to the nature of the complex formed, and (b) 
K5 and K14 behave independently when coexisting in a 6 M 
urea solution containing SDS. 

A Smaller Complex of KS and K14 Exists in 9 M Urea: 
Indications o f  Heterodimer Formation 

Since our studies of combined K5 and K14 in 6 M urea re- 

vealed the existence of extraordinarily stable complexes with 
no detectable monomer pools, we wondered whether we 
might be able to find conditions that would enable us to fur- 
ther dissociate the complex, and possibly dissect its compo- 
sition. To accomplish this, we progressively increased the 
concentration of urea used in our combination assays up to 
9 M. Remarkably, even at 9 M urea, a 1:1 mixture of K5 and 
K14 produced a complex eluting at 133 mM GuHC1 on anion 
exchange chromatography (Fig. 7, frame A: thick arrow). 
However, in contrast to our previous anion exchange chro- 
matography data, an appreciable amount of keratin eluting 
at salt concentrations characteristic of both K14 and K5 mono- 
mers were detected in the 9 M urea runs (smaller arrows). 
Hence in 9 M urea, there must be an equilibrium between 
monomers and complex(es). 

When the complex was analyzed by gel filtration chroma- 
tography, it eluted as two species (frame B). SDS-PAGE 
analysis of the column fractions revealed that both species 
contained roughly equal amounts of  K5 and K14 protein. 
One of these species eluted after myosin, but before/$-galac- 
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Figure 9. Electron microscopic visu- 
alization of keratin heterodirners and 
heterotetramers. K5 and K14 com- 
plexes formed in either 6 or 9 M urea 
were purified by anion-exchange 
chromatography and subjected to 
negative staining and EM as de- 
scribed in Materials and Methods. 
Part of the 9 M urea sample was dia- 
lyzed against 4 M urea. (Frames in 
A) The structures prevalent in the 
9 M urea sample and identified as a 
K5-K14 heterodimer. Note the lolli- 
pop-like structures, with a rod-shaped 
domain of 45-50 nm, indicative of 
two coiled-coil polypeptide chains 
aligned in parallel and in register. 
Arrowheads point to the nonglobular 
tail domains visible for some dimers. 
(Frames in B) The structures preva- 
lent in the 6 M urea sample, but also 
seen less frequently in 9 M urea. The 
structure, identified as a K5-KI4 het- 
erotetramer, has a dumb-bell-like 
shape indicative of two antiparallel 
dimers, aligned in register. Note: gen- 
erally, the tetramers showed rod do- 
mains of 45-50 nm, while sometimes 
the length was less than this (see the 
tetramers denoted by arrowheads). 
In these cases, the rod was often thick- 
er. (Frames C-E) Structures seen in 
4 M urea. The structure in C appears 
to involve end-to-end associations of 
tetramers, leading to protofilament- 
like fibers. The structure in D appears 
to involve lateral interactions of tetra- 
mers, and are similar to what might 
be expected from a half-staggered con- 
formation of two heterotetramers. The 
structure in E seems to be a partially 
assembled keratin filament-like struc- 
ture. (Frame F) Filaments reconsti- 
tuted from dialysis of heterotetramer 
complexes made in the presence of 
6 M urea. Note: filaments could also 
be reconstituted from dialysis of het- 
erodimer complexes formed in 9 M 
urea. Bars: (A, B, and E) 50 nm, 
bar in E applies to frames C-E; (F) 
100 rim. 

tosidase, i.e., as did the entire complex formed in 6 M urea. 
The second species coeluted with albumin, i.e., with a pre- 
dicted size of  approximately half that seen for the 6 M urea 
complex. Hence both species showed aberrant mobility 
through the gel matrix, and yet both eluted ahead of  the pre- 
dicted mobilities of  the K5 and K14 monomers (compare 
Fig. 4, A and B, with Fig. 7 B). These data suggested that 
in 9M urea, the smaller keratin complex, eluting aberrantly 
with a molecular mass characteristic of  an '~70 kD rahdom 
coil, was a heterodimer. In 9 and 6 M urea, the larger keratin 
complex, eluring with a molecular mass characteristic of an 
~135 kD random coil, must then be a heterotetramer. The 
apparent trailing of protein complexes between the two ma- 

jor species in 9 M urea (Fig. 7 B) suggests that a greater 
amount of putative tetramer may have actually been present 
in the anion exchange column-purified sample, and this may 
have partially dissociated during the dilution of  the gel filtra- 
tion run. Additional data below support this notion. 

Chemical Cross-Linking Verifies the Existence of  
Keratin Heterodimers and Heterotetramers 

To verify that our assignments of the 6 M heterotetramer and 
the 9 M heterodimer were correct, we subjected the com- 
plexes to chemical cross-linking with glutaraldehyde. As a 
reference, we also cross-linked human vimentin in the pres- 
ence of  6 M urea, since under similar denaturing conditions, 
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vimentin is known to exist mostly as a homodimer (Quinlan 
et al., 1986). On SDS polyacrylamide gels, the cross-linked 
vimentin homodimer is known to migrate aberrantly with an 
apparent size of 170-200 kD (Quinlan et al., 1986). When 
we resolved our cross-linked human vimentin by SDS- 
PAGE, followed by immunoblot analyses and autoradiogra- 
phy, we observed a major species migrating at ,o175 kD, with 
a minor species at >240 kD (Fig. 8 A, lanes 1-4). At 9 M 
urea, no cross-linking was obtained with vimentin (lanes 
5-8). These data are in good agreement with those obtained 
by Quinlan et al. (1986), and indicated that the "o175-kd 
complex represented the homodimer, and the >240-kD com- 
plex represented the homotetramer. 

In contrast to vimentin, when K14 and K5 were placed 
separately in 6 or 9 M urea and exposed to increasing con- 
centrations of glutaraldehyde, neither keratin alone showed 
any evidence of cross-linking (Fig. 8 B, K14, lanes 1-4, 6 M 
urea; lanes 9-12, 9 M urea and K5, lanes 17-20, 9 M urea). 
In contrast, the mixture of K14 and K5 in 6 M urea showed 
appreciable cross-linking, even at relatively low concentra- 
tions of glutaraldehyde (Fig. 8 B, lanes 5-8; anti-K14 immu- 
noblot shown; anti-K5 immunoblot analogous, but not 
shown). The electrophoretic mobility of the complex was 
>220 kD, and as expected, it was detected by immunoblot 
analysis with antisera against both type I and II keratins. The 
fact that the complex migrated with slower mobility than the 
vimentin dimer, and yet the actual mass of each keratin is 
less than that of vimentin, indicated that the cross-linked ker- 
atin complex was a heterotetramer. This conclusion was fur- 
ther strengthened when we repeated our gel filtration analy- 
ses, this time with the cross-linked keratin (not shown): 
relative to the random coil standards, the cross-linked com- 
plex eluted as if it were a 135-kD species (i.e., a similar gel 
filtration profile to that in Fig. 6 A), but when the peak frac- 
tions were analyzed by SDS-PAGE, the cross-linked com- 
plex ran as a >220-kD species, rather than a 58-kD and 50-kD 
species. Collectively, these data confirmed our assignment 
of the 135-kD gel filtration species as the heterotetramer and 
demonstrate that the heterotetramer runs aberrantly relative 
to fully denatured proteins in urea gel filtration chromatog- 
raphy. 

When K5 and K14 were subjected to glutaraldehyde in the 
presence of 9 M urea, they formed two heteromeric com- 
plexes, one with a mobility of >220 kD and one which was 
much smaller ('o150 kD) (Fig. 8 B, lanes 13-16 and 21-24). 
Both complexes were present as a 1:1 mixture of K5 and K14 
as judged by immunoblot analysis with anti-K14 (lanes 
13-16) and anti-K5 (lanes 21-24). Since the >220-kD spe- 
cies is a tetramer, the smaller "ol50-kD SDS-PAGE species 
must be a heterodimer. This conclusion was confirmed by gel 
filtration analyses of the 9 M cross-linked species: according 
to random coil standards, the >220-kD species eluted as if 
it were a "o135-kD random coil, and the 150-kD species 
eluted as if it were a ,o70 kD random coil (data not shown). 
Our findings are in good agreement with our gel filtration 
studies of uncross-linked keratin complexes, and demon- 
strate unequivocally that in 6 M urea, K5 and K14 exist as 
stable tetramers, while in 9 M urea, K5 and K14 exist as a 
mixture of heterodimers, heterotetramers, and monomers. 
Moreover, the abundance of cross-linked heterotetramers in 
9 M urea are in agreement with the notion that the trailing of 
the tetramer observed in the gel filtration was due to dissoci- 
ation of the heterotetramer into heterodimers during the run. 

The Structure of Keratin 
Heterodimers, Heterotetramers, and 
Higher Ordered Structures 

Using EM, we examined the structure of our fractions of 
monomers and heteromeric complexes. While high-resolu- 
tion low angle rotary shadowing was not feasible due to the 
presence of urea in our buffers, negative staining enabled vi- 
sualization of the subunits. K5 and K14 monomers had no 
discernible structure, at least within the limits of resolution 
offered by negative staining (not shown). In contrast to the 
structure of keratin monomers, heterodimers in 9 M urea 
showed a lollipop-like structure, with a prominent globular 
domain at one end (Fig. 9 A). The overall structure was simi- 
lar to that seen for dimers of lamin IF subunits, where two 
polypeptide chains appear to be aligned in parallel and in 
register (Aebi et al., 1986, 1988; Parry et al., 1987). The 
rod domains of the dimers shown are ,,o45-50 run, consistent 
with the length of a 310 amino acid residue coiled-coil (see 
Aebi et al., 1986, 1988; Parry et al., 1987). In some cases, 
the other nonhelical end of each keratin in the heterodimer 
could also be seen (see arrowheads in A). Since the amino 
terminal ends of K5 and K14 are larger than their carboxy 
ends, it seems most likely that the globular end of the dimer 
represents the amino ends of the two keratins. Although we 
cannot exclude the possibility that the enlarged "head" do- 
main arises from a negative staining artifact (i.e., excessive 
exclusion of negative stain), we think that its size most likely 
reflects the random coil nature of the globular amino domain 
in urea (Steinert et al., 1983, 1984). The heterodimer struc- 
ture thus seems to consist of K5 and K14 polypeptides aligned 
in register and in a parallel fashion, a notion which is consis- 
tent with previous predictions based on (a) model building 
and Fourier transform analyses and (b) biochemical analyses 
of proteolytic fragments of keratins isolated from partial en- 
zymatic digestion of keratin filaments (McLachlan, 1978; 
Crewther et al., 1983; Woods and Inglis, 1984; Parry et al., 
1985, 1987). 

In 9 M urea, occasional dumb-bell-like structures were 
seen, and at lower urea concentrations, the number of these 
structures increased significantly (Fig. 9 B). While the rod 
domains were sometimes difficult to see, the spacing be- 
tween globular domains was often 45-50 nm. These dumb- 
bell structures were reminiscent of those obtained by Geisler 
et al. (1985), who examined tetramers of headless/tailless 
desmin rods decorated with an antibody against the COOH- 
terminal portion of the rod. For intact keratin heterotetra- 
mers, the putative non-helical amino end domain was suffi- 
ciently large under the strongly denaturing conditions used, 
so that no antibody was necessary to create the dumb-bell- 
like structure. Our data demonstrate that similar to desmin, 
the keratin heterotetramer often consists of two heterodimers, 
aligned in an antiparallel fashion and seemingly in register. 

Interestingly, we noticed that some dumb-bell structures 
had rod domains that were only *30-40  nm (see examples 
denoted by arrowheads in Fig. 9 B). It is possible that under 
the strongly denaturing conditions used here, the coiled-coil 
might be in equilibrium with a partially denatured conforma- 
tion. Alternatively, the coiled-coil rod could be in equilib- 
rium with a more compacted structure, a notion consistent 
with our observations that (a) the shorter rods often appeared 
somewhat thicker than the 50-nm long version; and (b) these 
compacted rods were also seen under less stringent condi- 
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tions (see below). However, we cannot rule out the possibil- 
ity that these structures arise from two antiparallel dimers 
that are partially staggered, as proposed for the tetramers in 
the paracrystalline structures of glial filament protein 
(Stewart et al., 1989; see also Fraser et al., 1987; Aebi et 
al., 1988). Further studies will be necessary to distinguish 
between these possibilities. 

We were interested to know what keratin structures might 
exist at concentrations of urea <6 M, because when we had 
attempted to fractionate 4 M urea complexes by gel filtration 
chromatography, no discrete peaks were obtained (not shown). 
As suspected, a mixture of higher ordered structures were 
present in addition to dimers and tetramers (Figs. 9, C-E). 
Among these included structures which appeared to be strings 
of tetramers, linked end to end (Fig. 9 C), and occasionally 
structures which resembled two tetramers arranged in a half- 
staggered conformation and packed laterally (Fig. 9 D). In 
addition, even higher ordered structures composed of a larger 
number of keratin subunits were seen (Fig. 9 E). Since no 
one structure prevailed, we could not ascertain whether any 
of these structures were likely to be bona fide intermediates 
in the assembly process. These data underscore our findings 
that many of the interactions leading to higher ordered fila- 
ment assembly appear to take place simultaneously in paral- 
lel, rather than sequentially in series. 

Keratin Heterodimers and Heterotetramers Are 
Competent for Filament Formation 

A priori, the isolation of heterodimers and heterotetramers 
of K5 and K14 did not necessarily mean that these structures 
were competent for filament formation. To examine whether 
these subunits are viable precursors for filament formation, 
and not merely dead-end structures, we dialyzed purified 
complexes in 6 and 9 M urea as described in Materials and 
Methods, and examined the resulting structures under the 
electron microscope. Our results indicate that whether we 
began with purified complexes formed in the presence of 9 
or 6 M urea, bona fide 10-nm filaments assembled (Fig. 9 
F, dialysis from 6 M urea). Moreover, based upon protein 
concentration and the number of filaments formed upon dial- 
ysis of these, it was evident that filament formation occurred 
with an efficiency comparable to that seen when K5 and K14 
monomers in 9 M urea were combined without purification 
of the heteromeric complexes, and subsequently subjected to 
dialysis. Since the heteromers were the only small subunit 
complexes which we detected, and since 10-nm filaments 
could be obtained with high efficiency upon dialysis of the 
urea buffers, it seems likely that the heterodimers and hetero- 
tetramers we have isolated are the building blocks of keratin 
filaments. 

Discussion 

The Dimer 

Many of the initial predictions of keratin dimer subunit com- 
position and structure came from studies on other IF pro- 
teins. Among the most elegant of these studies include recent 
investigations of the nuclear lamin dimers, where rotary 
shadowing and electron microscopy have enabled visualiza- 
tion of the polypeptide chains in parallel and in register 
(Aebi et al., 1986; Parry et al., 1987). In addition, Quinlan 

et al. (1986) purified desmin, vimentin, and neurofilament 
dimers by HPLC in 3 M guanidinium hydrochloride. The 
dimer state of these subunits was confirmed by chemical 
cross-linking and analytical ultracentrifugation studies. 
Electron microscopic examination of the dimer fractions in- 
dicated that the coiled-coil rod was ,,o40--45 nm long and 
~ 2 - 4  ran in diameter (Quinlan et al., 1986). Hence, on the 
basis of other IF proteins alone, it could be predicted that the 
characteristic structure of the coiled-coil of keratin IFs 
would be a dimer, arranged in parallel and in register. 

Since these pioneering studies on the basic structure of the 
IF coiled-coil, there has been little dispute over the putative 
dimer structure for keratins. However, whether these dimers 
exist as heterodimers, homodimers, or both has been a mat- 
ter of considerable controversy (Gruen and Woods, 1983; 
Woods and Inglis, 1984; Parry et al., 1985; Eichner et al., 
1986; Quinlan et al., 1984, 1986; Hatzfeld et al., 1987; 
Hatzfeld and Weber, 1990). The issue is an important one, 
because given the antiparallel nature of the tetramer, 
homodimers would lead to tetramers with polarity, whereas 
heterodimers would lead to tetramers with no polarity. Our 
ability to isolate heterodimers of K5 and K14 under condi- 
tions where K5 or K14 by themselves exist as monomers 
provided unequivocal proof that type II and type I keratins 
can associate as heterodimers. This conclusion was reached 
independently in a recent study by Hatzfeld and Weber 
(1990), where cross-linking of a genetically engineered cys- 
teine residue in the rod domain of K8 and K18 was used to 
isolate the heterodimer. In our studies of wild-type epider- 
mal keratins, the ability of the heterodimer to persist in the 
presence of 9 M urea and without any covalent cross-linking 
of the two polypeptide chains is truly remarkable, and indi- 
cates that the intermolecular associations of K5 and K14 are 
among the strongest noncovalent interactions that exist in na- 
ture. In fact, this extraordinary stability of the coiled-coil 
heterodimer, coupled with its aberrant behavior, i.e., com- 
pact in gel filtration and expanded when cross-linked and 
subjected to SDS-PAGE, explains why the existence of the 
heterodimer has been so difficult to demonstrate. 

Using native gel electrophoresis (not shown), gel filtration 
chromatography in 4 M urea, and chemical cross-linking in 
6 M urea, we were never able to detect the existence of K5 
and K14 homodimers, a structure purported to exist, at least 
for K8and K18 (Quinlan et al., 1986; Hatzfeld et al., 1987; 
Hatzfeld and Weber, 1990). While we did detect nonspecific 
aggregation of keratin monomers at concentrations of urea 
<6 M, we never obtained convincing evidence for any ap- 
preciable pool of specific coiled-coil homodimers. Since bet- 
erodimer associations are not only extraordinarily stable, 
but also fully competent to assemble into 10-nm filaments 
in vitro, it seems unlikely that homodimers could play a com- 
parable role in the assembly process. Not only would the 
coiled-coil interactions of homodimers be distinct from 
those of the heterodimer, but in addition, the associations 
that lead to heterotetramer and higher ordered structures 
would also be largely different. Thus, we conclude that kera- 
tin heterodimers are the most likely candidates for the 
coiled-coil structure of epidermal IFs in vivo as well as in 
vitro. 

Our finding that heterodimers of K5 and K14 exist even in 
the presence of 9 M urea and 10 mM B-mercaptoethanol un- 
derscores an unusually strong association between two poly- 
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peptide chains that share only 29 % sequence identity within 
their 310 amino acid residue coiled-coil domains. Understand- 
ing the molecular forces promoting these potent interactions 
will be limited so long as crystallization of the coiled-coil re- 
mains elusive. However, in the absence of such information, 
our ability to isolate, identify, and characterize keratin het- 
erodimers has provided us with a foundation for future model 
building and for interpreting the effects of site-directed muta- 
tions on dimer formation and stability. Inspection of the se- 
quences within the coiled-coil domains of K5 and K14 al- 
ready indicate that in addition to hydrophobic interactions 
within the heptad repeat, ionic interactions may also play a 
role in stabilizing the dimer. In fact, ,,030% of all residues 
within these coiled-coil domains are charged amino acids 
(Hanukoglu and Fuchs, 1982; Marchuk et al., 1984; Lersch 
and Fuchs, 1988; Lersch et al., 1989). 

That ionic interactions might be important in promot- 
ing coiled-coil formation has been suggested previously by 
McLachlan and Stewart (1975), who noted in the course of 
Fourier transform analyses and model building that there is 
a periodic distribution of charged side-chains in o~-tropo- 
myosin. Fourier transform analyses of partial segments of the 
coiled-coil domains of type I and type II wool keratins has 
also revealed a periodicity of alternating bands of positively 
and negatively charged residues, which could play a role in 
stabilizing a coiled-coil if the keratins were aligned in a par- 
allel fashion (Parry et al., 1977; McLachlan, 1978; McLach- 
lan and Stewart, 1982; Conway and Parry, 1988). For K5 and 
K14, there are 57 residues throughout the coiled-coil domain 
that are both charged and conserved. Half of these are in po- 
sitions e or g of the heptad, i.e., two positions flanking the 
hydrophobic residues (a and d). The precise role that these 
residues might play in dimer stabilization remains to be elu- 
cidated. 

The Tetramer and Beyond: A Model for Intermediate 
Filament Assembly 

While chemical cross-linking studies have long postulated 
the existence and composition of keratin heterotetramers, 
some controversy has remained concerning the arrangement 
of keratin and other IF polypeptide chains within the 
subunit. For isolated rod domains of desmin, an antibody 
decorating the COOH-terminal portion of the coiled-coil 
created 50-nm long dumb-bell-like structures as visualized 
by EM (Geisler et al., 1985; see also Ip et al., 1985). Our 
data provided the first opportunity to visualize undecorated 
and intact IF tetramers of antiparallel dimers, and confirm 
earlier studies which had suggested that tetramers consist of 
dimers arranged in an antiparallel fashion. 

Our finding that at least a portion of the tetramers had rod 
domains of "~50 nm was consistent with previous analyses 
of keratin tetramers (Quinlan et al., 1984). Moreover, even 
the 30-40-nm dumb-bell-like structures which we obtained 
under strongly denaturing conditions could be interpreted as 
being unstaggered, antiparaUel dimers, either existing in a 
partially denatured state or in a compacted state. Despite our 
finding that IF keratin tetramers exist in a largely unstag- 
gered, antiparallel fashion, we could not rule out the possi- 
bility that the 30-40 nm tetramers observed in 6 M urea 
represent antiparallel dimers in a partially staggered con- 
figuration. A staggered tetramer conformation is consistent 
with model building (Crewther et al., 1983; Fraser et al., 

1986) and analysis of paracrystal formation of IFs (Parry et 
al., 1987; Stewart et al., 1989), showing that antiparallel 
dimers might be able to organize in a partially-staggered 
configuration. Aebi et al. (1988) has suggested that if both 
staggered and unstaggered tetramers occur, there might be 
an equilibrium between the two forms, leading to "tetramer 
switching." While our data on K5 and K14 don't resolve this 
issue, the existence of a dynamic equilibrium between two 
tetramer forms both competent for IF assembly seems un- 
likely in light of (a) the extraordinary stability of the inter- 
molecular interactions leading to tetramer formation; and 
(b) the complex hierarchy of interactions involved in packing 
of subunits and the assembly of the 10-nm filament. 

To date, we have not yet found conditions that will provide 
us with homogeneous populations of larger subunit struc- 
tures. However, the coexistence of monomers, dimers, and 
even tetramers in the presence of 9 M urea and a reducing 
agent suggests that a number of defined associations among 
keratins may take place in parallel, rather than in series, and 
that the keratin filament assembly process might not occur 
by a linear sequence of events. This notion is consistent with 
our detection of a variety of different structures in 4 M urea, 
including apparent protofilament-like strings of tetramers, 
linked end-to-end as well as possible octamer-like structures 
indicative of lateral packing of tetramers. In the future, it 
may be possible to find suitable conditions to examine these 
higher-ordered structures by creating mutant subunits which 
selectively prevent one type of interaction but not others. 

Despite the fact that pure populations of octamers have not 
been isolated, nor does it seem likely that significant pools 
of octamers will be found in vivo, their existence has been 
postulated as the building block of protofibrils, the 4.5-nm 
fibers that intertwine laterally to give rise to the overall 10- 
nm diameter of the IF (Aebi et al., 1983; Quinlan et al., 
1984; Ip et al., 1985; Eichner et al., 1986; Geisler et al., 
1986). Scanning transmission EM data have yielded a mass 
per unit length of the keratin filament that is consistent with 
the existence of (a) 4 protofibrils per full 10-nm width of the 
filament, and (b) protofibrils composed of eight polypeptide 
chains packed laterally to give rise to the 4.5-nm diameter 
(Steven et al., 1983; Engel et al., 1985). An octameric struc- 
ture composed of two tetramers arranged in a half-staggered 
configuration would not only account for the lateral width of 
the protofibrils in IFs, but it would also account for the 
22-25-nm axial repeat of IFs that is visualized by electron 
microscopy (Milam and Erikson, 1982; Henderson et al., 
1982; Aebi et al., 1983, 1986; Ip et al., 1985; Coulombe and 
Fuchs, unpublished observations). Indeed, as pointed out by 
Aebi et al. (1988), in order to explain this ar.ial repeat, a 
staggering of tetramers should take place if the tetramers 
themselves are unstaggered. The presence of structures such 
as the one shown in Fig. 9, frame D is suggestive that such 
lateral packing does take place during filament formation. 
Hence, while the simultaneous occurrence of end-to-end in- 
teractions might preclude the existence of a substantial pool 
of staggered octamers, our data are in agreement with the 
notion that staggered tetramer packing may occur during 
filament assembly. Collectively, our data suggest a model for 
the generation of the building blocks for keratin filament as- 
sembly (Fig. 10 A). 

Understanding how tetramers and possibly higher ordered 
subunit structures associate into protofilaments and proto- 
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MODEL FOR KERAT~ F~AMENT ASSEMBLY 

A. Formation of Heteromeric Subunits 

KS ~ "  K14 
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B. Filament Assembly 
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Figure 10. Model for keratin filament assembly. (A) Formation of 
heteromeric subunits. This part is based on (a) our isolation and 
characterization of heterodimers as the most stable multimeric 
form; (b) production of heterotetramers when denaturing condi- 
tions were made less stringent; (c) largely unstaggered configura- 
tion of lollipop and many dumb-bell-like structures, as judged by 
EM; and (d) the necessity that lateral packing of tetramers must 
occur in a staggered fashion if tetramers themselves are unstag- 
gered, to account for the 21-25 um axial repeat (as discussed, some 
of our data could reflect antiparallel dimers in a partially staggered 
state, and if so, tetrameric staggering may be less than that shown). 
The rod of K5 and K14 corresponds to the 310 amino acid domain, 
which is largely or-helical, and which contains the heptad repeat of 
hydrophobic residues indicative of a coiled-coil. The globular do- 
main represents the amino terminal nonhelical segments of K5 and 
K14, which are 168 residues, and 115 residues, respectively, and 
which are the most likely candidates for the globular portion of the 
lollipop and dumb-bell structures. The thin tail represents the car- 
boxy terminal nonhelical segments of K5 and K14, which are 109 
and 46 residues, respectively. The model suggests that both end-to- 
end associations and lateral associations of tetramers can occur 
simultaneously, in agreement with the structures observed in 4 M 
urea (frames 9, C and D, respectively). (B) Filament assembly. 
This part is based on (a) normal and scanning transmission electron 
microscopic data indicating that four protofibrils constitute the full 
10-nm diameter of the keratin filament and that each protofibril 
comprises '~8 polypeptide chains per diameter width (Aebi et al., 
1983; Steven et al., 1983; Quinlan et al., 1984; Engel et al., 1985); 
(b) immunofluorescence examination of a tagged K14 keratin ex- 
pressed in epithelial cells, at early times after transfection (Albers 
and Fuchs, 1987), indicating that newly synthesized keratin is in- 
corporated relatively uniformly throughout the existing keratin fila- 
ment network (see also Vikstrom et al., 1989; Ngai et al., 1990); 
(c) in vivo filament recovery studies of epithelial ceils whose endog- 
enous keratin filament network was temporarily obliterated by tran- 
sient expression of a COOH-terminal mutant keratin (Albers and 
Fuchs, 1987): one possible interpretation of these studies is that de 
novo keratin filament formation may preferentially occur at the nu- 
clear surface and grow towards the cytoplasmic membrane (see also 
Eckert et al., 1982; Georgatos and Blobel, 1987), although this has 
not been unequivocally demonstrated (the question mark indicates 
the present uncertainty of this point); (d) scanning transmission 

fibrils, respectively and how these smaller fibers interact 
laterally to give rise to the 10-nm filament must await further 
molecular probing into the complex structure of the inter- 
mediate filament. Recently, however, gene transfection studies 
on wild-type and mutant epidermal keratins have provided 
some insights into the hierarchy of the IF assembly process 
(Albers and Fuchs, 1987, 1989). When expressed in cultured 
epithelial cells, K14 integrated into the preexisting keratin 
filament network, and even at early times after transfection, 
a tagged keratin was distributed evenly throughout the net- 
work (Albers and Fuchs, 1987). These data suggested that 
integration of subunits occurs everywhere along a filament 
as opposed to strictly at one end or the other, consistent with 
recent findings of  Ngai et al. (1990). In addition, a K14 mu- 
tant missing a COOH-terminal portion of the coiled-coil do- 
main disrupted both newly formed and preexisting keratin 
filament networks, suggesting that the network is a dynamic 
one, with subunits capable of integrating into both new and 
existing filaments (Albers and Fuchs, 1987). When transient 
gene expression apparently subsided in the cells transfected 
with mutant keratin genes, seemingly new synthesis of en- 
dogenous keratin subunits led to formation of  a de novo fila- 
ment network surrounding the nucleus (Albers and Fuchs, 
1987). Similar studies on amino-terminal coiled-coil mutants 
of  K14 led to additional evidence suggestive of an association 
between the nuclear envelope and IFs (Albers and Fuchs, 
1989). One possible explanation for these observations is 
that new keratin filament assembly may have a preference to 
occur at the nuclear envelope, and under conditions where 
this putative preference is manifested, subsequent growth of 
filaments would proceed toward the cytoplasmic membrane 
(Albers and Fuchs, 1989). This has also been suggested in- 
dependently by Eckert et al. (1982), who conducted keratin 
filament assembly studies in the presence of nuclear mem- 

EM data suggesting that the mass-per-unit length along the keratin 
filament can vary considerably by one to two protofibrils in width 
(Steven et al., 1983; Engel et al., 1985); and (e) our data demon- 
strating that under strongly denaturing conditions, a number of ker- 
atin subunit and filament intermediates coexist, suggesting that 
there may not be a linear sequence of events leading to filament for- 
mation. If under physiological conditions, new filament assembly 
preferentially takes place at the surface of the nucleus, then fila- 
ments could grow towards the cytoplasmic membrane by end-to- 
end addition of tetramer or octamer subunits (curved arrows). If 
lateral association of tetramers or octamers also takes place as indi- 
cated in the diagram (straight arrows), but at a somewhat lower fre- 
quency than end-to-end addition, some variation in mass-per-unit 
length would be generated along the growing keratin filament. Fi- 
nally, assuming that end-to-end and lateral additions of subunits oc- 
cur simultaneously under physiological conditions, growth of pro- 
tofibrils (and/or protofilaments) could easily lead to addition of 
subunits throughout the length of the growing filament, as indicated 
in the diagram. Note that the model shown illustrates only addition 
and not removal, or exchange, of subunits. If the equilibrium be- 
tween addition and removal of subunits does not greatly favor sub- 
unit addition, a dynamic flux of addition and removal could occur, 
leading to exchange of newly synthesized subunits with previously 
made ones (see Albers and Fuchs, 1987; Ngai et al., 1990). Hatched 
subunits indicate those subunits most recently added to the sche- 
matic growing filament. 
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branes, Georgatos and Blobel (1987), who observed IF fila- 
ment assembly from a mixture of vimentin and nuclear (but 
not cytoplasmic) membranes, and Vikstrom et al. (1989), 
who used microinjection of vimentin protein to examine fila- 
ment formation (for review, see Steinert and Liem, 1990). 

Our in vitro assembly studies did not involve membrane 
preparations and therefore our data only confirm a well- 
established fact, namely that filament formation per se does 
not appear to require the presence of any auxiliary proteins, 
factors or organelles. Hence, our data do not address the is- 
sue of whether there might be a preference for de novo fila- 
ment assembly off the nuclear envelope under physiological 
conditions. However, our new data on keratin subunit struc- 
ture now enable us to provide a more detailed IF assembly 
model, which allows for both de novo IF assembly at the nu- 
clear envelope as well as subunit addition and exchange 
throughout the length of a filament (Fig. 10 B). One way in 
which apolar subunits could integrate throughout the length 
of an IF, and still have IFs grow preferentially in a unilateral 
direction would be if lateral subunit interactions could take 
place under conditions where end-to-end interactions were 
also permissible. In such a scenario, filaments could begin 
to grow by end-to-end interactions emanating from an initia- 
tion site, possibly the nuclear envelope. However, if lateral 
interactions also took place simultaneously, then new 
subunits could add throughout the length of the growing fila- 
ment, a feature which is consistent with the gene transfection 
data, as well as with recently published data on microinjec- 
tion of IF proteins (Vikstrom et al., 1989). If lateral associa- 
tions were slightly less favorable than end-to-end interac- 
tions, a consequence of such an assembly process would be 
the production of filaments with polymorphic mass-per-unit 
length. Intriguingly, such polymorphism has been observed 
in scanning transmission EM analysis of in vitro assembled 
keratin IFs (Steven et al., 1983; Aebi et al., 1986). Finally, 
while for simplicity, the model in Fig. 10 B only covers addi- 
tion of new subunits, it is implicit that exchange of subunits 
can, and almost certainly does, take place along the length 
of the filament. 

In summary, we have isolated and characterized the 
subunits involved in the early stages of keratin filament for- 
marion, and we have shown that these subunits are non-polar 
in their structure. The equilibrium that we have uncovered 
among monomers, heterodimers and heterotetramers under 
strongly denaturing conditions is indicative that such equili- 
briums might also exist for higher ordered structures under 
more physiological conditions. This suggests that there may 
not be a linear sequence of events leading to higher levels of 
keratin filament assembly, but rather there may be a number 
of associations occurring simultaneously. As future studies 
are conducted, we hope to unravel these and other remaining 
mysteries underlying the complex self-assembly of 20,000- 
30,000 polypeptides into 10-nm fibers. 
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